
Retinal vein occlusion (RVO) is the second most common 
retinal vascular disorder. RVO can cause ocular morbidity, 
including macular edema, vitreous hemorrhage, and nonper-
fusion area, which leads to a reduction in visual acuity [1,2]. 
The number of patients with RVO is about 16 million, and 
the prevalence of RVO is increasing [3]. Some patients have 
an increased risk of cardiovascular and coagulation disorders 
[3]. The first choice of treatment for RVO is anti-vascular 
endothelial growth factor (VEGF) therapy. An intravitreal 
injection of anti-VEGF agents improves retinal edema in 
patients with RVO [4,5]. An intravitreal injection maintains 
the concentration of drugs in the vitreous body, and circum-
vents the blood–retinal barrier (BRB) by delivering the drug 
into the retina directly. However, there are several problems 
with intravitreal administration of anti-VEGF agents, such 
as poor vision from macular edema and nonperfused retinal 
areas [6,7]. Therefore, new drugs with mechanisms different 
from the VEGF signaling pathway are needed. Intravitreal 
administration of anti-VEGF antibody results in an increased 
physical and mental burden [8,9]. Thus, the development 
of non-invasive drug delivery is needed for patients with 
RVO. Drug delivery by oral administration to treat retinal 

diseases is preferred by patients compared to an injectable 
route [10,11]. In addition, administration of eye drops has 
few side effects, and is a simple administration method for 
the elderly [10,11]. Thus, we evaluated non-invasive routes of 
drug delivery to treat RVO.

Crocetin has a protective effect against retinal degen-
eration by peripheral administration [12-14]. Crocetin is a 
carotenoid contained in saffron crocus (Crocus staruts L) and 
gardenia fruit (Gardenia jasminoides Ellis). Saffron has been 
used in traditional herbal medicine, and crocetin has been 
used to maintain health. Crocetin is absorbed more rapidly 
than other carotenoids, because it is amphiphilic, has a low 
molecular weight, and has high transferability. Crocetin has 
an antioxidant effect by eliminating reactive oxygen species, 
and inducing antioxidant enzymes [15,16], and has an anti-
inflammatory effect by suppressing the production of inflam-
matory factors in macrophages and endothelial cells [17,18]. 
Oral administration of crocetin protects against photoreceptor 
cell death in a light-induced retinal damage model and a 
retinal ischemic reperfusion injury model [12,13]. These data 
indicate that oral administration of crocetin for delivery into 
ocular tissues, such as the retina, is highly effective. Thus, 
the pathological symptoms of RVO may be improved by 
administration of crocetin.

Some patients with RVO had progression of retinal 
edema and the nonperfusion area, because of increased oxida-
tive stress. In clinical studies, inflammatory cytokines, such 
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as interleukin-6 (IL-6), monocyte chemoattractant protein-1 
(MCP-1), and anti-matrix metalloproteinase (MMP-9), 
were increased in the eyes of patients with RVO [19,20]. An 
increase in inflammatory cytokines induces a breakdown of 
the vascular structure, and leakage of plasma components 
and water [21]. Therefore, excess inflammatory factors are 
associated with the formation of retinal edema in patients 
with RVO. A murine RVO model can be used to examine the 
effects of new agents and mechanisms on retinal edema from 
the increased expression of VEGF and inflammatory factors 
[22-24]. We investigated the effects and mechanisms of oral 
and ocular administration of crocetin on retinal edema in a 
murine RVO model.

METHODS

Animals: Male Deutschland, Denken, and Yoken (ddY) mice 
(8 weeks old) were purchased from Japan SLC (Shizuoka, 
Japan). These animals were maintained at 23±3.0 °C under a 
12 h:12 h light-dark cycle (lights on from 08:00 to 20:00), and 
ad libitum access to food and water. All experiments were 
performed in accordance with the Association for Research in 
Vision and Ophthalmology Statement for the Use of Animals 
in Ophthalmic and Vision Research, and the experimental 
protocols were approved by the Institutional Animal Care and 
Use Committee of Gifu Pharmaceutical University.

Murine RVO model: The murine RVO model was performed 
as described [24]. Mice were anesthetized with a mixture of 
ketamine (120 mg/kg; Daiichi-Sankyo, Tokyo, Japan) and 
xylazine (6 mg/kg; Bayer, Health Care, Osaka, Japan) with an 
intramuscular injection. After it was confirmed that the anes-
thesia was adequate, the mice were injected with rose bengal 
(8 mg/ml; Wako, Osaka, Japan) into the tail vein. The pupils 
were dilated with 0.5% tropicamide and 0.5% phenylephrine 
(Santen Pharmaceuticals Co., Ltd., Osaka, Japan). Then, 0.1% 
purified sodium hyaluronate was applied, and ten to 15 laser 
spots were performed to three branch veins (3 disc diameters 
from the optic nerve centers) in the right eye of each animal. 
The image-guided laser system was attached to the Micron 
IV Retinal Imaging Microscope (Phoenix Research labora-
tories, Pleasanton, CA), and laser irradiation was performed 
with a 532 nm laser light applied at 50 mW, 5 s, and 50 µm 
(Meridian AG, Bierigustrasse, Switzerland).

When laser irradiation was performed except the major 
blood vessel, formation of edema or upregulation of inflam-
matory cytokines did not occur. These data indicate that in 
a RVO model of the albino mouse, laser damage and laser-
induced inflammation did not influence the formation of 
edema, and the formation of edema is caused by vascular 
occlusion and ischemia. This model is optimal as an RVO 

pathological model, because this murine RVO model has 
some features similar to the clinical condition, such as retinal 
edema and hard exudates by vascular occlusion.

Oral administration of crocetin: Crocetin was suspended 
in 0.5% carboxymethylcellulose sodium aqueous solu-
tion (CMC). Crocetin was orally administered at a dose of 
100 mg/kg 1 and 6 h before laser occlusion and immediately, 
6 h, 12 h, and 18 h after laser irradiation. The vehicle-treated 
group was administered 10 ml/kg CMC.

Ocular administration of crocetin by eye drops: Crocetin was 
suspended in 1% PBS (12.68 mM KCl, 1.47 mM KH2PO4, 137 
mM NaCl, 8.10 mM Na2HPO4) containing 4% polyethylene 
glycol (PEG), 0.1% Tween-80, and 0.01% dimethyl sulfoxide 
(DMSO). Crocetin was administered by eye drops at doses of 
0.10% and 0.03% (5 µl) immediately, 6 h, and 12 h after laser 
irradiation every 5 min five times. The vehicle-treated group 
was administered a solvent of eye drops.

Histological analysis: The mice were euthanized with 
cervical dislocation, and the eyes were enucleated. The 
eyeball was fixed in a fixative solution containing 4% para-
formaldehyde (PFA) for at least 48 h at 4 °C. Six paraffin-
embedded sections (thickness: 5 µm) were cut at the point 
the optic nerve disc connects to the eyeball, and stained 
with hematoxylin and eosin (H&E). All images were taken 
using a fluorescence microscope (BZ-X710; Keyence, Osaka, 
Japan). The damage induced by the retinal vein occlusion was 
evaluated in six randomly selected areas from each eye for 
the morphometric analysis. The thickness of the inner nuclear 
layer (INL) was measured on photographs every 240 µm from 
the optic disc toward the periphery with Image J (National 
Institutes of Health, Bethesda, MD). Quantitative data from 
three sections (selected randomly from the six sections) were 
averaged for each eye.

Western blotting: Western blotting was performed as reported 
[25]. The primary antibodies were anti-MMP-9 antibody 
(Merck Millipore, Burlington, MA, AB19016, rabbit poly-
clonal antibody), anti-tumor necrosis factor-α (TNF-α) 
antibody (Santa Cruz Biotechnology, Dallas, TX, sc-52746, 
mouse monoclonal antibody), anti-occludin antibody 
(Abcam, Cambridge, England, ab64482, rabbit polyclonal 
antibody), and mouse anti-β-actin antibody (Sigma, Tokyo, 
Japan, A2228, mouse monoclonal antibody). The secondary 
antibodies were horseradish peroxidase (HRP)-conjugated 
goat anti-rabbit antibody (1:1,000) and HRP-conjugated goat 
anti-mouse immunoglobulin G (IgG; 1:2,000; Pierce Biotech-
nology, Inc., Waltham, MA). Immunoreactive bands were 
visualized with Immuno star® LD (Wako Pure Chemical 
Industries, Osaka, Japan), and chemiluminescence was 
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detected with the LAS-4000 Luminescent Image Analyzer 
(Fuji Film Co. Ltd., Tokyo, Japan).

Statistical analysis: The data are presented as the mean ± 
standard error of the mean (SEM). The significance of the 
differences was determined with the Student t test. A p value 
of less than 0.05 was considered statistically significant. 
In each figure, we performed the suitable sample number 
that showed a statistically significant difference (p=0.05) 
with power analysis to confirm the adequacy of the N value 
in this study. The sample numbers were investigated for 
parameters that indicated the significance level, amount of 
change, standard deviation, and statistical power. The value 
of the significance level (sig.level) was p=0.05, the value of 
statistical power (power) was 0.8, and the value of the amount 
of change (delta) and the standard deviation (SD) were used 
from each sample datum. We used R software to calculate the 
suitable sample numbers.

RESULTS

Decrease in retinal edema with oral administration of 
crocetin: We investigated whether retinal edema was 
improved with oral administration of crocetin. The treat-
ment protocol for this experiment is shown in Figure 1A. We 
measured changes in retinal thickness 1 day after oral admin-
istration of crocetin with H&E staining. Oral administration 
of crocetin statistically significantly improved the increase in 
the thickness of the INL (Figure 1B,C).

Decrease in retinal edema with crocetin eye drops: We inves-
tigated whether crocetin eye drops decreased retinal thickness 
in a murine RVO model. We analyzed the retinal thickness 
of the INL in the control group, vehicle-treated group, and 
crocetin-treated group (0.1% and 0.03%) with eye drops. The 
treatment protocol for this experiment is shown in Figure 2A. 
Eye drops of 0.10% crocetin statistically significantly normal-
ized retinal pathological thickening (Figure 2B,C).

Decreased expression of MMP-9 and TNF-α with oral admin-
istration of crocetin: We elucidated the mechanism of action 
of crocetin on retinal edema in a murine RVO model with 
western blotting. TNF-α is a typical inflammatory mediator 
induced in ischemic conditions, and activates downstream 
inflammatory factors [25]. The level of MMP-9 is activated 
by an increase in TNF-α and collapsed cell–cell junctions in 
vascular endothelial cells [26]. We investigated the expression 
level of MMP-9 12 and 24 h after laser irradiation in a murine 
RVO model. The expression of MMP-9 was increased 12 and 
24 h after laser irradiation (Figure 3A,B). We investigated 
changes in MMP-9 and TNF-α expression 24 h after the 
oral administration of crocetin with western blotting. The 
expression levels of MMP-9 and TNF-α were increased in 

the vehicle-treated group, and oral administration of crocetin 
statistically significantly reduced these expression levels 
(Figure 3C–F).

Increased tight junction expression with oral administration 
of crocetin: Tight junctions are situated between two adjacent 
endothelial cells, and provide structural integrity to retinal 
blood vessels [27-29]. Occludin stabilizes tight junctions, 
and improves barrier function [29]. Loss of tight junctions 
increases vascular permeability, and induces cerebral edema 
[30]. We investigated the expression level of occludin after 
oral administration of crocetin with western blotting. The 
expression level of occludin was decreased in the vehicle-
treated group compared with that of the control group, and 
this reduction was normalized with oral administration of 
crocetin.

DISCUSSION

We found that oral and ocular administration of crocetin 
improved retinal edema. Furthermore, the expression levels 
of MMP-9, TNF-α, and occludin were normalized 24 h after 
oral administration of crocetin.

Macular edema is the most important symptom in RVO 
pathology, which leads to loss of visual function [31]. Intra-
vitreal injection of anti-VEGF antibody is used as a treat-
ment for patients with RVO. However, constant intravitreal 
injection has risk of complications from vitreous hemorrhage 
and retinal detachment [8,12,30]. Some drawbacks, such as 
recurrence of pathological symptoms, increased economic 
burden, and endophthalmitis, for patients with RVO can occur 
[8,9,23]. Therefore, the development of therapies involving 
peripheral administration for RVO is needed.

Oral administration of crocetin can protect vascular 
endothelial cells, and reduce hyperpermeability induced by 
ischemia and reperfusion [32-35]. In this study, we found that 
oral administration of crocetin reduced the degree of edema 
in a murine RVO model (Figure 1). Previously, we measured 
the concentrations of crocetin in the plasma and aqueous 
humor after oral administration at a dose of 50 mg/kg in 
the rat [12]. The aqueous humor concentration of crocetin 
was approximately 2 µM 1.5 h after oral administration, and 
protected against cell death in retinal ganglion cell culture 
[12]. Moreover, oral administration of crocetin at 100 mg/kg 
protected against retinal degeneration induced by N-methyl-
D-aspartate in mice [14], which suggests that crocetin has 
protective efficacy in a murine RVO model. Oral adminis-
tration of crocetin suppresses inflammatory factors, such as 
TNF-α and intercellular adhesion molecule 1 (ICAM-1), in 
a murine cerebral ischemic model [32]. In addition, crocetin 
reduces the production of inflammatory factors, such as 
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MCP-1 and IL-8, by inhibiting the nuclear factor-kappa beta 
(NF-kB) signaling pathway in human umbilical endothelial 
cells (HUVECs) [17]. The edema formation in pathological 
symptoms of RVO is associated with inflammatory response. 
The expression levels of inflammatory factors, such as IL-6, 
MCP-1, and ICAM-1, are increased in patients with RVO 
[36,37], and in a RVO murine model [24]. In a previous report, 
we performed laser irradiation except the major blood vessel 

to investigate laser damage and laser-induced inflammation 
in a sham group. As a result, the expression levels of inflam-
matory factors, such as IL-6, ICAM-1, and MCP-1, did not 
change in sham-operated group. These data indicate that laser 
damage and laser-induced inflammation do not influence the 
induction of inflammation, and the inflammatory response 
is caused by vascular occlusion and ischemia. In the typical 
images of histological analysis, the fluid leakage area and the 

Figure 1. Effects of oral administra-
tion of crocetin on retinal thickness 
in the murine RVO model. A: 
Experimental protocol in vivo with 
oral administration of crocetin. 
Retinal vein occlusion (RVO) mice 
were orally administered crocetin 
1 and 6 h before laser occlusion 
and immediately, 6 h, 12 h, and 18 
h after laser irradiation. Retinal 
thickness was examined 24 h after 
laser irradiation. B: Representative 
images of hematoxylin and eosin 
(H&E) staining in the control, 
vehicle-treated, and crocetin-
treated groups 24 h after laser irra-
diation. Scale bar indicates 50 µm. 
C: Quantification of the thickness 
of the inner nuclear layer (INL). 
The thickness of the INL was 
statistically significantly increased 
1 day after laser irradiation, and 
this increase was improved with 
the crocetin treatment. Data are 
shown as mean ± standard error of 
the mean (SEM; n=5 or 6). #p<0.05, 
##p<0.01 (versus control group; 
Student t test). *p<0.05, **p<0.01 
(versus vehicle group; Student t 
test). INL, inner nuclear layer; 
ONL, outer nuclear layer.
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cystoid area were decreased in the crocetin-treated group, 
but a change in the nuclei of the cells existed (Figure 1B). 
In a previous report, the nuclei of the cells also changed in a 
murine RVO model group. The intravitreal injection of anti-
VEGF antibody ameliorated the increase in the INL thick-
ness, and improved the change in the nuclei of the cells [24]. 
These data suggested that the change in the nuclei of the cells 
is not led by laser damage and laser-induced inflammation. 

Crocetin did not ameliorate the increase in edema formation 
compared with the anti-VEGF antibody. The rate of suppres-
sion of edema formation was associated with the decrease 
in the abnormality of the nuclei. Namely, the change in the 
nuclei of the cells might be secondarily induced by the RVO 
effect due to edema formation caused by vascular occlusion 
and ischemic condition, and there is no artifact. Therefore, 
it is suggested that the oral administration of crocetin may 

Figure 2. Effects of crocetin by eye 
drops on retinal thickness in the 
murine RVO model. A: Experi-
mental protocol in vivo with eye 
drops of crocetin. Crocetin was 
administered immediately, 6 h, 
and 12 h after laser irradiation by 
eye drops. The retina was evalu-
ated 24 h after laser irradiation. B: 
Representative images of hema-
toxylin and eosin (H&E) staining 
in control, vehicle-treated, and 
crocetin-treated groups are shown 
1 day after laser irradiation. Scale 
bar represents 50 µm. C: Graphs 
show the thickness of the inner 
nuclear layer (INL). The increase 
in the thickness of the INL was 
suppressed with the administra-
tion of crocetin. Data are shown as 
mean ± standard error of the mean 
(SEM; n=3 or 4). #p<0.05, ##p<0.01 
(versus control group; Student t 
test). *p<0.05, **p<0.01 (versus 
vehicle group; Student t test). INL, 
inner nuclear layer; ONL, outer 
nuclear layer.
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regulate the formation and recurrence of edema through the 
regulation of inflammatory factors in a murine RVO model.

Eye drops are non-invasive, have few side effects, and 
are a simple administration method for the elderly. We found 
that crocetin eye drops improved the degree of retinal edema 
in a murine RVO model (Figure 2). Crocetin is amphiphilic, 
has a low molecular weight, and has high tissue migration 
compared with other carotenoids [38]. An eye drop drug 
delivery route can be used for systemic, corneal, and non-
corneal pathways [10]. A portion of an ophthalmic drug enters 

the systemic pathway and partly reaches the retina [10]. The 
corneal pathway is unlikely to be the main route, because the 
fluorescence of liposomes after eye drop administration was 
observed only at the corneal surface, and not in the vitreous 
body [10]. The cornea is composed of three layers, and this 
barrier function prevents drugs from entering the interior of 
the eye [10]. The conjunctiva is a possible route, because it 
is not a strong barrier [10]. However, additional investigation 
of delivery routes to the retina with crocetin eye drops in the 
RVO model is needed.

Figure 3. Effects of crocetin on 
inflammation factors in the murine 
RVO model. A: Representative 
images of western blotting showing 
the expression level of matrix 
metalloproteinase (MMP-9) 12 
and 24 h after laser irradiation. B: 
Quantitative analysis of MMP-9 
normalized to β-actin. The expres-
sion level of MMP-9 was statisti-
cally significantly increased 12 to 
24 h after laser occlusion. Data are 
shown as mean ± standard error 
of the mean (SEM; n=5). *p<0.05, 
**p<0.01 (versus normal group; 
Student t test; C, E: Representative 
images of western blotting showing 
the expression level of MMP-9 
and tumor nuclear factor (TNF-α) 
24 h after laser irradiation. D, F: 
Oral administration of crocetin 
suppressed the expression levels of 
MMP-9 and TNF-α compared with 
that of the vehicle-treated group. 
Data are shown as mean ± standard 
error of the mean (SEM’ n=4 to 8). 
#p<0.05, ##p<0.01 (versus control 
group; Student t test). *p<0.05, 
**p<0.01 (versus vehicle group; 
Student t test).
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The expression of MMP-9, which has a role in degrading 
basement membrane and extracellular matrix, is induced by 
TNF-α in the NF-kB pathway [39-41]. In the RVO model, 
the levels of expression of MMP-9 statistically significantly 
increased after laser irradiation (Figure 3). In addition, oral 
administration of crocetin reduced the expression levels of 
MMP-9 and TNF-α in the murine RVO model (Figure 3). The 
results indicated that TNF-α and MMP-9 were produced by 
leukocytes in a murine RVO model. It has been reported that 
TNF-α and MMP-9 are produced by leukocytes in inflam-
matory response and vascular hyperpermeability [42,43]. 
The expression levels of MCP-1 and ICAM-1 are increased 
in patients with RVO [36], and in the murine RVO model [24]. 
The expression levels of MCP-1 and ICAM-1 were increased 
by binding to the VEGF receptor in vascular endothelial cells, 
and induced the inflammatory response, with the migration 
and adhesion of leukocytes in the retinal vascular [44,45]. 
Therefore, the partial mechanism of retinal hyperperme-
ability in a murine RVO model is considered to be associated 
with the production of TNF-α and MMP-9.

In addition, expression of MMP-9 degrades the levels of 
tight junction proteins, which are associated with vascular 
permeability and the formation of edema in diabetic reti-
nopathy [46]. The disruption of tight junctions in vascular 
endothelial cells increases vascular permeability, angio-
genesis, and the formation of edema [30]. In particular, the 
transmembrane protein occludin regulates tight junctions 
in endothelial cells [27-29]. We found that expression of 
occludin was decreased in the RVO model, and this reduction 
was inhibited with oral administration of crocetin (Figure 4). 
The expression level of occludin stabilizes the vascular struc-
ture by regulating adherens junctions and tight junctions in 
vascular endothelial cells [27-29]. Crocetin prevents VEGF-
induced cell migration and advanced glycation end products 
(AGEs)-induced cell apoptosis in HUVECs and bovine aortic 
endothelial cells (BECs) [47,48]. In the present murine RVO 
model, the expression levels of VEGF and MMP-9 increased 
1 day after vein occlusion in the retina (Figure 3A) [49]. 
It has been reported that VEGF and MMP-9 decrease the 
expression levels of occludin in the RPE [46,50,51]. Occludin 
is also associated with the formation of tight junction in the 
RPE, and we think that VEGF and MMP-9 could induce a 
reduction in the expression level of occludin in the subretinal 
RPE. Therefore, the retinal hyper-permeability of the present 
RVO model may be associated with disruption of the outer 
blood–retinal barrier. In conclusion, crocetin protected tight 
junctions through anti-inflammatory effects, and inhibited 
the formation of edema in a murine RVO model, which 
suggests that oral and ocular administration of crocetin may 
improve RVO pathology.
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