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Neuroblastoma is the most common seen solid neural tumor in children less than age one. As mutation in the miR-34b/c gene is
observed in several types of human malignancies, there likely to be similar events that contribute to the pathogenesis of
neuroblastoma. We hypothesize that polymorphism in the miR-34b/c gene might predispose to neuroblastoma. Here, we
conducted this replication study by genotyping rs4938723 T>C from miR-34b/c in Hunan children (162 subjects with
neuroblastoma and 270 control subjects) and examined its effect on the risk of neuroblastoma. We determined such association
using logistic regression, adjusted for age and gender. Relative to those with TT genotype, subjects with C allele had reduced
neuroblastoma risk (TC vs. TT: adjusted OR = 0 46, 95%CI = 0 30‐0 71; additive model: adjusted OR = 0 64, 95%CI = 0 47‐0 88;
TC/CC vs. TT: adjusted OR = 0 49, 95%CI = 0 33‐0 73). Stratified analysis revealed that rs4938723 TC/CC carriers were less
likely to develop neuroblastoma for patients in the subgroups of age ≤ 18months, age > 18months, females, males, tumors in
retroperitoneal, tumors in other sites, and clinical stages II, III, IV, and III+IV. Our findings verified miR-34b/c rs4938723 C
variant allele as a protective factor for the risk of neuroblastoma. Further investigation of how miR-34b/c rs4938723 T>C might
modify neuroblastoma risk is warranted.

1. Introduction

Neuroblastoma is a childhood tumor that mainly derives
from neural crest progenitor cells [1–3]. Despite represent-
ing about 8-10% of all pediatric cancer diagnoses, neuroblas-
toma disproportionately results in 12-15% of all childhood
cancer-related mortality [4–6]. It is characterized by widely
clinical heterogeneity, spans from spontaneous regression
to therapy-refractory progression [7]. Another reflection of
such heterogeneity was the contrasting survival rate of dif-
ferent subgroup patients [8, 9]. In patients with the low-
and intermediate-risk neuroblastoma, the long-term survival
rate is greater than 90% [10]. However, in patients with
the high-risk neuroblastoma, less than 40% could finally
survive [11, 12].

In the past decades, considerable progress has been made
in understanding the genetic underpinnings of neuroblas-
toma. Exposed environmental factors of children and preg-
nant women were reported to predispose to neuroblastoma,
but not finally defined [13, 14]. Mutations in ALK [15] and
PHOX2B [16] were considered as two major causes of famil-
ial neuroblastoma. Other SNPs in genes including LMO1
[17], BARD1 [18], TP53 [19], LIN28B [20], HACE1 [20],
NEFL [21], and CDKN1B [22] have more recently been iden-
tified to be associated with neuroblastoma predisposition.
Moreover, the association of these SNPs to neuroblastoma
risk has also been replicated in many other populations, espe-
cially the SNPs in the BARD1 gene [23–25]. Taken together,
however, all the current identified mutations still could not
fully elucidate the etiology of neuroblastoma. We are still
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on the way to fully reveal the genetic landscape of neuroblas-
toma. Identification of other somatic mutations will further
clarify the mechanisms of neuroblastoma.

MicroRNAs (miRNAs) are a class of nonprotein-coding,
small, single-stranded RNAs with about 22 nucleotides [26].
miRNAs participate in transcriptional regulation through
multiple mechanisms, including mRNA degradation, trans-
lational repression, or cleavage of mRNA [26–28]. In the past
decade, more and more miRNAs are being identified that
play vital regulatory roles in human disorders, including can-
cers. Mutations or single nucleotide polymorphisms (SNPs)
in miRNA genes may alter the binding ability of miRNAs
to their target mRNAs, thus resulting in diverse functional
consequences and thereby possibly impact cancer suscepti-
bility [29, 30]. rs4938723 T>C is located at the promoter
region of pri-miR-34b/c [31]. Such T to C shift polymor-
phism might cause a disruption of GATA-X transcription
factor binding capacity, which results in decreased pri-miR-
34b/c expression [32]. Thus far, most studies have addressed
the identification ofmiR-34b/c rs4938723 T>C in breast can-
cer [33], colorectal cancer [34], hepatocellular cancer [35],
and nasopharyngeal carcinoma [36], whereas few studies
focused on the role ofmiR-34b/c gene rs4938723 T>C in neu-
roblastoma risk. In our previous study conducted recently,
we firstly found that rs4938723 T>C polymorphism was
associated with a significantly decreased neuroblastoma risk
[37]. Here, we further conducted a replication hospital-
based case-control study aiming to verify the association
between miR-34b/c rs4938723 T>C and neuroblastoma risk
in Hunan children.

2. Materials and Methods

2.1. Study Subjects. Prior to analysis, the study protocols were
approved by the Institutional Review Board of Hunan Chil-
dren’s Hospital. The current case-control study was carried
out in Hunan Children’s Hospital. A total of 162 cases were
pathology-confirmed with neuroblastoma, and 270 controls
with no prior history of neuroblastoma were randomly
enrolled in the same area as cases. All guardians of partici-
pants provided written informed consent. The detailed infor-
mation of selection criteria of study subjects was reported in
our previous paper [38–40].

2.2. Genotyping. Genomic DNA was isolated from venous
blood using a TIANamp Blood DNA Kit (TianGen Biotech
Co. Ltd., Beijing, China). Genotype analysis of miR-34b/c
gene rs4938723 T>C was undertaken using TaqMan SNP
genotyping assay fromApplied Biosystems [41–44]. Negative
controls (with water) and duplicate test samples (10% of all
the samples) were included in each 384-well plate. 100% con-
cordant of genotypes in replicates were achieved.

2.3. Statistical Analysis. Tests for the Hardy-Weinberg equi-
librium (HWE) were conducted for miR-34b/c rs4938723
T>C among control subjects with the use of the χ2 test. Dif-
ferences in demographic variables between case subjects and
control subjects were analyzed using the two-sided χ2 test.
Neuroblastoma risk was determined as odds ratios (ORs)

and 95% confidence intervals (CIs), based on unconditional
logistic regression adjusted for age and gender. A P value of
<0.05 was used for statistical significance. The SAS release
9.1 (SAS Institute, Cary, NC) was used for statistical analyses.

3. Results

3.1. Association between miR-34b/c rs4938723 T>C and
Neuroblastoma Susceptibility. A description of the demo-
graphic characteristics is provided in Supplemental Table 1.
As shown in Table 1, genotype distributions of miR-34b/c
rs4938723 T>C were compared between all cases and
controls. The genotype for miR-34b/c rs4938723 T>C was in
agreement with the HWE (HWE = 0 784) in the controls.
Statistical analysis indicated that rs4938723 C variant allele
was associated with decreased neuroblastoma risk (TC vs.
TT: adjusted OR = 0 46, 95%CI = 0 30‐0 71; additive model:
adjusted OR = 0 64, 95%CI = 0 47‐0 88; TC/CC vs. TT:
adjusted OR = 0 49, 95%CI = 0 33‐0 73).

3.2. Stratification Analysis. We further demonstrated
whether the association between rs4938723 T>C genotype
and neuroblastoma risk was modified by age, gender, tumor
sites, and INSS stages (Table 2). We observed a significantly
decreased risk of neuroblastoma for carriers of TC/CC geno-
type comparing with carriers of TT genotype in the sub-
groups of age ≤ 18months (adjusted OR = 0 35, 95%CI =
0 18‐0 67), age > 18months (adjusted OR = 0 55, 95%CI =
0 32‐0 94), females (adjusted OR = 0 45, 95%CI = 0 24‐0 82),
and males (adjusted OR = 0 52, 95%CI = 0 29‐0 90). Regard-
ing sites of tumor origin, carriers of TC/CC genotype were
less likely to have tumors in retroperitoneal (adjusted OR =
0 35, 95%CI = 0 20‐0 60) and other sites (adjusted OR =
0 32, 95%CI = 0 11‐0 94). We also found that the decreased
risk of neuroblastoma associated with rs4938723 TC/CC
genotypes was more pronounced among clinical stages
II (adjusted OR = 0 35, 95%CI = 0 14‐0 89), III (adjusted
OR = 0 45, 95%CI = 0 25‐0 83), IV (adjustedOR = 0 26, 95%
CI = 0 12‐0 60), and III+IV (adjusted OR = 0 38, 95%CI =
0 23‐0 63).

4. Discussion

In our present study, by examining the relationship between
miR-34b/c rs4938723 T>C and neuroblastoma susceptibility,
we identifiedmiR-34b/c rs4938723 C allele to be significantly
associated with decreased neuroblastoma susceptibility in
Hunan children. Our finding, for the first time, implies that
miR-34b/c rs4938723 T>C protects Chinese children from
neuroblastoma risk in Hunan subjects.

miR-34b and miR-34c are submembers of the miR-34
family which share a common primary transcript (pri-miR-
34b/c) [45]. ThemiR-34b/c is located in human chromosome
11 [46, 47]. The biological role of miR-34b/c has been well
documented in several types of cancers. Majid et al. [48]
found thatmiR-34b inhibits prostate cancer through demeth-
ylation, active chromatin modifications, and AKT pathways.
It is documented thatmiR-34b/c can target TP53 and cooper-
ate to suppress cell proliferation and adhesion-independent
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growth [49]. Findings from Wong et al. [50] offer a new
insight into the tumor suppressor role of miR-34b/c in mye-
loma. However, there still lacks research regarding the role
of miR-34b/c in neuroblastoma. The rs4938723 T>C poly-
morphism, locates within the CpG island of pri-miR-34b/c,
was intensively investigated. In a study conducted in a Chi-
nese population by Liu et al. [51], they found that CC and
TC+CC genotypes of pri-miR-34b/c rs4938723 contribute
to a higher susceptibility of hepatocellular carcinoma when
compared with the TT genotype, respectively. Hashemi
et al. [52] found thatmiR-34b/c rs4938723 C allele was corre-
lated with a decreased risk of acute lymphoblastic leukemia,
in a sample of an Iranian population with 110 children with
acute lymphoblastic leukemia and 120 healthy children.
However, Zhu et al. [53] failed to obtain a relationship
between miR-34b/c rs4938723 and esophageal squamous cell

carcinoma risk, in 248 Kazakh patients with esophageal squa-
mous cell carcinoma and 300 frequency-matched control
subjects. Polymorphisms may exert distinct genetic effects
on the susceptibility of cancer, depending on different cancer
types, ethnicities, and regions.

In 2017, we performed a first case-control study regard-
ing miR-34b/c rs4938723 T>C and neuroblastoma suscepti-
bility in Chinese children, including 393 cases and 812
controls [37]. We firstly provided an evidence that miR-
34b/c rs4938723 T>C displayed a protective role from neuro-
blastoma. However, such evidence needs further validation.
Herein, we further verified the protective role of miR-34b/c
rs4938723 T>C in neuroblastoma risk in another sample of
Chinese. Such protective role could also be seen in other can-
cer types, such as colorectal cancer [34], gastric cancer [54],
and esophageal cancer [55]. Other genetic, environmental

Table 1: miR34b/c rs4938723 T>C polymorphism and neuroblastoma susceptibility.

Genotype Cases (N = 162) Controls (N = 270) Pa Crude OR (95% CI) P Adjusted OR (95% CI)b Pb

rs4938723 T>C (HWE = 0 784)
TT 100 (61.73) 117 (43.33) 1.00 1.00

TC 47 (29.01) 123 (45.56) 0.45 (0.29-0.69) 0.0002 0.46 (0.30-0.71) 0.0004

CC 15 (9.26) 30 (11.11) 0.59 (0.30-1.15) 0.119 0.62 (0.32-1.23) 0.175

Additive 0.0008 0.62 (0.46-0.85) 0.0026 0.64 (0.47-0.88) 0.005

Dominant 62 (38.27) 153 (56.67) 0.0002 0.47 (0.32-0.71) 0.0002 0.49 (0.33-0.73) 0.0005

Recessive 147 (90.74) 240 (88.89) 0.542 0.82 (0.43-1.57) 0.542 0.86 (0.45-1.67) 0.665

OR: odds ratio; CI: confidence interval.aχ2 test for genotype distributions between neuroblastoma cases and cancer-free controls.bAdjusted for age and gender.

Table 2: Association between miR34b/c rs4938723 T>C polymorphism and clinical parameters.

Variables
Cases/controls

OR (95% CI) P AOR (95% CI)a PaTT TC/CC
No. (%) No. (%)

Age (month)

≤18 42/36 (25.9)/(13.3) 27/66 (16.7)/(24.4) 0.35 (0.19-0.66) 0.001 0.35 (0.18-0.67) 0.002

>18 58/81 (35.8)/(30.0) 35/87 (21.6)/(32.2) 0.56 (0.34-0.94) 0.029 0.55 (0.32-0.94) 0.027

Gender

Females 49/52 (30.2)/(19.2) 30/77 (18.5)/(28.5) 0.41 (0.23-0.74) 0.003 0.45 (0.24-0.82) 0.010

Males 51/65 (31.5)/(24.1) 32/76 (19.7)/(28.1) 0.54 (0.31-0.93) 0.027 0.52 (0.29-0.90) 0.020

Sites of origin

Adrenal gland 17/117 (10.5)/(43.3) 14/153 (8.64)/(56.7) 0.63 (0.30-1.33) 0.225 0.65 (0.31-1.38) 0.265

Retroperitoneal 55/117 (33.9)/(43.3) 23/153 (14.2)/(56.7) 0.32 (0.19-0.55) <0.0001 0.35 (0.20-0.60) 0.0002

Mediastinum 16/117 (9.87)/(43.3) 20/153 (12.3)/(56.7) 0.96 (0.48-1.93) 0.900 0.96 (0.48-1.95) 0.917

Others 12/117 (7.41)/(43.3) 5/153 (3.08)/(56.7) 0.32 (0.11-0.93) 0.036 0.32 (0.11-0.94) 0.039

Clinical stages

I 23/117 (14.2)/(43.3) 25/153 (15.4)/(56.7) 0.83 (0.45-1.54) 0.556 0.86 (0.46-1.61) 0.645

II 15/117 (9.26)/(43.3) 7/153 (4.32)/(56.7) 0.36 (0.14-0.90) 0.030 0.35 (0.14-0.89) 0.027

III 34/117 (21.0)/(43.3) 20/153 (12.3)/(56.7) 0.45 (0.25-0.82) 0.009 0.45 (0.25-0.83) 0.010

IV 28/117 (17.3)/(43.3) 9/153 (5.55)/(56.7) 0.25 (0.11-0.54) 0.0005 0.26 (0.12-0.60) 0.001

4s 0/117 (0.00)/(43.3) 1/153 (0.006)/(56.7) — — — —

I+II+4s 38/117 (23.4)/(43.3) 32/153 (19.7)/(56.7) 0.64 (0.38-1.09) 0.103 0.65 (0.38-1.10) 0.110

III+IV 62/117 (38.3)/(43.3) 29/153 (17.9)/(56.7) 0.36 (0.22-0.59) <0.0001 0.38 (0.23-0.63) 0.0002

OR: odds ratio; CI: confidence interval; AOR: adjusted odds ratio.aAdjusted for age and gender, omitting the corresponding stratify factor.
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factors, and gene-environment interaction may cooperatively
determine the protective role ofmiR-34b/c rs4938723 T>C in
neuroblastoma risk [56, 57].

Strengths of the current study also accompany some lim-
itations. First, statistic power may be compromised as the
sample size is not large enough. Second, as a hospital-based
case-control study, inclusion of the nonrepresentative sub-
jects in this study may result in inherent selection bias. Third,
conclusions obtained here lack generalizability as subjects are
all genetic Chinese descent. Therefore, cautions should be
taken if the current conclusion is extrapolated to other pop-
ulations. Fourth, the selected SNP was based on prior knowl-
edge of potentially functional SNPs. Other important tagging
SNPs within the miR-34b/c gene may be omitted. Last, envi-
ronment factors and gene-environment interactions could
not be assessed in the current study, with the absence of envi-
ronmental data.

5. Conclusions

In conclusion, here, we provided the possibility of miR-34b/c
rs4938723 T>C in predicting neuroblastoma risk. Our study
serves as a basis for future replication studies in independent
populations or for functional studies ofmiR-34b/c rs4938723
T>C in neuroblastoma risk.
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