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Abstract

Biological invasions impact both agricultural and natural systems. The damage can be

quantified in terms of both economic loss and reduction of biodiversity. Although the litera-

ture is quite rich about the impact of invasive species on plant and animal communities, their

impact on environmental microbiomes is underexplored. Here, we re-analyze publicly avail-

able data using a common framework to create a global synthesis of the effects of biological

invasions on environmental microbial communities. Our findings suggest that non-native

species are responsible for the loss of microbial diversity and shifts in the structure of micro-

bial populations. Therefore, the impact of biological invasions on native ecosystems might

be more pervasive than previously thought, influencing both macro- and micro-biomes. We

also identified gaps in the literature which encourage research on a wider variety of environ-

ments and invaders, and the influence of invaders across seasons and geographical

ranges.

Introduction

Biological invasions have severe impacts on biodiversity, community composition and ecosys-

tem functions [1–5]. Invasive plants can alter many important ecosystem functions including

the nitrogen cycle [6], carbon cycle, and decomposition. For example, invasion by the plant

Amur Honeysuckle altered the decomposition rate in the invaded environment likely through

changes in litter quality [7]. Exotic snails have been found to alter carbon and nitrogen fluxes

in freshwater systems through their consumption/excretion activity [8]. These functions are

provided by environmental microbiomes. Yet, despite the implications for ecosystem func-

tioning, we are still learning the consequences of biological invasions on environmental

microbiomes.

Previous studies have shown biological invasions can impact the diversity and taxonomical

structure of environmental microbiomes. For example, we often see a shift in soil microbiota

following invasion by non-native plant species [9–19]. Removal of feral pigs increased the
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diversity of soil bacterial communities and shifted their structure [20], and invasive crusta-

ceans [21], mussels [22] and jellyfish [23] produce changes in the structure of water micro-

biomes. However, shifts in environmental microbiome as consequence of biological invasions

do not always occur. For example, invasion by the plants Robinia pseudoacacia [24], Eucalyptus
sp. [25], and Vincetoxicum rossicum [26] did not alter the structure of soil microbial communi-

ties. Also, some microcosms exposed to the simultaneous invasion of multiple plant species

[27–29] did not alter soil microbiomes. Similarly, soil microbiome structure in microcosms

did not change with the addition of the invasive earthworm Aporrectodea trapezoides [30]. Sev-

eral of these studies used techniques (e.g. DGGE, PLFA, t-RFLP) that limit fine scale investiga-

tions of biological invasions on environmental microbiome diversity and taxonomical

composition. Among the studies using high-throughput amplicon-sequencing techniques,

most did not find changes in microbiome diversity [13, 15, 18, 19, 21, 25, 27, 28, 30], few

reported a decrease of microbial diversity in response to invasion [16, 20, 29], and fewer still

reported an increase [11, 14]. Thus, there is little consensus on the effects of biological inva-

sions on the diversity and taxonomical structure of the environmental microbiomes, both tied

to the stability and function of microbial communities [31, 32].

Our ability to draw broad conclusions from published studies is limited, because individual

studies have occurred within a limited geographical range or with a limited group of species.

Meta-analyses of published biological means have long enabled more robust conclusions than

individual studies [33–36]. However, the meta-analytic approach has less frequently been

applied to amplicon-sequencing data that represent environmental microbiome community

composition. The majority of meta-analytic metabarcoding studies have occurred in the medi-

cal sciences [37–45]. This approach can be successfully used to address ecological questions.

For example, meta-analytic metabarcoding studies have found common patterns in the struc-

ture of indoor microbiomes [46] and freshwater eukaryotes [47]. Shade et al. [48] also used a

meta-analysis of metabarcoding datasets from different environments highlighting a time-

dependent structure of microbiomes. A meta-analytic approach has also been used to test the

effects of stressors (e.g. water availability, temperature, heavy metals) on environmental micro-

biomes [49]. Thus meta-analyses on microbiome data have a striking potential to address

global-scale questions, generate new hypotheses and model common patterns [50], because

they provide across study comparisons [39, 51, 52].

Here, we aim to test whether the effect of biological invasion on environmental micro-

biomes can be generalized or is idiosyncratic. To do so, we collected publicly available data

and re-analyzed this data under a common framework. We tested the effect of invasive species

on the diversity and structure of environmental microbiomes, with the hypothesis that the

presence of invasive species will decrease microbial diversity and alter the composition of the

environmental microbiome. We then investigated whether certain taxonomical groups are

more responsive to biological invasions.

Methods

Data collection

We searched for metabarcoding studies that evaluated the effect of biological invasions on

environmental microbiomes, and compared invaded and non-invaded habitats. Our literature

search for this study was conducted using Web of Science Core Collection (accessed on March

6th, 2020) using the keywords “Invasive speci�” and “microbio�” published between 2010–

2020, and found 1,471 studies. Two additional studies were added by searching the same key-

words on Google Scholar (S1 Fig). Records were manually filtered based on the study design

appropriate for our research question. This step yielded 22 studies, and we further filtered
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these studies based on data availability in public repositories. When data was not available, we

attempted to contact the corresponding author. Finally we selected only studies that used the

16S rRNA marker gene, primer pair 515F/806R [53] or 341F/785R [54], and Illumina MiSeq

sequencing platform. After discarding studies that failed quality checks (see below), we were

able to include a total of five studies (Table 1), summing up to a total of 356 samples. The study

by Gibbons et al. [28] tested the impact of five invasive plant species (Agropyron cristatum,

Bromus tectorum, Sisymbrium altissimum, Erodium cicutarium and Poa bulbosa) on soil

microbiome using microcosms, comparing monocultures of each one of them towards a mix-

ture of eight native plant species. A similar question was tested in Rodrigues et al. [19] in field

condition. They identified three locations invaded by three different exotic plant species

(Microstegium vimineum, Rhamnus davurica and Ailanthus altissima) and, within each loca-

tion, they sampled soil form an invaded area and a non-invaded area for comparisons. Simi-

larly, Collins et al. [11] compared the soil microbial community of field sites invaded by

Artemisia rothrockii to non-invaded sites. The study by Wehr et al. [20] focused on the effects

of feral pig (Sus scrofa) invasion on soil microbiome comparing invaded areas to those where

pigs were removed over a ~25 year chronosequence. Finally, the only study performed in an

aquatic environment [22] compared water samples collected in lake areas invaded by the

exotic mussel Dreissena bugensis to non-invaded sites. Three studies focused on invasive

plants, and the remaining studies focused on a mammal and a mussel (Table 1).

We took the following steps to alleviate some of the potential sources of bias due to studies

performed in different labs, using different protocols and sequenced on different instruments.

First, all studies included were performed using the Illumina MiSeq platform, in order to

reduce the potential bias that might be generated by directly comparing data obtained from

different platforms. Second, all studies targeted the same region of the 16S rRNA, as several

primer pairs targeting different regions are currently published and widely used. Three out of

five papers we considered in our analysis used the 515F/806R primer pair [53], while two used

the 341F/785R [54]. Because these primer pairs overlap in the V4 region of 16S rRNA we feel

confident that the chance of including spurious OTUs in our analysis is quite negligible. To

account for study-specific variances due to small differences in sampling procedures and lab

protocols, we also included the study itself, the environment where the study was performed

(i.e., soil or water) and the identity of the invasive species as stratification variables in the PER-

MANOVA and as random factors in our linear model. This allowed us to ensure that our

results are not biased by study-specific features.

Once the papers were selected, we assigned each a “Study ID” and collected meta-data from

each sample in each study (invasive species, type of organism, invaded environment). We then

downloaded data from repositories using SRA Toolkit 2.10.4 for data on the SRA databases, or

by manually downloading files from the MG-RAST database.

Table 1. Summary of studies included in the meta-analysis.

Study ID Invasive

organism

Species Invaded

environment

Reference

MPG13011 Plant Agropyron cristatum, Bromus tectorum, Sisymbrium altissimum, Erodium cicutarium
and Poa bulbosa

Soil Gibbons et al. [28]

MPG87547 Mammal Sus scrofa Soil Wehr et al. [20]

PRJNA296487 Plant Microstegium vimineum, Rhamnus davurica and Ailanthus altissima Soil Rodrigues et al.

[19]

PRJNA320310 Plant Artemisia rothrockii Soil Collins et al. [11]

PRJNA385848 Mussel Dreissena bugensis Water Denef et al. [22]

https://doi.org/10.1371/journal.pone.0240996.t001
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Data processing and analysis

Paired-end reads were merged using FLASH 1.2.11 [55] and data were processed using QIIME

1.9.1 [56]. Quality-filtering of reads was performed using default parameters, binning OTUs

and discarding chimeric sequences identified with VSEARCH 2.14.2 [57]. Taxonomy for rep-

resentative sequences was determined by querying against the SILVA database v132 [58] using

the BLAST method. A phylogeny was obtained by aligning representative sequences using

MAFFT v7.464 [59] and reconstructing a phylogenetic tree using FastTree [60].

Data analysis was performed using R statistical software 3.5 [61] with the packages phyloseq

[62] and vegan [63]. Read counts were normalized using DESeq2 v1.22.2 [64] prior to data

analysis. Singletons and sequences classified as chloroplast were excluded, as well as samples

which had less than 5000 sequence counts. Shannon diversity was fit to a linear mixed-effects

model specifying sample type (invaded or control), organism (plant, mammal, mussel), and

their interactions as fixed factors. We included studyID or both studyID and environment (soil

or water) as random factors, and both models reported similar results (S2 Table). We focused

on the one with only studyID as random effect due to the lower AIC value. Models were fit

using the lmer() function under the lme4 package [65] and the package emmeans was used to

infer pairwise contrasts (corrected using False Discovery Rate, FDR). Furthermore, we

explored the effects of sample type and organism on the structure of the microbial communities

using a multivariate approach. Distances between pairs of samples, in terms of community

composition, were calculated using a Unifrac matrix, and then visualized using an RDA proce-

dure. Differences between sample groups were inferred through PERMANOVA multivariate

analysis (999 permutations). We ran two different PERMANOVA models: in one we stratified

permutations at level of studyID and identity of invasive species, and in the other we stratified

permutations at level of studyID, environment and identity of invasive species, obtaining similar

results (S3 Table). Pairwise contrasts from PERMANOVA were subjected to FDR correction.

Finally, the relative abundance of each bacterial family was fit using the lmer() function to test

the effects of sample type (invaded or control) on individual taxa. We ran two different linear

mixed-effects models, one including studyID, organism (plant, mammal, mussel) and environ-
ment as random factors, and another with studyID and organism as random factors, obtaining

similar results (S4 Table).

Results

Our search yielded 5 studies with an appropriate experimental design and available data, for a

total of 356 samples. A few samples failed quality checks and we further considered 335 sam-

ples for downstream analyses. Sequences clustered into 22831 OTUs, after quality checks,

removal of singletons and “chloroplast” reads, with an average of 61776.92 reads per sample.

This high OTU count is likely a result of increased richness from analyzing samples across

multiple environments (soil and water) and from different geographical regions.

Biological invasions led to a reduction in Shannon diversity (Control = 6.92±0.06,

Invaded = 6.73±0.07, χ2 = 3.85, df = 1, P = 0.04). We also found biological invasions altered

microbiome community composition in the invaded environment compared to the control

(Table 2 and Fig 1). The type of invasive organism (plant, mammal, or mussel) produced a dif-

ferent community structure (pairwise P<0.01, FDR corrected). A deeper analysis of bacterial

families (S5 Table) revealed that some taxonomic groups are significantly more abundant in

invaded environments (Blastocatellaceae, Chitinophagaceae, Nitrosomonadaceae, Pirellula-

ceae, Sphingomonadaceae), while others are more abundant in non-invaded samples (Aceto-

bacteraceae, Beijerinckiaceae, Gemmataceae, Micromonosporaceae, Pedosphaeraceae,

Solibacteraceae, Solirubrobacteraceae).
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Discussion

Here we show biological invasions decrease the diversity of environmental microbiomes.

While several studies have investigated the effects of species invasions on environmental

microbiomes, we still lack a generalized consensus across different environmental micro-

biomes and systems. Previous studies have found that invasive species increased environmen-

tal microbial diversity [11, 14], while others reported a decrease [16, 20, 29]. However, the

majority of studies did not analyze the microbial diversity, as they used techniques that did not

allow for such analysis, or reported no changes [9, 10, 12, 13, 15, 17–19, 21–28, 30]. Within the

studies included in our analysis, invasion by feral pigs decreased soil microbial diversity, while

invasion by Artemisia rothrockii increased soil microbial diversity. The remaining three studies

in our analysis reported no effects of biological invasions on environmental microbiome diver-

sity. Our analysis was constrained in terms of sampled environment (soil) and invasive organ-

ism (plants), and an expanded dataset would be beneficial to generalize our results. Microbial

diversity is tied to the function of microbiomes, and changes in diversity can reflect changes in

function [66–68]. Changes in microbial diversity and function do not always have the same

direction [69], which might explain the discrepancy between our results and other studies.

Table 2. Results from PERMANOVA analysis testing the effects of sample type (invaded/control), organism group (plant, mammal, mussel) and their interaction

on microbial community composition. The factors studyID (unique for each study) was used as strata to constrain permutations.

Factor df R2 F P

Sample type (Invaded/Control) 1 0.011 6.68 <0.001

Organism group (plant, mammal, mussel) 3 0.411 118.86 <0.001

Sample type × Organism group 3 0.007 2.1 0.01

https://doi.org/10.1371/journal.pone.0240996.t002

Fig 1. RDA ordination using a Bray-Curtis distance matrix of samples.

https://doi.org/10.1371/journal.pone.0240996.g001

PLOS ONE Biological invasions alter microbiomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0240996 October 22, 2020 5 / 12

https://doi.org/10.1371/journal.pone.0240996.t002
https://doi.org/10.1371/journal.pone.0240996.g001
https://doi.org/10.1371/journal.pone.0240996


While we observed a relatively small reduction of the Shannon diversity index in invaded envi-

ronments compared to non-invaded environment, this matches with the changes we observed

in terms of community composition.

Indeed, our report of changes in community composition was relatively consistent with the

published literature and the individual results of the studies we analyzed. Most studies of the

influence of biological invasions on environmental microbiomes found that biological inva-

sions alter environmental microbial community composition. However, some previous

reports did not report changes [24–30], including the study by Gibbons et al. [28] considered

in our analysis. This variation may be due to individual effects of organisms on the environ-

ment. For example, invasive plants may alter soil microbiome composition through root exu-

dates [5], and invasive mussels may alter water microbiome composition via bacterial removal

through their feeding activity [22]. Thus, reported influences on community composition are

more consistent. Alternatively, changes in community composition might be due to the

response of some bacterial groups to environmental disturbance. The bacterial families that we

found to be differentially abundant between the invaded and control environments have

diverse ecological functions ranging from nitrogen fixation and carbohydrate metabolism to

antimicrobial properties. Although the differences in relative abundance we found might be

relatively small, they can have an important impact on the functions of the environmental

microbiome [70]. Many of the families that showed a significant difference in abundance

between invaded and control environments include taxa that play important roles at various

points during nitrogen and carbon cycling (i.e. Nitrosomonadaceae, Acetobacteraceae, Chiti-

nophagaceae, Micromonosporaceae, Gemmataceae, Beijerinckiaceae, Pirellulaceae) [71–81].

However, nitrogen-fixing and carbohydrate-degrading bacteria did not have a unified

response to invaded environments as some increased and others decreased in abundance in

invaded environments. Many nitrogen-fixing bacteria have been shown to respond to environ-

mental disturbance, such as Acidobacteria abundances during forest to pasture conversions or

Pirellulaceae’s response to the presence of microplastics [82, 83]. Thus, changes in environ-

mental microbiome community composition appear to be linked to changes in ecosystem

functions, although this pattern is not yet predictable across functions and taxa.

Few previous studies on biological invasions have reported details on the differential abun-

dance of taxa, and among these we found limited general consensus. For example, some studies

report a decrease in abundance of bacteria associated with nitrogen cycling (e.g. Nitrosphaeria,

Nitrospira, Nitrosomonadales) [13, 14, 19], while others report an increase of Nitrosomonada-

ceae following invasion [30]. In our study some groups associated with the nitrogen cycle were

positively associated with biological invasions (i.e. Nitrosomonadaceae, Pirellulaceae, Chitino-

phagaceae) while others were negatively associated (Beijerinckiaceae, Micromonosporaceae).

Unfortunately, amplicon-based sequencing has a limited power to infer changes in the func-

tions of microbiomes. Future metagenomic and metatranscriptomic studies are needed to

investigate whether biological invasions alter gene content or gene expression of environmental

microbiomes, and whether this reflects changes in biogeochemical cycling.

Meta-analyses are also useful to highlight gaps in the literature, and here we highlight some

aspects that warrant further investigation. First, we identified a large gap in the availability of

sequencing data from multiple types of environments and types of invasive species. For our

analysis almost all available data came from two environments: four sets of data came from

soil and one came from freshwater. Greater effort is needed for sample collection from inva-

sions in both freshwater and marine environments. Without sufficient diversity of sample

environments, it is impossible to tell whether microbial shifts following an invasion are unique

to an invaded environment. Second, in our analysis the majority of data came from one type of

invasive species: plants. Noticeably absent from our dataset were invasions by insects, fish, and
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amphibians. Sequencing data is needed from a larger number of invasive species to allow us to

broadly assess shifts in microbial community structure. A third gap we identified was the lack

of spatial and temporal resolution. Almost all of the initially identified 22 studies we assessed

were also restricted to one season of sampling and were conducted in the Northern Hemi-

sphere. Thus, it is infeasible with existing datasets to validate the influence of latitude or

explore how seasonality and biological invasions interact to modulate microbial communities.

Thus, there are a number of opportunities for future research on how biological invasions alter

environmental microbial communities.

Here we analyzed 16S amplicon sequencing data from five studies and show that biological

invasions influence both the diversity and the structure of environmental microbiomes.

Understanding the impact of biological invasions on environmental microbiomes is of high

priority to preserve ecosystem functions [84]. We identified a number of gaps in our knowl-

edge, including the need to assess a wider range of environments, invasive species, temporal

variation, and latitudinal variation. We also demonstrate the power of re-analysis of publicly

available datasets using a common pipeline which benefited from open-data initiatives.
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57. Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metage-

nomics. PeerJ. 2016; 4: e2584. https://doi.org/10.7717/peerj.2584 PMID: 27781170

58. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene

database project: improved data processing and web-based tools. Nucleic Acids Res. 2012; 41: D590–

D596. https://doi.org/10.1093/nar/gks1219 PMID: 23193283

59. Katoh K, Standley DM. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Per-

formance and Usability. Mol Biol Evol. 2013; 30: 772–780. https://doi.org/10.1093/molbev/mst010

PMID: 23329690

60. Price MN, Dehal PS, Arkin AP. FastTree: Computing Large Minimum Evolution Trees with Profiles

instead of a Distance Matrix. Mol Biol Evol. 2009; 26: 1641–1650. https://doi.org/10.1093/molbev/

msp077 PMID: 19377059

61. R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation

for Statistical Computing; 2016. 2017.

62. McMurdie PJ, Holmes S. phyloseq: An R package for reproducible interactive analysis and graphics of

microbiome census data. Watson M, editor. PLoS One. 2013; 8: e61217. https://doi.org/10.1371/

journal.pone.0061217 PMID: 23630581

63. Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003; 14: 927–930.

https://doi.org/10.1111/j.1654-1103.2003.tb02228.x

64. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data

with DESeq2. Genome Biol. 2014; 15: 550. https://doi.org/10.1186/s13059-014-0550-8 PMID:

25516281
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