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Abstract

Background and aims

Gastric intestinal metaplasia is a precancerous disease, and a timely diagnosis is essential

to delay or halt cancer progression. Artificial intelligence (AI) has found widespread applica-

tion in the field of disease diagnosis. This study aimed to conduct a comprehensive evalua-

tion of AI’s diagnostic accuracy in detecting gastric intestinal metaplasia in endoscopy,

compare it to endoscopists’ ability, and explore the main factors affecting AI’s performance.

Methods

The study followed the PRISMA-DTA guidelines, and the PubMed, Embase, Web of Sci-

ence, Cochrane, and IEEE Xplore databases were searched to include relevant studies

published by October 2023. We extracted the key features and experimental data of each

study and combined the sensitivity and specificity metrics by meta-analysis. We then com-

pared the diagnostic ability of the AI versus the endoscopists using the same test data.

Results

Twelve studies with 11,173 patients were included, demonstrating AI models’ efficacy in

diagnosing gastric intestinal metaplasia. The meta-analysis yielded a pooled sensitivity of

94% (95% confidence interval: 0.92–0.96) and specificity of 93% (95% confidence interval:

0.89–0.95). The combined area under the receiver operating characteristics curve was

0.97. The results of meta-regression and subgroup analysis showed that factors such as

study design, endoscopy type, number of training images, and algorithm had a significant

effect on the diagnostic performance of AI. The AI exhibited a higher diagnostic capacity

than endoscopists (sensitivity: 95% vs. 79%).
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Conclusions

AI-aided diagnosis of gastric intestinal metaplasia using endoscopy showed high perfor-

mance and clinical diagnostic value. However, further prospective studies are required to

validate these findings.

Introduction

Gastric cancer ranks fifth in terms of global cancer prevalence, posing a serious threat to

human health [1]. Although the incidence of gastric cancer has decreased over the past three

decades, the absolute number of cases continues to rise due to an aging population and a shift

towards younger age groups developing gastric cancer. Hence, reducing the incidence and

mortality of gastric cancer remains an urgent issue [1].

The progression of the most gastric cancers is a cascade pattern, which includes gastritis,

atrophic gastritis (AG), intestinal metaplasia, heterogeneous hyperplasia, lastly culminating in

cancer [2, 3]. AG and gastric intestinal metaplasia (GIM) are important intermediate- and

high-risk factors for the development of gastric cancer. Early detection of these lesions is essen-

tial for delaying or halting the development of gastric cancer. In clinical practice, white light

endoscopy is typically used to observe gastric lesions. However, studies have shown that the

correlation between histology and general white light endoscopy diagnosis is low [4–8].

In the last decade, artificial intelligence (AI) has garnered significant attention within the

scientific community, leading to considerable research being conducted on AI-related sub-

jects, such as neural networks, machine learning, and deep learning. It has been used in various

industries to provide powerful solutions to complex problems [9–11]. Computer vision is an

important research area in AI. By applying various algorithms, computer vision systems can

analyze and extract meaningful information from images or videos. Image classification algo-

rithms are used to identify the category to which an image belongs, represented by VGG [12],

ResNet [13], TResNet [14], SE-ResNet [15], and EfficientNet [16]. Object detection algorithms

focus on finding one or more targets in an image and framing them with rectangular boxes;

typical algorithms are SSD [17], YOLO [18, 19], and R-CNN [20]. Semantic segmentation

algorithms identify each pixel in the image and is capable of accurate segmentation based on

the boundary of the target; typical algorithms are UNet++ [21], DeepLab [22, 23], and BiSeNet

[24]. These techniques are widely used in medical imaging diagnoses [25, 26].

In gastrointestinal endoscopy, AI has been used to diagnose various diseases [27–29] and

has achieved good diagnostic efficacy. Bang et al. [30] performed a meta-analysis including

eight studies that specifically examined the accuracy of AI-assisted endoscopy in the diagnosis

of Helicobacter pylori infection. Our previous study [31] conducted a meta-analysis on the

accuracy of AI-assisted endoscopy in diagnosing chronic atrophic gastritis. In this study, we

utilized meta-analysis to evaluate the accuracy of AI in diagnosing GIM, explored the main

factors affecting AI’s ability, and compared AI performance with that of endoscopists, thereby

providing an objective basis for applying AI in clinical diagnosis.

Methods

Before commencing the study, we had registered it with PROSPERO [32] (ID:

CRD42022378974). This study strictly followed the PRISMA-DTA [33] guidelines. The associ-

ated checklist for PRISMA-DTA can be found in S1 Table.
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Searching strategy

To obtain relevant studies, we searched the following five databases from their establishment

up to October 2023: PubMed, Embase, Web of Science, Cochrane Library, and IEEE Xplore.

Notably, PubMed, Embase and Cochrane Library are common medical databases, while the

Web of Science is an extensive and comprehensive database. The IEEE Xplore database covers

computer science, electronics, and other related fields. Related search terms include: artificial

intelligence, deep learning, machine learning, computer-aided diagnosis, neural networks, gas-

tritis, gastric precancerous, gastric tissue, and intestinal metaplasia. The detailed search strat-

egy is shown in S2 Table.

Study selection

Inclusion criteria: (a) Studies use AI technology to analyze endoscopic images/videos to detect

GIM lesions. (b) Ability to extract 2x2 table data from articles. (c) Clear presentation of diag-

nostic criteria. (d) A clear description of the AI algorithm and the process of diagnosing GIM.

(e) The most recent studies from multiple studies on the same research group, if the AI model

or study cohort was the same. Exclusion criteria: (a) Studies in which the full text was unavail-

able. (b) Studies in which complete four-grid table data were unavailable. (c) Reviews, meta-

analyses, editorial reviews, letters to the editor, conference abstracts, and other types of litera-

ture. Two authors (J.Y. and X.L.) independently evaluated the search results, and any disagree-

ments were resolved through discussion.

Data extraction

The key data we extracted from each study included the first author, publication year, country/

region, study design, study center, diagnostic criteria, algorithm, number of training set sam-

ples, test set type, number of test set samples, and 2x2 table data. Two authors (Y.S. and X.L.)

independently extracted the data by reading the full text, and disagreements were resolved

through discussion.

Quality assessment

QUADAS-2 [34] is the widely used quality assessment tool for diagnostic accuracy studies,

and includes four parts: Patient Selection, Index Testing, Reference Standards, and Flow and

Timing. However, QUADAS-2 is not fully applicable to AI-centered diagnostic accuracy stud-

ies [35, 36]; therefore, we supplemented QUADAS-2 to make it more suitable for AI-centered

studies. In the patient selection section, the source, size, and quality of the input data were

accurately described. In index testing, whether the AI model is tested using an independent

test set. In the reference standard section, whether pathological tissue biopsies were used as the

“Gold Standard” is described.

Statistical analysis

Based on a bivariate mixed-effects model, we calculated diagnostic performance indicators

such as combined sensitivity, specificity, and diagnostic odds ratio (DOR). The likelihood

ratio is a composite index that reflects sensitivity and specificity. The positive likelihood ratio

(PLR) > 10 and the negative likelihood ratio (NLR) < 0.1 indicate high diagnostic perfor-

mance. The area under the curve (AUC) and DOR are comprehensive measures to evaluate

diagnostic accuracy. AUC> = 0.9 indicates the high accuracy of the diagnostic test. A larger

DOR value indicated a better diagnostic performance.
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The heterogeneity of the studies was assessed by the visual inspection of summary receiver

operating characteristic and forest plots and counted by the I2 value. If heterogeneity existed, a

subgroup analysis and meta-regression were performed. The clinical applicability was assessed

using Fagan plots. Deek’s funnel plot assessed publication bias, and when the angle between

the straight line in the plot and the coordinate X-axis was closer to 90˚, it indicated the exis-

tence of publication bias. When P<0.05 was statistically significant, publication bias was

present.

Quality assessment of the included studies was performed using Review Manager 5.4

(Cochrane Collaboration, Oxford, UK). Other statistical analyses and graphing were con-

ducted using Stata/SE16.0 (Stata, TX, USA).

Result

Included studies

The final search was conducted on October 12, 2023, yielding 637 papers. Among these, 228

duplicates were automatically removed through EndNote, 381 irrelevant papers were excluded

by reading the titles and abstracts, two were excluded without retrieving the full text, and 14

were excluded after examining the full text. Twelve studies [37–48] (Table 1) were finally

included. The flow diagram for study selection is shown in Fig 1.

Table 1. Included studies.

Study Country/

Region

Endoscopy Algorithm Study

Center

Study

Design

Patient

(n)

Train Image

(n)

Diagnostician Sensitivity

(%)

Specificity

(%)

Mu

2021 [37]

China WLI UNet++

ResNet

Multi Prospective 4,587 7,326 AI 89 95

Endoscopist 89 96

Lin

2021 [38]

China WLI TResNet Multi Retrospective 2,741 6,489 AI 97.9 97.5

Endoscopist 42 96

Xu

2021 [39]

China WLI

ME-NBI

BLI

VGG-16 Multi Prospective 1,384 4,138 AI 90.1 86.1

Endoscopist 77.8 76.5

Yang

2022 [40]

China WLI

LCI

SE-ResNet Single Retrospective 630 17,137 AI 96.6 97.9

Yan

2020 [41]

Macau NBI

ME-NBI

EfficientNet Single Retrospective 416 1,880 AI 91.9 86.0

Endoscopist 86.5 81.4

Siripoppohn

2022 [42]

Thailand WLI

NBI

Improved

BiSeNet

Single Prospective 136 642 AI 93.13 80.0

Huang

2004 [43]

Taiwan WLI Customized Neural

Networks

Single Retrospective 104 84 AI 83.3 91.9

Li

2021 [44]

Macau NBI Improved

ResNet

Single Retrospective 242 840 AI 93.16 87.1

Wong

2022 [45]

Macau ME-NBI Improved

ResNet

Single Retrospective 420 1372 AI 93.6 91.2

Endoscopist 86.5 81.4

Lai

2022 [46]

Macau WLI

NBI

ME-NBI

Customized Neural

Networks

Single Retrospective 513 792 AI 96.1 88.42

Li

2023 [47]

China ESE Customized Neural

Networks

Single Retrospective NA 837 AI 94.39 91.81

Pornvora-phat 2023

[48]

Thailand WLI

NBI

Improved

BiSeNet

Single Retrospective NA 1599 AI 91 96

WLI: White light imaging; LCI: Linked-color imaging; NBI, Narrow-Band imaging; ME-NBI: Magnifying endoscopy with NBI; BLI: Blue-laser imaging; ESE: Electronic

staining endoscopy.

https://doi.org/10.1371/journal.pone.0303421.t001
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Study characteristics

Basic information of the 12 studies are shown in Table 1, and the participant characteristics of

each study are shown in S3 Table. Among the 12 studies, three were prospective [37, 39, 42],

and nine were retrospective; three studies [37–39] were multi-center and nine were single-cen-

ter; three studies [44, 46, 47] used expert consensus as the diagnostic criterion and nine used

pathological findings as the diagnostic criterion; three studies [37, 38, 43] used only plain

white light imaging (WLI) model, and nine studies involved narrow-band imaging (NBI),

magnified endoscopy with NBI (ME-NBI), blue laser imaging, and linked color imaging (LCI)

model.

Mu et al. [37] developed a computer-aided system to identify non-gastritis, common gastri-

tis, AG, and GIM. The system contains five deep learning models. ResNet was used for lesion

Fig 1. Flow diagram for study selection.

https://doi.org/10.1371/journal.pone.0303421.g001
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classification and UNet++ network was used for lesion segmentation. We extracted only the

diagnostic data for GIM.

Lin et al. [38] collected 7,037 WLI images and corresponding biopsy information from 14

hospitals. The images were classified into three categories: AG, non-AG, and GIM, based on

pathological findings. The AI algorithm was TResNet.The sensitivity and specificity of the AI

model to diagnose GIM were 97.9% and 97.5%.

Xu et al. [39] collected WLI, ME-NBI, and blue laser imaging (BLI) images from five hospi-

tals for model training to identify AG and GIM. The models were tested on internal, external,

and prospective video test sets. The diagnostic data were collected from a randomly selected

prospective video test set.

Yang et al. [40] constructed a dataset containing 21,420 WLI and LCI images to train a AI

model for recognizing AG and GIM. The authors propose a dual transfer learning strategy to

improve the model’s performanc. We extracted the data of the AI model on the WLI-indepen-

dent and LCI-independent test sets and then combined them.

Yan et al. [41] collected 2,357 NBI and ME-NBI images from 416 patients for training an AI

model for recognizing GIM. The sensitivity, specificity, and accuracy of the model were 91.9%,

86.0%, and 88.8%, respectively. Although the AI models performed better than the human

experts, there was no significant difference between them. We combined the test results of the

AI model on the NBI set and the ME-NBI set.

Siripoppohn et al. [42] implemented semantic segmentation of GIM by adding three addi-

tional preprocessing techniques to the BiSeNet network and compared it with the classical

semantic segmentation algorithms, DeepLabV3+ and U-Net. Diagnostic data were extracted

from the improved algorithm using a prospective video test set.

Huang et al. [43] constructed custom neural networks for identifying lesions, such as H.

pylori infection, atrophy, and GIM, and extracted data relevant to identifying GIM.

Although the study prospectively selected 104 patients, the model was trained and tested

based on the images of these patients; therefore, we considered this to be a retrospective

study.

Li et al. [44] proposed a novel multi-feature fusion method to identify GIM, which

extracts features from pixels, colors, and textures of endoscopic images, respectively. The

authors trained and tested the model using 1,050 images and achieved an accuracy of

90.28%.

Wong et al. [45] proposed a novel broad-learning system stacking framework with multi-

scale attention. This method could reliably diagnose GIM with an accuracy of 93.2%. The

authors also compared the AI model’s diagnostic capability to that of endoscopists, and the

result showed that AI was competitive with that of skilled endoscopists.

Lai et al. [46] proposed a multi-scale multi-instance multi-feature joint-learning broad net-

work. The network considers multiple features of each instance at multiple scales, resulting in

more accurate classification. By training on a limited dataset, the network recognizes GIM

with an accuracy of 85%.

Li et al. [47] proposed a combination of conventional and deep learning methods for IM

lesion area localization and offset generation. The method could recognize the severity of GIM

with an accuracy of 84.17%.

Pornvoraphat et al. [48] utilized AI techniques to achieve real-time segmentation of GIM.

The AI algorithm is based on BiSeNet, and the authors used techniques such as negative sam-

pling and label smoothing to improve the model’s performance. The sensitivity, specificity and

accuracy of the AI model were 91%, 96% and 96%, respectively.
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Quality assessment

The quality was assessed using the Supplemented QUADAS-2 tool (Fig 2). In the patient selec-

tion section, three studies were of unknown risk. One study [40] did not state the source of the

patients, while two studies [47, 48] did not state the number of patients included. In the refer-

ence standards section, three studies [44, 46, 47] used expert consensus rather than pathologi-

cal findings as the gold standard and were considered high risk.

Meta-analysis results

We imported data from 12 studies into Stata/SE 16.0 for meta-analysis. The pooled sensitiv-

ity and specificity of AI diagnosing GIM were 94% (95% CI: 0.92–0.96, I2 = 43.71%) and

93% (95% CI: 0.89–0.95, I2 = 84.78%), respectively (Fig 3). The PLR and NLR were 12.59

Fig 2. Results of the assessment of risk of bias in the included studies.

https://doi.org/10.1371/journal.pone.0303421.g002

Fig 3. Forest plot of sensitivity and specificity.

https://doi.org/10.1371/journal.pone.0303421.g003
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(95% CI: 0.38–18.91) and 0.06 (95% CI: 0.05–0.09), respectively (S1 Fig). The DOR (S2 Fig)

and AUC (Fig 4) were 201.5 (95% CI: 110.18–368.51) and 0.97 (95% CI: 0.97–0.98), respec-

tively. With a PLR (12.59) greater than 10, it suggested that AI had the capability to confirm

the diagnosis of GIM. The NLR value (0.06<0.1) indicates that AI can reliably exclude GIM.

The DOR value (217>1) indicated a better discriminative effect of this diagnostic test, and

an AUC (0.97) closer to 1 indicated a better diagnostic effect. It is important to note that the

I2 of combined sensitivity and specificity suggest a high degree of heterogeneity between

studies.

Fagan plots were drawn to evaluate the clinical applicability of AI (Fig 5). With a pre-test

probability set at 0.5, a positive AI diagnostic result indicated a 93% probability of the patient

having GIM, while a negative result suggested a 6% likelihood, confirming or excluding the

presence of Gastrointestinal Intestinal Metaplasia (GIM).

Subgroup analysis

We conducted subgroup analyses to investigate the impact of various factors on the perfor-

mance of (AI) in diagnosing GIM. The factors included study design (prospective or retrospec-

tive), study center (multi-center or single-center), endoscopy type (WLI only or others),

Fig 4. SROC curves.

https://doi.org/10.1371/journal.pone.0303421.g004
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number of training images (>1500 or <1500), and algorithm type (classification algorithm or

others) (Table 2).

The effect of study center on sensitivity was statistically significant, and the effect of other

grouping conditions on sensitivity was extremely significant. The algorithm type had a

Fig 5. Fagan’s nomogram.

https://doi.org/10.1371/journal.pone.0303421.g005

Table 2. Subgroup analyses results.

Subgroup Condition Studies(n) Sensitivity(95%CI) P Specificity(95%CI) P

Number of training images > 1500 6 0.94(0.92–0.97) <0.001 0.94(0.91–0.98) <0.001

< 1500 6 0.94(0.92–0.97) 0.89(0.83–0.95)

Endoscopy type WLI only 3 0.95(0.90–0.99) <0.001 0.95(0.92–0.99) 0.05

others 9 0.94(0.92–0.96) 0.90(0.86–0.94)

Study

design

prospective 3 0.93(0.88–0.98) <0.001 0.87(0.78–0.97) <0.001

retrospective 9 0.94(0.93–0.96) 0.93(0.90–0.96)

Study

center

multi-center 3 0.97(0.94–0.99) 0.01 0.94(0.90–0.99) 0.18

single-center 9 0.94(0.92–0.95) 0.91(0.87–0.95)

Algorithm type classification 9 0.95(0.94–0.97) <0.001 0.92(0.88–0.96) 0.02

others 3 0.92(0.89–0.95) 0.92(0.85–0.99)

https://doi.org/10.1371/journal.pone.0303421.t002
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significant effect on specificity. All of the above factors could be potential sources of heteroge-

neity between studies.

Publication bias and sensitivity analysis

To assess the presence of publication bias, we performed a Deeks’ funnel plot asymmetry test

(Fig 6). The P value was 0.15, indicating no significant publication bias.

To delve deeper into the heterogeneity among studies, we conducted a pooled analysis by

systematically excluding each study one at a time. After removing the studies by Pornvoraphat

[48], the most significant changes were observed in combined sensitivity and specificity, which

were found to be 95% (95% CI: 0.93–0.96, I2 = 40.28%) and 92% (95% CI: 0.88–0.95, I2 =

83.04%), respectively. However, this is not significantly different from the original results, indi-

cating that the meta-analysis results were relatively stable.

AI vs. endoscopists

To further explore the diagnostic ability of the AI, we compared it to that of the endoscopists.

We collected 5 sets of data from 12 studies (Table 1) for the meta-analysis. An essential crite-

rion for data extraction was that the test sets used by the AI and endoscopists must be identical.

The comparison results are shown in Table 3. Their specificities showed no significant

Fig 6. Deeks’ funnel plot asymmetry test for publication.

https://doi.org/10.1371/journal.pone.0303421.g006

Table 3. AI vs. endoscopists.

Performance Metrics AI Endoscopists P

Sensitivity(95%CI) 0.95(0.91–0.99) 0.79(0.65–0.92) 0.39

Specificity(95%CI) 0.94(0.89–0.98) 0.90(0.83–0.96) 0.16

https://doi.org/10.1371/journal.pone.0303421.t003
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disparity, and while AI exhibited a superior sensitivity compared to the endoscopists, this vari-

ance did not reach statistical significance.

Discussion

Dilaghi et al. [49] conducted a meta-analysis on AI’s role in the diagnosis of precancerous gas-

tric lesions and Helicobacter pylori infection, with two studies involving the diagnosis of GIM.

To the best of our knowledge, this is the first systematic review and meta-analysis focusing on

the diagnosis of GIM using AI. This meta-analysis included 12 studies involving 11,173 rele-

vant patients and 46,268 images/videos. In addition to pooling the diagnostic performance of

AI, we explored the impact of factors such as different algorithms, varied image quantities,

etc., on AI performance. Furthermore, we compared the diagnostic abilities of endoscopists

with those of AI. The results demonstrate that various indicators of AI-assisted diagnosis for

GIM exhibit satisfactory levels. This indicates that AI can help doctors diagnose GIM more

accurately, thus reducing the rate of missed diagnoses and misdiagnoses. In addition, AI can

accelerate the diagnostic process, which reduces doctors’ workload and improves their

efficiency.

There are still some limitations of this study: (a) The diagnostic value of AI algorithms may

not be adequately assessed due to the relatively small number of studies and limited sample

size. (b) The 12 included studies were conducted in Asia, and the results of the meta-analysis

may not apply to a wider population. (c) Heterogeneity among the studies was very high.

Although subgroup analyses were conducted, the restricted number of studies did not allow

for further analysis of influencing factors, such as the type of test set (image or video) and spe-

cific endoscope type (e.g., NBI or LCI). (d) Most studies have identified only intestinal meta-

plasia and atrophic gastritis, and further validation is needed to determine whether other

lesions affect the determination of AI. (e) Most studies were retrospective, and the test set

included static images. More prospective, real-time, endoscopic-video-based studies are

required to validate whether AI can be adapted to complex endoscopic environments.

Among the twelve studies, one [47] employed AI to identify GIM and assess its severity

through endoscopic image analysis. This process is crucial for accurately pinpointing the most

representative lesion area for biopsy, indicating a significant avenue for future research. Addi-

tionally, identifying early malignant changes from GIM remains a challenge. Previous studies

have used AI to identify early gastric cancer by analyzing WLI, NBI, or ME-NBI images [50–

52]. Ikenoyama et al. [51] used conventional WLI images to identify early cancers smaller than

20mm, with AI sensitivity and specificity of 58.4% and 87.3%, respectively. While these results

are encouraging, AI performance still needs to be improved.

Most included studies used deep learning techniques, but none explained AI’s decision-

making process in detail. Due to their complexity and "black-box" nature, deep learning mod-

els often find it difficult to explain their internal working mechanisms and decision-making

basis, which largely limits their clinical applications [53]. The introduction of algorithms such

as LRP [54] and Grad-CAM [55] has played an important role in enhancing the explainability

of existing deep learning models [56, 57]. Developing inherently explainable AI models will

enable better application in clinical practice.

All the included studies were tested using their own datasets, and it was difficult to directly

compare the performances of the models. High-quality publicly available datasets can be used

as evaluation benchmarks to compare the performances of different algorithms. Additionally,

publicly available datasets can encourage more people to participate in AI research. Currently,

publicly available gastrointestinal image datasets include Hyper-Kvasir [58] and SUN-SEG

[59]; however, there is a lack of large publicly available image datasets related to GIM.
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It is worth noting that although AI applied to healthcare has made many technological

breakthroughs, it also poses certain challenges to the current value system and legal system

from the legal and ethical levels. For example, it may raise privacy and data security issues and

legal liability issues when AI’s decisions are made incorrectly. As AI continues to advance, col-

laborative efforts among governments, healthcare organizations, and AI technology companies

are crucial to establishing a robust framework that ensures the responsible and fal deployment

of AI in clinical settings.

Conclusions

The pooled sensitivity of our meta-analysis was 94% (95% confidence interval: 0.92–0.96) and

specificity was 93% (95% confidence interval: 0.89–0.95). Comparisons by AI vs. endoscopists

showed that AI had a higher sensitivity (95% vs. 79%). The results show that AI performed

excellently in diagnosing GIM, which provides an evidence-based support for the clinical

application of AI. At the same time, we identified some potential limitations, such as the qual-

ity of the dataset, generalizability of the AI model, and explainable AI. The application of AI-

assisted endoscopy in the medical field is promising. Future research could focus on prospec-

tive studies, improvement of the explainability of models, and adaptation to different patient

characteristics.
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