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Abstract: Stimulated Raman Scattering Microscopy (SRS) is a powerful tool for label-free detailed
recognition and investigation of the cellular and subcellular structures of living cells. Determining
subcellular protein localization from the cell level of SRS images is one of the basic goals of cell
biology, which can not only provide useful clues for their functions and biological processes but
also help to determine the priority and select the appropriate target for drug development. How-
ever, the bottleneck in predicting subcellular protein locations of SRS cell imaging lies in modeling
complicated relationships concealed beneath the original cell imaging data owing to the spectral
overlap information from different protein molecules. In this work, a multiple parallel fusion network,
MPFnetwork, is proposed to study the subcellular locations from SRS images. This model used a
multiple parallel fusion model to construct feature representations and combined multiple nonlinear
decomposing algorithms as the automated subcellular detection method. Our experimental results
showed that the MPFnetwork could achieve over 0.93 dice correlation between estimated and true
fractions on SRS lung cancer cell datasets. In addition, we applied the MPFnetwork method to cell
images for label-free prediction of several different subcellular components simultaneously, rather
than using several fluorescent labels. These results open up a new method for the time-resolved
study of subcellular components in different cells, especially cancer cells.

Keywords: label-free live cell imaging; protein subcellular localization; nonlinear optical microscopy;
multiple parallel fusion network; deep learning

1. Introduction

Cells can be divided into different organelles for metabolic processes and complicated
intra-cellular organizations. They are the basic biological, structural, and functional unit of all
living organisms, and the dysfunction of organelles is often closely linked to the occurrence,
development, and metastasis of tumors [1–6]. Accordingly, the detection and digging deeper
into the structure, function, and micro-environment of cell organelles will help us further learn
about the important role of organelles in life activities and provide effective suggestions for
the diagnosis and treatment of cell organelle-related diseases [5–10]. However, the resolution
of organelle structure in the natural tissue environment and its functional consequences are
still not clear [6–12]. Accordingly, the capability of imaging, extracting, and exploring cells and
their subcellular compartments is essential in various research fields, such as cell physiology
and pathology, and is closely related to a variety of diseases.

Based on the above reasons, many related technologies have been developed and
applied to cells and their subcellular compartment detection and research [13–16]. These de-
tection methods mainly include traditional biological methods such as gel electrophoresis,
protein immunoblotting, and mass spectrometry, while emerging microscopy technologies
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include electron microscopy, atomic force microscopy, and different type of optical imag-
ing technologies such as fluorescence imaging technology, confocal microscopy imaging,
phase contrast imaging, Raman imaging technology, and super-resolution fluorescence
microscopy. These methods are extensively applied in single-cell investigations and offer
an important way to study different angles of cell information [13–22].

Compared with other cell imaging methods, the optical method of single-cell imaging
has certain improved properties, such as high detection sensitivity, high quality, and low
cost, which tremendously boost the proceedings of non-destructive cell research [18–22].
Recently, large amounts of unlabeled optical imaging instruments have been utilized for cell
surveys [18–23]. Compared with pathological images, which need staining, and fluorescent
images, which need labeling, label-free optical imaging overcome the unfavorable influence
of staining reagents on cytoactive and cell signal transduction and can be used for long
time detection in tissues and living cells [20–23]. Therefore, there is increasing demand
to develop advanced label-free cell optical imaging analysis methods to mine the rich
information contained in the optical cell images [24–26].

Due to the successive enhancement and usability of sophisticated computing power
and analytical methods in recent years, the deep neural network learning method has been
prevalent in the field of label-free cell optical imaging techniques for deeply exploring cellu-
lar structure and morphological information [25–28]. In comparison with the conventional
intelligence method, deep learning is able to automatically perform a series of target recog-
nition, feature extraction, and analysis, which makes it possible to automatically discover
image target features, and automatically explore feature levels and interactions [27–30].
The learning-enhanced cell optical image analysis model is capable of acquiring texture
details from low-level source images and achieving higher resolution for label-free cell
optical imaging techniques [29–32]. The deep learning pipeline of cell optical microscopy
imaging can extract complex data representations in a hierarchical way, which is helpful
for finding hidden cell structures from microscope images, such as the size of a single cell,
the number of cells in a given area, the thickness of the cell wall, the spatial distribution
between cells, subcellular components and their density, etc. [32–46]. The U-net model has
been proven effective in semantic segmentation and label-free prediction for cell optical
microscopy imaging [33]. However, for the multiple spectral channels, the spatial and
spectral information are mixed during the feature encoding in a problematic fashion for
image reconstruction in traditional Unet architecture. Although other recently reported
modifications of Unet, such as UwU-Net architecture, are good at extracting local feature
regions and can dedicate tunable free parameters to both spectral and spatial information,
they still experience difficulty in capturing global representations [36].

Motivated by the above analysis, the goal of this work was to employ a multiple
parallel fusion Deep Networks framework that boosts the performance of label-free cell
optical imaging techniques when solving sub-cellular organelle location problems. In our
work, we find that the multiple parallel fusion method (MPF)—which incorporates all the
merit features of both high-resolution local detailed spatial information from CNN features
and the global context information from transformers—presents a better way to predict the
location of cellular organelles from label-free cell optical images compared with previous
CNN-based self-attention methods. Moreover, we demonstrate that subcellular structures
could be more precisely reconstructed with the combination of transformer and Unet than
both methods working individually. The model also has a strong generalization ability and
can be extended to the new cell imaging investigation.

2. Results
2.1. Experimental Settings

To compare the performance of different models, the setting of experimental parame-
ters should be as consistent as possible. Firstly, the development, training, prediction, and
image processing of all models were calculated by Pytorch platforms, and the graphics
card of the server adopts Geforce RTX 3080. Secondly, during model training, the value



Int. J. Mol. Sci. 2022, 23, 10827 3 of 28

of momentum was set at 0.9, the value of the batch size was set to 8, and the weight
attenuation for the training neural network was set to 1 × 10−4. At the same time, the
maximum number of epochs for the contrasting models was set at 200. In order to select
the initial learning rate, a series of values was computed to test its training effect in the
model. According to the experimental comparison, it was proved that 0.001 is the best
choice to set as the initial learning rate.

The neural network training curves for three different prediction methods are shown
in Figure 1. For the better-performing multiple parallel branch fusion model, as Figure 1
depicts, the training process only took about 120 steps until the training accuracy increased
by over 96%. The error decay in Figure 1 demonstrates that the method with the MPFnet
mechanism gained better performance on different training samples in comparison with the
classical Unet and UwUnet model, where our strategy avoids overfitting because the error
does not increase with the change of training mode, and the error attenuation remains stable.
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and MPFnet.

2.2. Metrics for Performance Evaluation

In order to verify the credibility of predictions, five quantified metrics were applied
to measure the performance of different prediction algorithms. All the evaluation metrics
mentioned above can be consecutively calculated as follows.

The accuracy (AY) and overall accuracy (OA) are common standard metrics for pre-
dicting subcellular locations, which can be calculated as follows:

AY(i) =
R(i)
S(i)

(1)

OA =
∑10

i=1 R(i)

∑10
i=1 S(i)

(2)
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where R(i) is the correctly predicted values in the ith subcellular locations, and S(i) repre-
sents the total values in the ith subcellular locations.

Mean Intersection over Union (MIoU) is another standard metric for segmentation
purposes [47]. Intersection over Union (IoU) is a ratio computed on a per-class basis between
the ground truth and the protein subcellular location prediction. Mean Intersection over
Union is the average IoU ratio, which can be calculated as follows:

IoU =
T
⋂

P
T
⋃

P
(3)

MIoU =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji − pii
(4)

where it is assumed that the total of classes is (k + 1) and pij is the number of pixels of class
i inferred to class j. pii represents the number of true positives, while pij and pji are usually
interpreted as false positives and false negatives, respectively.

Pearson’s correlation coefficient (PCC) (rpy ∈ [−1, 1]) is another metric that gives
the relationships between the feature values and the predicted values by measuring the
correlation between the pixels of the true and predicted images [48]. Given N sample pairs
{(p1, y1), . . . , (pN, yN)}, we obtain:

rpy =
∑N

i=1(pi − p)(yi − y)√((
∑N

i=1(pi − p)2
)(

∑N
i=1(yi − y)2

)) (5)

where p and y are the sample means. Note that when pi and yi are binary, rpy becomes the
Matthews correlation coefficient, which is known to be more informative than the F1 score
(Dice coefficient) on imbalanced datasets.

MSE (Mean Square Error) is a function that is used to evaluate the difference between
the targeted values and the predicted values [49]. RMSE (Root Mean Square Error) further
evaluates the spatial detail information between images, while NRMSE (Normalized Root
Mean Square Error) normalizes RMSE for easier observation and comparison. For the
image prediction work, the NRMS can be applied in computing the accuracy between a
pixel in the predicted image and the same pixel in the true image, which is obtained by:

MSE =
1

M× N

M

∑
i=1

N

∑
j=1

(
u′(i, j)− u(i, j)

)2 (6)

RMSE =
√

MSE(u′, u) (7)

NRMSE =

√
1

M × N ∑M
i=1 ∑N

j=1(u′(i, j)− u(i, j))2

u′(i, j)max − u′(i, j)min
(8)

where u′(i, j), u(i, j) represent the image to be evaluated and the original image, respec-
tively. N represents the length and width of the image.

Peak Signal to Noise Ratio (PSNR) is the most commonly used metric in image quality
assessment, which can be obtained by:

PSNR = 10 log10

(
mx ×my ×V2

max

∑r,t[t(x, y)− d(x, y)]2

)
(9)

where Vmax denotes the maximum predicted value of the source image. t(x,y) is the matrix
of the raw source image, d(x,y) is the matrix of the noise-removed image. (x,y) denotes the
pixel coordinate in a given mx × my image.

Structural similarity index (SSIM) can be used as a quality evaluation index for simi-
larity comparison among image prediction results, which can be obtained by:

s(x, y) =
σxy + c3

σxσy + c3
(10)
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l(x, y) =
2µxµy + c1

µ2
x + µ2

y + c1
(11)

c(x, y) =
2σxσy + c2

σ2
x + σ2

y + c2
(12)

The SSIM value is calculated for signals and images after combining Equations (10)–(12) as:

SSIM(x, y) = [l(x, y)]m[c(x, y)]n[s(x, y)]p

=
(2µxµy+C1)(2σxy+C2)
(µ2

x+µ2
y+C1)(σ2

x+σ2
y+C2)

(13)

where m, n, and p denote the magnitude values of the structure component s(x,y), the
luminance component l(x,y), and the contrast component c(x,y), respectively. µx, µy is the
average of xi, yi. σx, σy is the variance of xi, yi.

The Dice Similarity Coefficient (DSCs), also named Sørensen–Dice similarity, is another
one of the frequently used metrics in medical image competitions. It is a collective similarity
metric, which is usually used to calculate the similarity of two segmented images. The
calculation formula of the Dice coefficient is as follows:

Dice =
2× (T

⋂
P)

T
⋃

P
(14)

where the Dice similarity coefficient value threshold is [0, 1]. The best result of prediction
or segmentation in a medical image is 1, and the worst result is 0.

2.3. The Analysis of the Performance of Multiple Parallel Fusion Deep Networks

The experiment of this section mainly discusses the results of the labeling-free method
based on deep learning for protein subcellular localization from femtosecond stimulated
Raman spectroscopic microscope images. Compared with other classical optical imaging
methods, Stimulated Raman spectroscopy imaging has the advantages of not requiring
fluorescent molecular markers and obtaining more information. However, the rich and
overlapped information in the same collected image also causes difficulties for image
analysis and feature extraction. Although some of the label-free staining methods based on
Raman imaging have shown promising results in some organelles, there is still a lack of rich
and effective means to predict the subtle changes of Raman spectra for single organelles.

The results for subcellular localizations can be seen in Figure 2A,B. The output results
for different organelle locations, including nuclei (second column), mitochondria (third
column), and endoplasmic reticulum (right) from the single raw SRS imaging cell (left), are
shown in Figure 2A. One SRS raw image for A549 lung cancer cells from ATCC was output
at the different positions of the multiple fusion model at the same time to determine the
accuracy of subcellular localization predictions, including nuclei (top row), mitochondria
(third column), and endoplasmic reticulum (bottom row). Figure 2B shows the output of
nuclei (top row), mitochondria (third column), and endoplasmic reticulum (bottom row)
from the transformer branch in the first column. The output from the bifusion branch and
multi-model are shown in the second and third columns, respectively.
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Figure 2. Subcellular localization prediction results of differentiation model from label-free cell im-
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Figure 2. Subcellular localization prediction results of differentiation model from label-free cell
imaging experiments. The results for different organelle locations, including nuclei (second column),
mitochondria (third column), and endoplasmic reticulum (right) from the single raw SRS imaging
cell (left), are shown in (A). The prediction results for organelle locations, including nuclei (top row),
mitochondria (third column), and endoplasmic reticulum (bottom row), from the raw SRS imaging
cells (left) are shown in (B). Scale bar, 25µm.
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2.4. Comparison of the Performance with Various Prediction Models

In this section, predicting experiments of subcellular organelle localization results
are investigated and compared among different deep learning models from label-free
SRS microscopy images. Even though the traditional imaging-based pipeline has cells
stained, SRS imaging can give more information on cell shape and subcellular structure
without using molecular probes. On the other hand, it also produces some disadvantages,
such as low-contrast and complex images, which create obstacles to clearly indicating the
biochemical features of cells. Therefore, for SRS cell imaging, some challenges still exist in
using these deep learning-based methods to clearly identify, segment, and quantify each
subcellular structure in cell optical images. As a result, some advanced analysis methods
are needed to explore the rich information hidden in cell images. Based on the above
reasons, the new MPFnet method is proposed in this work, which bridges the transform
model and convolutional neural networks to automatically segment organelles.

To demonstrate the application of deep learning models in label-free organelle predic-
tion, we used fluorescence imaging of the fixed lung cancer cells as a ground-truth model
and SRS microscopy images as the source image model. In Figure 3, the first column shows
a live-cell Raman optical image, the second column is ground-truth fluorescence images
taken after the cells are stained, and the following three columns are predicted fluorescence
cell images with the UwUnet method, Unet method, and MPFnet method, respectively.
From the experimental analysis results, we can see that the MPFnet method can accurately
predict the location of each organelle from cell optical imaging data at the same time.
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Figure 3. Predicted organelle fluorescence from hyperspectral SRS microscopy images by using
UwUNet, U-Net, and MPFNet methods. The first column shows the Input SRS image, the sec-
ond column shows the ground-truth fluorescence image, and the following three columns display
the predicted fluorescence results by UwUNet, U-Net, and MPFNet, respectively, for nuclei (top),
mitochondria (middle), and endoplasmic reticulum (bottom). Scale bar, 25µm.
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In order to quantitatively compare and analyze the effects of different prediction
methods, we calculated the quantitative metrics: NRMSE, SSIM, PCC, DICE, and mean
IoU to explore the differences between predicted and expected results of different methods,
to compare the prediction performance between the methods proposed in this work with
other classical methods. We firstly give a comparison of the prediction performance with
the mean pixel accuracy curves and radar chart for five quantitative metrics, including
NRMSE, SSIM, PCC, DICE, and mean IoU among Unet, UwUnet, and MPFnet models,
as shown in Figure 4. One can observe from Figure 4 that the MPFnet ensemble method
achieved the highest mean pixel accuracy of 0.92.
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To verify the valuable quantitative evaluation parameter in subcellular organelle
localization, the segmentation performance of all trained networks was also assessed by the
Dice similarity coefficients to evaluate the similarity between the ground truth fluorescence
labels and model-generated images (Figure 5). Compared to the observed datasets, the
Dice similarity of the prediction for the nuclei, endoplasmic reticulum, and mitochondria
task set was the highest for MPFnet and the lowest for the Unet approach.

The lowest Dice similarity coefficient of the Unet method for the nuclei prediction
task set was attributed to the edges of the bony structures not being included in the gold
standard as it lacked the long-distance segmenting in these whole regions. The lowest Dice
similarity coefficients of the Unet method for the mitochondria and endoplasmic reticulum
prediction task sets were due to the larger excluded region of the outer contour area in its
gold standard, while this excluded region was segmented by the Unet method.

In addition, we also measured the accuracy of label-free prediction algorithms using
the mean Intersection Over Union (IOU) evaluation metric. Here, the mIOU for each epoch
comparison among different methods is shown in Figure 6a. Then, we used the box plot
graph to give a more visual and intuitive representation of the quantitative evaluation of
mIOU parameters on the prediction results of different algorithms (Figure 6). The box plot
in Figure 6 shows five statistics in the data: minimum, first quartile, median, third quartile,
and maximum. In Figure 6, the minimum value is represented by the extension of the red
lines at the bottom, while the maximum value is represented by the extension of the red
line at the top. The range of these two black lines refers to the mIOU accuracy range, and
the top and bottom of the box refer to the accuracy of the upper quartile (=0.75) and lower
quartile (=0.25), respectively. The blue solid line in the box indicates the median accuracy.



Int. J. Mol. Sci. 2022, 23, 10827 9 of 28

It can be seen from Figure 6b–e that compared with other methods, the MPFnet method
achieves the best performance on all the nuclei, mitochondria, and endoplasmic reticulum
datasets. Compared with the observed datasets, MPFnet performed favorably by metric
mIOU with 0.879, 0.876, and 0.881 for the nuclei, mitochondria, and endoplasmic reticulum
task set, respectively, against alternative UwUnet approaches with mIOU mean values of
0.852, 0.861, 0.854. The classical Unet approach performed significantly worse with mIOU
mean values of 0.716, 0.771, and 0.731.
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Figure 5. Comparing dice performance among various prediction algorithms. (a) Dice similarity
coefficient radar chart for quantitative comparisons of different predictive models. (b) Box plot of
dice values for all organelles (nuclei, mitochondria, and endoplasmic reticulum) prediction task set
with MPFnet-based learning model and compared with that of varied deep neural network-based
prediction models, such as Unet and UwUnet learning model on all. (c) Box plot of dice coefficient
value on nuclei prediction task set with MPFnet-based learning model and compared with that of
varied deep neural network-based prediction models, such as Unet and UwUnet learning model.
(d) Box plot of dice coefficient value on endoplasmic reticulum prediction task set with MPFnet-based
learning model and compared with that of varied deep neural network-based prediction models,
such as Unet and UwUnet learning model. (e) Box plot of dice values on mitochondria prediction task
set with MPFnet-based learning model and compared with that of varied deep neural network-based
prediction models, such as Unet and UwUnet learning model.
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To further characterize the predictive performance of three variants of the deep learn-
ing-based predictor on organelle (nuclei, mitochondria, and endoplasmic reticulum) seg-
mentation tasks and to give comparable measures, we also provide Pearson’s correlation 
coefficient (PCC) to quantify the accuracy of the predictions. The PCC similarity value is 

Figure 6. The mean intersection over union (mIOU) of different deep learning models over all SRS
microscopy images in fixed lung cancer cells (A549, from ATCC) detection dataset. (a) mIOU for
each epoch comparison among different methods. Unet (Purple triangle dash line), UwUnet (Green
circle solid line), MPFnet (Pink arrow dotted line) represent Unet, UwUnet, MPFnet, respectively.
(b) Box plot of mIOU accuracy of all organelles (nuclei, mitochondria, and endoplasmic reticulum)
prediction task set with MPFnet-based learning model and compared with that of varied deep neural
network-based prediction models, such as Unet and UwUnet learning models. (c) Box plot of mIOU
accuracy on nuclei prediction task set with MPFnet-based learning model and compared with that
of varied deep neural network-based prediction models such as Unet and UwUnet learning model.
(d) Box plot of mIOU accuracy on endoplasmic reticulum prediction task set with MPFnet-based
learning model and compared with that of varied deep neural network-based prediction models
such as Unet and UwUnet learning model on all. (e) Box plot of mIOU accuracy on mitochondria
prediction task set with MPFnet-based learning model and compared with that of varied deep neural
network-based prediction models such as Unet and UwUnet learning models.

To further characterize the predictive performance of three variants of the deep
learning-based predictor on organelle (nuclei, mitochondria, and endoplasmic reticulum)
segmentation tasks and to give comparable measures, we also provide Pearson’s correlation
coefficient (PCC) to quantify the accuracy of the predictions. The PCC similarity value is
used here to determine the similarity between the pixels of the truth and predicted images
with various deep learning methods.

The top left radar chart of the PCC in Figure 7a shows the PCC metric value with
three different test models for the cell SRS images. The box plot graph in Figure 7b–e
provides a more visual and intuitive representation of the quantitative evaluation of PCC
parameters on the prediction results of different algorithms. Compared to the observed
datasets, MPFnet performed favorably in PCC mean value for the nuclei, endoplasmic
reticulum, and mitochondria task sets, respectively, against the alternative UwUnet and
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classical Unet approaches. Comparing the PCC value with other methods, MPFnet results
had good advantages over other methods. Therefore, the PCC similarity value in Figure 7a–e
shows that the MPFnet method achieved top performance on all the nuclei, mitochondria,
and endoplasmic reticulum datasets. Based on the PCC coefficients, our selected MPFnet
method scheme achieved the best performance in all data sets.
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Figure 7. Comparing PCC performance among various prediction algorithms. (a) PCC radar chart
for quantitative comparisons of different predictive models. (b) Box plot of PCC value over all
organelle (nuclei, mitochondria, and endoplasmic reticulum) prediction task sets with MPFnet-based
learning model and compared with that of varied deep neural network-based prediction models,
such as Unet and UwUnet learning model. (c) Box plot of PCC value on nuclei prediction task
set with MPFnet-based learning model and compared with that of varied deep neural network-
based prediction models such as Unet and UwUnet learning model. (d) Box plot of PCC values on
endoplasmic reticulum prediction task set with MPFnet-based learning model and compared with
that of varied deep neural network-based prediction models such as Unet and UwUnet learning
models. (e) Box plot of PCC values on mitochondria prediction task set with MPFnet-based learning
model and compared with that of varied deep neural network-based prediction models such as Unet
and UwUnet learning model.

Moreover, the NRMSE metric value was also employed in this section to assess the ef-
fectiveness of the different models by comparing the predicted images and the actual images.
The top-right side of Figure 8a shows the radar chart of the NRMSE with three different test
models for the cell images. Compared with other methods, it can be seen in Figure 8a–e that
the MPFnet method achieved the top performance on all nuclei, endoplasmic reticulum, and
mitochondria datasets. Compared to the observed datasets, MPFnet performed favorably
in NRMSE mean values of the nuclei, endoplasmic reticulum, and mitochondria task sets,
respectively, against the alternative UwUnet and classical Unet approaches.
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At last, the SSIM index, which is based on structure, luminance, and contrast com-
parison, was applied for quality assessment in various different prediction methods. The 
radar chart of the SSIM quality assurance with three different test models for the cell im-
ages is shown in Figure 9a. A small SSIM index appeared in all data sets in the Unet 
method corresponding to the target area of prediction, having a relatively large difference 
between the ground truth fluorescence labels and model-generated images. Moreover, 
from the box plot of SSIM values in the all-organelles (nuclei, mitochondria, and endo-
plasmic reticulum) prediction task set with three different methods, we can obtain more 
definite quantitative comparison information. As shown in Figure 9b–e, MPFnet per-
formed favorably in SSIM mean value for the nuclei, endoplasmic reticulum, and mito-
chondria task sets against alternative UwUnet and classical Unet approaches. The MPFnet 

Figure 8. Comparing NRMSE performance among various prediction algorithms. (a) NRMSE
radar chart for quantitative comparisons of different predictive models. (b) Box plot of NRMSE
value over all organelles (nuclei, mitochondria, and endoplasmic reticulum) prediction task set
with MPFnet-based learning model and compared with that of varied deep neural network-based
prediction models such as Unet and UwUnet learning models. (c) Box plot of NRMSE value on
nuclei prediction task set with MPFnet-based learning model and compared with that of var-
ied deep neural network-based prediction models such as Unet and UwUnet learning model.
(d) Box plot of NRMSE values on endoplasmic reticulum prediction task set with MPFnet-based
learning model and compared with that of varied deep neural network-based prediction models such
as Unet and UwUnet learning model. (e) Box plot of NRMSE values on mitochondria prediction task
set with MPFnet-based learning model and compared with that of varied deep neural network-based
prediction models such as Unet and UwUnet learning model.

At last, the SSIM index, which is based on structure, luminance, and contrast compari-
son, was applied for quality assessment in various different prediction methods. The radar
chart of the SSIM quality assurance with three different test models for the cell images
is shown in Figure 9a. A small SSIM index appeared in all data sets in the Unet method
corresponding to the target area of prediction, having a relatively large difference between
the ground truth fluorescence labels and model-generated images. Moreover, from the box
plot of SSIM values in the all-organelles (nuclei, mitochondria, and endoplasmic reticulum)
prediction task set with three different methods, we can obtain more definite quantitative
comparison information. As shown in Figure 9b–e, MPFnet performed favorably in SSIM
mean value for the nuclei, endoplasmic reticulum, and mitochondria task sets against
alternative UwUnet and classical Unet approaches. The MPFnet method achieved the top
SSIM performance on all nuclei, endoplasmic reticulum, and mitochondria datasets.
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Figure 9. Comparing SSIM performance among various prediction algorithms. (a) The SSIM per-
formance measures typical of predictive tasks. (b) Box plot of SSIM values in all organelle (nuclei,
mitochondria, and endoplasmic reticulum) prediction task sets with the MPFnet-based learning
model and compared with that of varied deep neural network-based prediction models such as Unet
and UwUnet. Box plot of SSIM values on (c) nuclei, (d) endoplasmic reticulum, and (e) mitochondria
prediction task sets with MPFnet-based learning model and compared with that of varied deep neural
network-based prediction models such as Unet and UwUnet learning model.

In terms of explicit and quantitative analysis, the detailed evaluation results and calcu-
lations are shown in Tables 1–3. For different prediction models, five different quantitative
parameters (NRMSE, SSIM, PCC, Dice, and mIOU) were computed to compare and analyze
the accuracy of protein subcellular localization from label-free live cell imaging. Tables 1–3
present the label-free prediction results of three variants of deep learning-based predictors
on organelle (nuclei, mitochondria, and endoplasmic reticulum) segmentation tasks in
terms of quality metric values with NRMSE, SSIM, PCC, DICE, and mIOU. Compared with
the Unet and UwUnet prediction methods, our proposed MPFnet method outperformed
all quality metric values with NRMSE, SSIM, PCC, DICE, and mean IOU. Especially for the
nuclei prediction task, MPFnet achieved a 3.2% improvement over the UwUnet method
and a 22.7% enhancement over the Unet method in terms of mIOU. For the mitochondria
prediction task, MPFnet achieved a 2.6% improvement over the UwUnet method and a
19.8% enhancement over the Unet method in terms of mIOU. To sum up, through the com-
prehensive analysis of mIOU quantitative indicators corresponding to different methods
(Tables 1–3), we can draw a more accurate conclusion from the quantitative standard that
our method is the best of all tested methods.
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Table 1. Comparison of quality measures for label-free prediction results with MPFnet model. Here,
↓ indicates that the lower the index value, the better the performance; ↑ indicates that the higher the
index value, the better the performance of the model.

Organelle/
Model

MFPnet Model

NRMSE↓ SSIM↑ PCC↑ Dice↑ mIOU↑

Nucleus 0.192 ± 0.013 0.913 ± 0.019 0.908 ± 0.018 0.935 ± 0.009 0.879 ± 0.014
Endoplasmic Reticulum 0.187 ± 0.015 0.886 ± 0.032 0.911 ± 0.019 0.936 ± 0.011 0.881 ± 0.016

Mitochondrial 0.206 ± 0.028 0.915 ± 0.028 0.903 ± 0.016 0.933 ± 0.005 0.876 ± 0.007

Table 2. The prediction result measures of protein subcellular localization using the UwUnet model.
Here, ↓ indicates that the lower the index value, the better the performance; ↑ indicates that the
higher the index value, the better the performance of the model.

Organelle\Model
UwUnet Model

NRMSE↓ SSIM↑ PCC↑ Dice↑ mIOU↑

Nucleus 0.201 ± 0.012 0.892 ± 0.037 0.892 ± 0.016 0.919 ± 0.009 0.852 ± 0.015
Endoplasmic Reticulum 0.225 ± 0.014 0.857 ± 0.030 0.903 ± 0.019 0.925 ± 0.005 0.861 ± 0.009

Mitochondrial 0.217 ± 0.017 0.886 ± 0.046 0.880 ± 0.024 0.921 ± 0.004 0.854 ± 0.008

Table 3. Comparison of quality measures for label-free prediction results with the Unet model. Here,
↓ indicates that the lower the index value, the better the performance; ↑ indicates that the higher the
index value, the better the performance of the model.

Model/Organelle
Unet Model

NRMSE↓ SSIM↑ PCC↑ Dice↑ mIOU↑

Nucleus 0.442 ± 0.024 0.757 ± 0.044 0.843 ± 0.024 0.855 ± 0.018 0.716 ± 0.008
Endoplasmic Reticulum 0.454 ± 0.022 0.761 ± 0.021 0.856 ± 0.022 0.873 ± 0.008 0.771 ± 0.013

Mitochondrial 0.511 ± 0.013 0.760 ± 0.053 0.835 ± 0.021 0.843 ± 0.015 0.731 ± 0.021

Furthermore, not only was the mIOU metric used as an evaluation index, but the
NMSE quantitative indicators were also utilized to compare and analyze the performance
of different prediction models in this section. For the nuclei prediction test set shown
in Tables 1–3, the obtained NMSE of the MPFnet model was 0.192, which has less than
half that of the classical UNet model, and a 4.48% reduction compared to the UwUnet
model. On the mitochondria prediction test set, the lowest NMSE value was acquired by
the MPFnet model as 0.206, achieving a 59.69% depression compared to the classical UNet
model and a 5.07% decrement compared to the UwUnet model. As for the endoplasmic
reticulum prediction test set, the obtained NMSE of the MPFnet model was also lowest at
0.187, which has less than half that of the classical UNet model, and 16.89% diminution
compared to the UwUnet model.

In order to further explore the prediction performance of different models, we give
more calculations of the correlated pixels for the obtained organelle fluorescence images
and the predicted organelle fluorescence from SRS microscopy images with three variants
of deep learning-based predictors, respectively. Another quantitative parameter, PCC,
was also applied to detect the consistency between the prediction results and the target
values to further study the variability. From Tables 1–3, it can be observed that the MPFnet
model shows top performance in terms of PCC coefficient. The predicted PCC value of
the nuclear validation set was as high as 0.908 for our proposed MPFnet model. Similar
results were also observed in mitochondrial samples and endoplasmic reticulum test sets
(Pearson’s r = 0.903, 0.911, respectively). In terms of nuclei, mitochondria, and endoplasmic
reticulum test sets, the PCC similarity coefficient results from MPFnet were all higher than
the classical UNet performance as follows: 7.71%, 8.14%, and 6.43%, and the PCC similarity
coefficient results from MPFnet were all higher than the UwUNet performance as follows:
1.79%, 2.61%, and 0.89%.
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In addition, the SSIM metric was also used as the evaluation index for similarity
comparisons among image prediction results. From the nuclei prediction test set shown in
Tables 1–3, the obtained SSIM of the MPFnet model was 0.913, which achieved a 20.61%
improvement over the classical UNet model with 0.757, and a 2.35% increment compared to
the UwUnet model. Meanwhile, on the mitochondria prediction test set, we observed that
the highest SSIM value was acquired by the MPFnet model as 0.915, a 20.39% improvement
compared to the classical UNet model and a 3.27% increase compared to the UwUnet
model. As for the endoplasmic reticulum prediction test set, the obtained NMSE of the
MPFnet model was also best at 0.886, which improved 16.43% over the classical UNet
model and 3.38% compared to the UwUnet model.

At the same time, another quantitative parameter, Dice, was also applied to detect
the consistency between the prediction results and the target values to further study the
variability. Tables 1–3 show that the MPFnet model had top performance in terms of Dice
coefficients. The predicted Dice value of the nuclear validation set was as high as 0.935
for our proposed MPFnet model. Similar results were also observed in mitochondrial
samples and endoplasmic reticulum test sets (Dice r = 0.933, 0.936, respectively). In terms
of nuclei, mitochondria, and endoplasmic reticulum test sets, the Dice coefficient results
from MPFnet were all higher than classical UNet performance as follows: 9.36%, 10.68%,
and 9.35%, and the Dice metric coefficient results from MPFnet were all higher than the
UwUNet performance as follows: 1.74%, 1.30%, and 1.19%.

3. Discussion

From the comparison of protein subcellular localization results among various pre-
diction algorithms shown in Figure 10, it can be clearly observed that the Unet model was
good at extracting local feature regions (red box on the second column), but experienced
difficulty in capturing global representations (region of green box on the second column).
Compared with CNN, the global cues were still blurred (green box on the third column),
even though the local details were better for the UwUnet (red box on the third column). In
contrast, the global cues were significantly enhanced (green box on the third column), and
the local details were retained for the MPFnet model (red box on the third column).

To sum up, through the comprehensive analysis of all three quantitative indicators in
Tables 1–3, we can draw a more accurate conclusion from the quantitative standard that
our method is the best among all modules in Tables 1–3. In conclusion, our results show
that deep learning creates some new opportunities for accurately predicting the location
of cellular organelles from label-free cell optical images. Existing U-net-based medical
image prediction methods are insufficient for catching long-range dependencies in tested
images. The multiple parallel fusion predictor combines the merits of transform and UNet
methods. The new multiple parallel fusion method can intelligently reveal and extract the
nonlinear correlation between features to improve prediction performance. Additionally, as
illustrated in Section 4.2, our deep learning approach also improves the image SNR, which
offers a solution to highly suppress image artifacts and solve the distortion problems for
high-speed SRS cell imaging.
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Figure 10. Comparison of the protein subcellular localization results from raw cell images
(first column) among various prediction algorithms, including Unet (second column), UwUnet
(third column), and MPFnent (fourth column). Local feature regions (red box), global representa-
tions (green box). Scale bar, 25 µm.

4. Methods and Materials
4.1. Experiment of the Simultaneous SRS and Fluorescence Microscopy

The complete experiment and process of predicting the subcellular protein localization
based on the deep learning network are shown in Figure 11. A dual-output, 80 MHz fem-
tosecond pulsed laser (InSight, Spectra-Physics, USA) provides the pump beam (tunable
from 680 to 1300 nm) and the Stokes beam (fixed at 1040 nm) for the SRS system. Both
the synchronized pump beam with 798 nm and Stokes beam with 1040 nm through the
time delay stage were combined on a dichroic mirror before being directed through the
microscope by the two-dimensional galvo scanning. The SRS loss signal from the lock-in
amplifier and fluorescence signal from the photomultiplier tube were collected simultane-
ously. Images were acquired with 512 × 512 pixels, and a pixel dwell time of 8 µs at each of
the ten vibrational transitions.
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Figure 11. Workflow of the Single-Cell experiment by Stimulated Raman Scattering Imaging and
deep learning model prediction process. (A) The process of prepearing the lung cancer cell sample.
(B) Stimulated Raman Scattering microscopy setup for collecting SRS signal of the lung cancer cell
samples. (C) Different machine learning techniques for the subcellular protein localization of lung
cancer cells.

The deep learning-based computer-aided method for detecting subcellular protein
localization using a Stimulated Raman Scattering microscopic images framework consists
of the following stages: Firstly, the cell sample is prepared. Later, The SRS signal and
fluorescence signal of different lung cancer cell samples were collected simultaneously
using Stimulated Raman Scattering microscopy. Finally, the subcellular protein localization
of lung cancer cells is performed using different machine learning techniques.

Specifically, lung cancer cells (A549, from ATCC, USA) were first cultured in ATCC
F-12K medium (ATCC, USA). Then, the cells were fixed using 2% paraformaldehyde
after being dyed. For the prepared live cells, after installing the living cell samples, the
prepared cells were imaged with Stimulated Raman Scattering microscopy. After that,
fluorescence images of nuclei, mitochondria, and endoplasmic reticulum were detected
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with fluorescent dyes, including Hoescht 33342, MitoTracker Red CMXRos, and ER-Tracker
Green of different colors. In this work, a Unet algorithm was utilized to significantly
improve the signal-to-noise ratio of nonlinear optical images. The Unet architecture consists
mainly of convolutional layers that take an input feature map and convolves it with a set of
filters to produce an output feature map. Based on the minimum loss from the optimizer on
the training set, we chose the best hyperparameters and denoised the cell imaging test set.
After denoising and enhancing the collected image, the 1200 processed cell sampling images
were divided into two subsets, 80% of which was used for training, and the deep learning
algorithm based on different algorithms was used to train the model. The remaining 20%
of the subset was used as a test set to validate the model.

4.2. Protein Subcellular Localization Based on Multiple Parallel Fusion Deep Networks

The bottleneck in predicting subcellular protein locations of SRS cell imaging lies
in modeling complicated relationships concealed beneath the original cell imaging data
owing to the spectral overlap information from different protein molecules. Concerning
the above issue, a multiple parallel fusion (MPF) Deep Network for Protein Subcellular
Localization from Label-free live cell imaging is proposed to overcome the crowded and
highly convoluted information, as shown in Figure 12. The main processes are as follows:
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Step 1. According to the lung cancer cell imaging experiment, establish and store a
lung cancer cells SRS imaging data set.

Step 2. Preprocess lung cancer cell SRS raw data sequences for the deep-learning-
enabled image denoising and restoration [50–52].

Step 3. Build an integrated multiple parallel fusion deep networks framework.
Step 3.1. Construct independent transformer and CNN fusion models corresponding

to different protein subcellular sites and fluorescence imaging labels.
Step 3.2. Train multiple parallel fusion models. Evaluate the protein subcellular

location prediction performance according to the quantified metrics.
Step 4. Apply the different cell data sets to optimize the model parameters and find

the optimal model combination.
Step 5. Locate the subcellular protein sites by using new cell data.

4.3. Multiple Parallel Fusion Neural Network Architecture and Implementation

As shown in Figure 13, the multiple parallel fusion network consists of mainly
four components, which include two parallel branches and one multiple parallel fusion
model in order to process input cell imaging information differently: (1) CNN branch,
which gradually increases the receptive field and encodes the feature from local to global;
(2) transformer branch, which starts with global self-attention and recovers the local details
at the end; (3) multiple parallel fusion module, where fused features of the same resolution
are extracted from each branch; and (4) gated skip-connection, where it combined the
multi-level fused feature maps and generates prediction results. Each of the components
are introduced in the following sections.
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4.3.1. CNN Branch

As shown in Figure 13, the CNN branch adopts hierarchical feature extraction, in
which the resolution of the feature map decreases with the deepening of the network while
the channel number increases. We divided the whole CNN branch into four stages. Each
stage is composed of multiple residual convolution blocks. Each residual convolution block
contains multiple convolution layers, specification layers, and activation layers. In the first
stage, we increased the number of channels of the image without reducing the resolution of
the image. The next three stages are feature extraction, resolution reduction to one-half of
the previous layer, and increasing the number of channels to enrich the feature information.

In experiments, CNN branches were used to obtain shallow features and retain richer
original information by increasing the number of channels. In order to further obtain the
global context information, the transformer branch was also employed for further accurate
detection and location prediction while retaining the original information. Further, the
characteristic maps of each level of the CNN branch and the characteristic map of the
characteristic pyramid structure generated by the transformer are simultaneously input
into the MPFnet model, which includes a CBAM block, channel attention block, spatial
attention block, and convolution block for multi-feature information fusion.

It is worth noting that the CNN branch is used in the process of down sampling and
combined into the MPFnet model for multi-feature information fusion with transformer
output to enrich the original details. Moreover, in the up-sampling process, the high-
resolution characteristic images at all levels of the encoder CNN are jump connected and
added to the decoder path to obtain more detailed information and more accurate location.

4.3.2. Transformer Branch

Because of CNN’s lack of translation invariance and global representation capture,
and transformers good long-distance dependence capturing between sequences, we added
transformer branches to the encoder. As shown in Figure 13, the transformer branch
also follows the encoder-decoder structure in general. In the encoder part, the input
image x ∈ RH×W×C with C channels is directly divided into a grid of N = H

M ×
W
M

patches. Then, each patch is mapped into a one-dimensional vector through linear mapping
f : p→ e ∈ RC , and the H ×W dimensions are flattened to form the input feature map

to a linear embedding layer with output dimension S0, obtaining the raw embedding
sequence e ∈ RN×S0 .

X0 = [Ex1 , Ex1 , . . . , ExN ] (15)

To capture positional information, learnable position coding pos = [ps1, . . . , psN] ∈
RN×S0 is added at the same time to the sequence of patches to obtain the resulting input
sequence of tokens.

z0 = x0 + pos (16)

The encoder in the transformer module with L = 8 transformer layer modules is
applied to the sequence of tokens z0 to generate a sequence of contextualized encoding
zL ∈ RN×S0 , and each transformer layer module includes multi-head self-attention (MSA),
multi-layer perceptron (MLP) block, layer Norm block, Gelu layer, and dropout layer.
Among them, the self-attention layer is the core module, which converts picture pixels
into timing sequences in order to capture long-term dependence and retain global infor-
mation. In the self-attention block, it first maps each input sequence zL ∈ RN×S0 to Q, K,
and V, and then calculates the correlation between Q and K as the weight of the subsequent
corresponding V.

q = zlWq, k = zlWk, v = zlWv Wq, Wk, Wv ∈ RS×d (17)

where WQ, WK, WV ∈ RS×d are the learnable parameters of three linear projection layers,
and d is the dimension of (query, key, value).
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Self-attention (SA) is then formulated as:

SA(zi) = so f tmax
(

qikT
√

Dh

)
v (18)

SA(Zl−1) = Zl−1 + softmax

(
Zl−1WQ(ZWK)

>
√

d

)
(Zl−1WV). (19)

MSA is an extension with m independent SA operations and projects their concatenated
outputs:

MSA(Zl−1) = [SA1(Zl−1); SA2(Zl−1); · · · ; SAm(Zl−1)]WO (20)

where WO ∈ R md×C. l is typically set to C/m.
The output of MSA is then transformed by an MLP block with a residual skip as the

layer output as:

Zl = MSA(LN(Zl−1)) + MLP(LN(MSA(Zl−1))) ∈ RL×C (21)

where {Z1, Z2, . . . , ZL} is the features of transformer layers, LN(.) is the layer norm applied
before MSA and MLP blocks.

The contextualized encoding sequence Zl contains rich semantic information used
by the Decoder. For the decoder part of this work, the three steps of the progressive
upsampling method are used. In the first step, the encoder feature Z is reshaped back
from a 2D shape of H×W

16×16 × C0 to a 2D feature map of s0 ∈ R
H
8 ×

W
8 ×C0 . In the second

step, the spatial resolution is more recovered from the 2D feature map of s0 ∈ R
H
8 ×

W
8 ×C0

to s1 ∈ R
H
8 ×

W
8 ×D1 . In the third step, the upsampling-convolution layer is consecutively

utilized to reshaped back from s1 ∈ R
H
8 ×

W
8 ×D1 to s2 ∈ R

H
8 ×

W
8 ×D2 . At last, all feature maps

with different scales will be sent to multiple parallel fusion modules for coupling with the
output feature of the CNN branch, respectively.

4.3.3. Multiple Parallel Fusion Module

Considering the feature misalignment between CNN and transformer features, the
multiple parallel fusion model (MPF) is designed as the bridge, which is applied to effec-
tively combine the encoded features from different branches (Figure 14). Since CNN and
transformer branches tend to capture features of different levels ranging from the local
to global scale, MPF modules are inserted into every block to consecutively eliminate the
semantic divergence between them in an interactive fashion. We take the outputs from the
fourth (h0 ∈ R

H
16×

W
16×C0), third (h1 ∈ R

H
8 ×

W
8 ×C1), and second (h2 ∈ R

H
4 ×

W
4 ×C1) blocks to

fuse with the results from transformer. In sum, the fused feature representation f i, i = 0, 1, 2
can be obtained by:

ŝi = ChannelAttn
(

si
)

(22)

ĥ
i
= SpatialAttn

(
hi
)

(23)

b̂
i
= Conv

(
hiWi

1 � hiWi
2

)
(24)

fi = Residual
([

b̂
i
, ŝi, ĥ

i])
(25)

f̂
i+1

= Conv
([

Up
(

fi
)

, AG
(

fi+1
)])

f or i = 0, 1, . . . (26)

where Wi
1 ∈ RDi×Li , Wi

2 ∈ RCi×Li , | �|is the element-wise dot product and Conv is a 3 × 3
convolution layer.
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Figure 14. Multiple Parallel Fusion Model for the Protein Subcellular Localization from Label-free
live cell imaging.

In the Multiple Parallel Fusion Model, the high-level CNN features and low-level
transformer features were further fused with different attention mechanisms, including
spatial attention block, channel-wise attention block, and residual block, as discussed in
detail below.

4.3.4. Spatial Attention Block

In cell images, the information importance of different positions of the subcellular
image is also different. For example, the edge position information of subcellular is
generally more important than that from other positions. Consequently, spatial attention
is imperative to strengthen such important information. Compared with channel-wise
attention, spatial attention pays more attention to the content information in the spatial
position. Therefore, the goals of spatial attention lie in uncovering lateral areas of cell
images, which provide the greatest contribution to the final high accuracy subcellular
prediction and assign these areas higher weights. By distributing the weight in each spatial
position, we find which spatial position information is most important and consequently
enhance the characteristics of that part of the position, meanwhile inhibiting the extraction
of noise features.

The scheme of the spatial attention module is shown in Figure 15, which is applied
to identify valuable cell regions for subcellular recognition. Firstly, the original feature
maps of F′ ∈ RC×H×W are aggregated by a pair of average pooling and maximum pooling
operations, which are formulated as:

Favg(h, w) =
1
cv

cv

∑
c=1

F(c, h, w), h = 1, 2, . . . , hv; w = 1, 2, . . . , wv (27)

Fmax(h, w) = max(c, h, w), h = 1, 2, . . . , hv; w = 1, 2, . . . , wv (28)
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Figure 15. Diagram of spatial attention sub-module. As illustrated, the spatial sub-module utilizes
max-pooling outputs and average-pooling outputs that are pooled along the channel axis and
forwarded to a convolution layer.

Each outputs a weight matrix of all spatial positions. Then, Favg(h, w) and Fmax(h, w)
are concatenated and convoluted by the pyramid kernels with size 3 × 3, 3 × 3, 3 × 3,
respectively, to generate the 2D spatial attention map after the sigmoid active function. The
process can be defined as:

Fcat = f (2×k−1)×(2×k−1)(
[

Fs
avg; Fs

max

]
) (29)

Fspa =
3

∑
k=1

σ( f (2×k−1)×(2×k−1)(
[

Fs
avg; Fs

max

]
)) (30)

where f (2×k−1)×(2×k−1)(.) is a convolution operation with the filter size of (2× k− 1)×
(2× k− 1).

The elements of Fspa represent the importance of the corresponding regions of the
spatial domain. Subsequently, the weighted feature map F′′ is obtained by multiplying the
feature map F′ with the spatial attention map:

F′′ = Fspa ⊗ F′ (31)

where F′′ denotes the final output 3D feature tensor of the convolutional attention module.

4.3.5. Channel-Wise Attention

Note that the variety of texture information in the feature map of cell imaging still
requires preliminarily removing useless redundant information to keep important texture
features before weight calculation. Hence, a channel-wise attention squeeze-excitation
module is introduced in this section to amend the texture and global context features from
the input feature maps and give them higher weights. A diagram illustrating the structure
of a squeeze-excitation block is shown in Figure 16.
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Given input sample V to a channel-wise attention block, a set of learned convolutional
filters are applied on V to produce corresponding feature matrix responses U ∈ RH×W×C,
where H ×W is the spatial dimension, and C is the channel dimension. We take Ftr: V→ U,
V ∈ RH′ ×W′ × C′ , U ∈ RH ×W × C to be a convolutional operator.

U = Ftr(V) (32)

uc = kc ∗ V =
C′

∑
l=1

Kl
C ∗V l (33)

where ∗ denotes convolution, kc =
[
k1

c , k2
c , . . . , kC′

c

]
and X =

[
x1, x2, . . . , xC′

]
and uc ∈

RH×W , while kl
c is a 2D spatial kernel and therefore represents a single channel of kc, which

acts on the corresponding channel of V.
Then, a squeeze operation and an excitation operation are applied on U sequentially to

re-weight channel-wise feature responses. In order to squeeze the global spatial information
into a channel descriptor, channel-wise global average pooling was utilized to squeeze
global spatial information into a channel descriptor. Formally, a channel-wise statistic
z ∈ RC is generated by shrinking U through spatial dimensions H × W, where the c-th
element of z is calculated by:

ZC = Fsq(uc) =
1

H ×W

H

∑
i=1

W

∑
j=1

uc(i, j) (34)

The channel-wise output ZC of the information aggregated in the squeeze operation is
next used to modulate nonlinear inter-dependencies of all channels through an excitation
operation. Here, a gating mechanism with a sigmoid activation is employed as follows:

s = Fex(z, W) = σ(g(z, w)) = σ(W2δ(W1z)) (35)

where σ is the sigmoid function, m is a scaling parameter. δ refers to the ReLU function,
W1 ∈ R

C
m ×C and W2 ∈ RC× C

m .
The final output of the block is obtained by rescaling the transformation output U

with the activations:
Ṽc = Fscale(uc, sc) = sc·uc (36)

where V̌c =
[
v1, v2, . . . , vC

]
and Fscale(uc, sc) refers to channel-wise multiplication between

the feature map uc ∈ RH×W and the scalar sc.

4.3.6. Attention Gate Block

In the semantic segmentation for cell imaging based on transformation with CNN
networks, the depth of the convolution layer is usually increased to expand the acceptance
domain and capture more semantic context information. However, at the same time, it
is still difficult to reduce false positive predictions, especially for small objects with large
shape changes. In order to avoid this dilemma, the attention gate (AG) block is incorporated
in the MPFnet, as shown in Figure 12, to highlight the significant information of the down-
sampling output. The AG block uses contextual information from the gating signal g ∈ RFg

to prune the skip connection sl
i , highlighting ROIs and therefore reducing false positive

predictions. Through this module, we retain the spatial positioning information of some
important objects as much as possible while maintaining a large receptive field.

The structure of an attention gate is shown in Figure 17. This AG receives two inputs,
the gating signal g ∈ RFg and the associated skip connection sl

i generated at that level.
The gating vector signal gi is used for each pixel i to determine the regions of focus that
originate from the deepest layer of the neural network, where feature representation is the
greatest at the cost of significant down-sampling. The gating vector contains contextual
information to reduce lower-level feature responses.
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Figure 17. The structure of the attention gate block to highlight the significant information of the
down-sampling output.

For the AG gate block in Figure 17, the gating signal and skip connection sl
i are first

resized and then combined to form attention coefficients αl calculated by:

ql
att, i = ψT

(
σ1

(
WT

x sl
i + WT

g g + bxg

))
+ bψ (37)

αl = σ2

(
ql

att

(
sl , g; Θatt

))
(38)

Then, the output ŝl acquired with the element-wise multiplication between the original
skip connection sl and the attention coefficients αl provides spatial context highlighting
ROIs, whose specific formula is as follows:

ŝl = sl ·αl (39)

Attention coefficient, αi ∈ [0, 1] emphasizes salient image regions and significant
features to preserve only relevant activations specific to the actual task.

4.4. Dataset

We employed a subset of SRS images in the fixed lung cancer cells (A549, from ATCC)
dataset as one of our pre-trained data sources. These data sets were acquired simultaneously
using image software by collecting the SRS signals from lock-in amplifiers and fluorescence
signals from photomultiplier tubes [36]. For the fluorescence signals, all dyeing schemes
are based on the standards provided that three different color fluorescent dyes were used
to label and track the nucleus, mitochondria, and endoplasmic reticulum, respectively. The
optical cell images with 512 × 512 pixels were obtained at a dwell time of 4 µs.

Another trained source of data we employed is the dataset cell images, which are
acquired using GE’s IN Cell Analyzer systems [53]. These datasets were applied to test
different deep learning methods in the work and evaluate their performance.

5. Conclusions

In this work, we have presented a methodology based on the MPF network, a novel
multiple parallel fusion deep learning model for protein subcellular location prediction
from SRS images. The MPFnet includes four modules: CNN branch, receptive field block,
Multiple Parallel Fusion Module, transformer branch and Attention gate module. The
multiple parallel fusion module is composed of three core components: spatial attention
block, channel-wise attention block, and residual block. The fused multi-level encoded
features from the CNN branch focus on local information, and the Transformer branch
focuses on global information to eliminate the semantic divergence between them. The
performance of the proposed multiple parallel fusion method was estimated and compared
with other deep learning models such as UwUnet and Unet. It is shown from the experi-
mental results that the new multiple parallel fusion deep network achieves top prediction
performance and is faster compared with other deep learning methods while reducing the



Int. J. Mol. Sci. 2022, 23, 10827 26 of 28

number of parameters, suggesting that it has great potential in the subcellular prediction of
label-free cell optical images. In future work, we will further develop more advanced fusion
methods to hybridize the Transform and Unet methods to further improve the performance
of protein subcellular location in cell optical imaging.
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