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d’Informatique (LIX), CNRS UMR 7161, Ecole Polytechnique, 91128 Palaiseau, France and 3AMIB team/project, INRIA
Saclay, Bâtiment Alan Turing, 91128 Palaiseau, France

ABSTRACT

Motivations: The design of RNA sequences folding into predefined

secondary structures is a milestone for many synthetic biology and

gene therapy studies. Most of the current software uses similar local

search strategies (i.e. a random seed is progressively adapted to ac-

quire the desired folding properties) and more importantly do not allow

the user to control explicitly the nucleotide distribution such as the

GC-content in their sequences. However, the latter is an important

criterion for large-scale applications as it could presumably be used

to design sequences with better transcription rates and/or structural

plasticity.

Results: In this article, we introduce IncaRNAtion, a novel algo-

rithm to design RNA sequences folding into target secondary struc-

tures with a predefined nucleotide distribution. IncaRNAtion uses a

global sampling approach and weighted sampling techniques. We

show that our approach is fast (i.e. running time comparable or

better than local search methods), seedless (we remove the bias of

the seed in local search heuristics) and successfully generates high-

quality sequences (i.e. thermodynamically stable) for any GC-content.

To complete this study, we develop a hybrid method combining our

global sampling approach with local search strategies. Remarkably,

our glocal methodology overcomes both local and global approaches

for sampling sequences with a specific GC-content and target

structure.

Availability: IncaRNAtion is available at csb.cs.mcgill.

ca/incarnation/

Contact: jeromew@cs.mcgill.ca or yann.ponty@lix.polytechnique.fr

Supplementary Information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

At the core of the emerging field of synthetic biology resides, our

capacity to design and reengineer molecules with target func-

tions. RNA molecules are well tailored for such applications.

The ease to synthesize them (they are directly transcribed from

DNA) and the broad diversity of catalytic and regulation func-

tions they can perform enable to integrate de novo logic circuits

within living cells (Rodrigo et al., 2012) or reprogram existing

regulation mechanisms (Chang et al., 2012). Future advances

and applications of these techniques in gene-therapy studies

will strongly rely on efficient computational methods to design

and reengineer RNA molecules.

Most of RNA functions are, at least partially, encoded by the

3D molecular structures, which are themselves primarily

determined by the secondary structures. The development of ef-

ficient algorithms for designing RNA sequences with predefined

secondary structures is thus a milestone to enter the synthetic

biology era. RNAinverse pioneered RNA secondary structure

design algorithms. It has been developed and distributed with the

Vienna RNA package (Hofacker et al., 1994). However, only

posterior experimental studies revealed the potential and prac-

tical impact of these techniques. Thereby, during the past 6 years,

many improvements and variants of RNAinverse have been

proposed. Conceptually, almost all of existing algorithms

follow the same approach. First a seed sequence is selected,

then a local search strategy is used to mutate the seed and

find, in its vicinity, a sequence with desired folding properties.

Using this strategy, INFO-RNA (Busch and Backofen, 2006),

RNA-SSD (Aguirre-Hernández et al., 2007) and

NUPACK:Design (Zadeh et al., 2011) significantly improved

the performance of RNA secondary structure design algorithms.

More recent research studies aimed to include more constraints

in the selection criteria. RNAexinv focused on the design of

sequences with enhanced thermodynamical and mutational ro-

bustness (Avihoo et al., 2011), while Frnakenstein enables to

design RNA with multiple target structures (Lyngsø et al., 2012).

We recently introduced with RNA-ensign a novel paradigm

for the search strategy of RNA secondary structure design algo-

rithm (Levin et al., 2012). Instead of a local search approach, we

proposed a global sampling strategy of the mutational landscape

based on the RNAmutants algorithm (Waldispühl et al., 2008).

This methodology offered promising performances, but suffered

from prohibitive runtime and memory consumption. Following

our work, Garcia-Martin et al. (2013) proposed RNAiFOLD, an

alternate methodology that uses constraint programming tech-

niques to prune the mutational landscape. While also suffering

from prohibitive running times, it is worth noting that this latter

algorithm also proposes a seedless approach to the RNA second-

ary structure design problem.
In this article, we introduce IncaRNAtion, an RNA second-

ary structure design algorithm that benefits from our recent al-

gorithmic advances (Reinharz et al., 2013) to expand our original

RNA-ensign algorithm (Levin et al., 2012). IncaRNAtion

addresses previous limitations of RNA-ensign and offers new

functionalities. First, while our previous program had a running

time complexity of Oðn5Þ, IncaRNAtion now runs in linear-

time and space complexity, allowing it to demonstrate similar

speeds as any local search algorithm. Next, IncaRNAtion is

seedless. Unlike RNA-ensign, it does not require a seed se-

quence to initiate its search. Finally, IncaRNAtion implements

a novel algorithm based on weighted sampling techniques*To whom correspondence should be addressed.
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(Bodini and Ponty, 2010) that enables us to control, for the first
time, explicitly the GC-content of the solution. This functionality

is essential because wild-type sequences within living organisms
often present medium or low GC-content, presumably to offer

better transcription rates and/or structural plasticity. Previous
programs do not allow to control this parameter and tend to

output sequences having high GC-contents (Lyngsø et al., 2012).
We demonstrate the performance of our algorithms on a set of

real RNA structures extracted from the RNA STRAND data-
base (Andronescu et al., 2008). To complete this study, we de-

velop a hybrid method combining our global sampling approach
with local search strategies such as the one implemented in

RNAinverse. Remarkably, our glocal methodology overcomes

both local and global approaches for sampling sequences with a
specific GC-content and target structure.

2 METHODS

We introduce a probabilistic model for the design of RNA sequences with

a specific GC-content and folding into a predefined secondary structure.

For the sake of simplicity, we choose to base this proof-of-concept im-

plementation on a simplified free-energy function Eð�Þ, which only con-

siders the contributions of stacked canonical base pairs. We show how a

modification of the dynamic programming scheme used in RNAmutants

allows for the sampling of good and diverse design candidates, in linear

time and space complexities.

2.1 Definitions

A targeted secondary structure S� of length n is given as a non-crossing

arc-annotated sequence, where S�i stands for the base-pairing position of

position i in S� if any (and, reciprocally, S�S�
i
¼ i), or �1 otherwise. In

addition, let us denote by #gcðsÞ the number of occurrences of G and C in

an RNA sequence s.

2.1.1 Simplified energy model We use a simplified free-energy

model, which only includes additive contributions from stacking base

pairs. Using individual values from the Turner 2004 model [retrieved

from the NNDB (Turner and Mathews, 2010)]. Given a candidate se-

quence s for a secondary structure S, the free energy of any sequence s of

length jSj is given by

Eðs,SÞ ¼
X

ði, jÞ!ði0 , j0 Þ2S
stacking pairs

E�sisj!si0 sj0

where E�ab!a0b0 is set to 0 if ab ¼ ; (no base pair to stack onto),

the tabulated free energy of stacking pairs ðabÞ=ða0b0Þ in the Turner

model if available, or � 2 ½0,1� for non–Watson-Crick/Wobble pairs

(i.e. not in fGU,UG,CG,GC,AU or UAg). This latter parameter

allows one to choose whether to simply penalize invalid base pairs

(�40), or forbid them altogether (� ¼ þ1). Position-specific sequence

constraints can also be enforced at this level (details omitted for the sake

of clarity) by assigning to E a þ1 penalty (leading to a null probability)

in the presence of a base incompatible with a user-specified constraint

mask.

2.1.2 GC-weighted Boltzmann ensemble and distribution To

counterbalance the documented tendency of sampling methods to gener-

ate GC-rich sequences (Levin et al., 2012), we introduce a parameter

x 2 R
þ, whose value will influence the GC-content of generated se-

quences. For any secondary structure S, the GC-weighted Boltzmann

factor of a sequence s is B½x�S ðsÞ such that

B
½x�
S ðsÞ ¼ e

�Eðs,SÞ
RT � x#gcðsÞ ð1Þ

where R is the Boltzmann constant and T the temperature in Kelvin.

Summing the GC-weighted Boltzmann factor over all possible se-

quences of a given length jSj, one obtains the GC-weighted partition

function Z½x�S , from which one defines the GC-weighted Boltzmann prob-

ability P
½x�
S ðsÞ of each sequence s, respectively, such that

Z
½x�
S ¼

X
jsj¼n

B
½x�
S ðsÞ and P

½x�
S ðsÞ ¼

B
½x�
S ðsÞ

Z
½x�
S

: ð2Þ

2.2 Linear-time stochastic sampling algorithm for the

GC-weighted Boltzmann ensemble

Let us now describe a linear-time algorithm to sample sequences at

random in the GC-weighted Boltzmann distribution. This algorithm fol-

lows the general principles of the recursive approach to random gener-

ation (Wilf, 1977), pioneered in the context of RNA by the SFold

algorithm (Ding and Lawrence, 2003). The algorithm starts by precom-

puting the partition function restricted to each substructure occurring in

the target structure, and then performs a series of recursive stochastic

backtracks, using precomputed values to decide on the probability of

each alternative.

2.2.1 Precomputing the GC-weighted partition function Firstly, a

dynamic programming algorithm computes Z½a, b�N,S the GC-weighted par-

tition function (the dependency in x is omitted here for the sake of clarity)

for a structure S, assuming its (previously chosen) flanking nucleotides

are a and b, respectively, either forming a closing base pair (N ¼ T) or not

(N ¼ F). Remark that the empty structure only supports the empty se-

quence, having energy 0, so one has

Z
½a, b�
T, " ¼ Z

½a, b�
F, " ¼ e�0=RT ¼ 1: ð3Þ

The general recursion scheme consists in three different terms, depend-

ing on the first position in S:

Case 1. First position is unpaired (S ¼ �S0):

Z
½a, b�
T, �S0 ¼ Z

½a, b�
F, �S0 :¼

X
a02B

x#gcða0 Þ � Z
½a0 , b�
F,S0 ð4Þ

Case 2. First position is paired with last position [S ¼ ðS0Þ],

stacking onto a preexisting exterior pair (N ¼ T):

Z
½a, b�
T, ðS0 Þ :¼

X
a0 , b02B2

x#gcða0 :b0 Þ � e
�E

�

ab!a0b0

RT � Z
½a0 , b0 �
T,S0 ð5Þ

Case 3. First position is involved in a base pair [S ¼ ðS0ÞS00],

which is not stacking onto an exterior base pair (N ¼ F or

S00 6¼ "):

Z
½a, b�
N, ðS0 ÞS00 :¼

X
a0 , b02B2

x#gcða0 :b0 Þ � e
�E

�

;!a0b0

RT � Z
½a0 , b0 �
T,S0 � Z

½b0 , b�
F,S00 ð6Þ

Remark that the number of combinations of a, b and N re-

mains bounded by a constant, thus the complexity of

computing Z½a, b�N,S mainly depends on the values taken by S on

subsequent recursive calls. Such values are entirely determined by

S at any given step of the recursion, and their dependency can be

summarized in a tree having �ðjSjÞ. Therefore, the computation

of Z½a, b�N,S� requires �ðnÞ time and space using dynamic

programming.

i309

Constrained RNA design using a weighted sampling algorithm



2.2.2 Stochastic backtrack Once the GC-weighted partition func-

tions have been computed and memorized, a stochastic backtrack starts

from the target structure S� with any exterior bases ½a, b� and no nesting

base pair, corresponding to a call SBx ;,;,F,S
�ð Þ to Algorithm 1. At

each step, a suitable assignment for one or several positions is chosen,

using probabilities derived from the precomputation, as illustrated by

Figure 1. One or several recursive calls over the appropriate substructures

are then performed. On each recursive call, the algorithm assigns at least

1 nt to a previously unassigned position. Moreover, the number of exe-

cutions of each loop is bounded by a constant. Consequently, the com-

plexity of Algorithm 1 is in �ðnÞ time and space.

2.2.3 Self-adaptive sampling strategy Let us remind that our goal is

to produce a set of sequences whose GC-content matches a prescribed

value gc. An absolute tolerance �may be allowed, so that the GC-content

of any valid sequence must fall in ½gc� �, gcþ ��. Because sequences of

arbitrary GC-content may be generated by Algorithm 1, we use a rejec-

tion-based approach (Bodini and Ponty, 2010), previously adapted by the

authors in a similar context (Waldispühl and Ponty, 2011). This gives an

algorithm that generates k valid sequences in expected time �ðk � n
ffiffiffi
n
p
Þ

when � ¼ 0 [or �ðk � nÞ when � is a positive constant] and memory in

�ðk � nÞ. A complete analysis of the rejection process can be found in an

earlier contribution (Waldispühl and Ponty, 2011), but let us briefly out-

line the approach, and the main arguments used to establish its

complexity.

As summarized by Figure 2, our adaptive sampling approach simply

generates sets of sequences by repeatedly running the stochastic backtrack

algorithm. The average GC-content induced by the current value of the x

parameter can then be adequately estimated from the sample, or com-

puted exactly using recent algorithmic advances (Ponty and Saule, 2011).

The set of sequences is filtered to only retain valid sequences. The value of

the parameter x is then adapted to match the average GC-content

(induced by the value of x) with the targeted one. It can be shown that

the expected GC-content is a continuous and strictly increasing mono-

tonic function of x, whose limits are 0 when x¼ 0 and n when x! þ1.

Consequently, for any targeted GC-content gc 2 ½0%, 100%�, there exists

a unique value xgc such that generated sequences feature, on the average,

the right GC-content. In practice, a simple binary search (Waldispühl and

Ponty, 2011) is used in our implementation, and typically converges after

few iterations. An optimal value for x can also be derived analytically

using interpolation after �ðnÞ evaluations of Z½a, b�i, j for different candidate

values of x, as previously noted (Waldispühl and Ponty, 2011), and could

be implemented using the Fast-Fourier Transform (Senter et al., 2012).

2.2.4 Overall complexity It was previously established (Waldispühl

and Ponty, 2011) that, for each value of x, there exists constants �x and

�x such that the distribution of GC-content asymptotically converges

toward a normal law having expectation in �x � n � ð1þ oð1ÞÞ and stand-

ard deviation in �x �
ffiffiffi
n
p
� ð1þ oð1ÞÞ. Furthermore, the distribution of

GC-content is highly concentrated, as asserted by its limited standard

deviation; therefore, the expected number of attempts required to gener-

ate a valid sequence when � ¼ 0 [respectively � 2 �ð1=
ffiffiffi
n
p
Þ] grows like

�ð
ffiffiffi
n
p
Þ [respectively �ð1Þ, i.e. a constant], leading to the announced com-

plexities. Formally, because a suitable weight x must be recomputed for

each targeted structure and GC-content, then the number M of iterations

Fig. 1. Stochastic backtrack procedure for a given substructure S. Either the first position is left unpaired (top), a base pair is formed between the two

extremities, stacking onto an exterior base pair (middle) or paired without creating a stacking, defining two regions on which subsequent recursive calls

are needed (bottom). For the empty structure (omitted here), the empty sequence is returned. Positions indicated in red are assigned at the current stage

of the backtrack
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required for the converge can be accounted for explicitly, leading to time

complexities in �ððMþ
ffiffiffi
n
p
Þ � k � nÞ (if � ¼ 0, i.e. without any tolerance)

and �ðM � k � nÞ (if �40).

2.3 Postprocessing unpaired regions: a local/global

(glocal) hybrid approach

Owing to our simplified energy model, unpaired regions are not subject to

design constraints other than the GC-content, leading to modest prob-

abilities for refolded design candidates to match the targeted structure. To

improve these performances and test the complementarity of our global

sampling approach with previous contributions based on local search, we

used the RNAinverse software to redesign unpaired regions. We speci-

fied a constraint mask to prevent stacking base pairs from being modified

and, whenever necessary, reestablished their content a posteriori, as

RNAinverse has been witnessed to take some liberties with constraint

masks. As shown in the Supplementary Material, this postprocessing

does not drastically alter the GC-content, so the glocal approach reason-

ably addresses the constrained GC-content design problem.

3 RESULTS

3.1 Implementation

Our software, IncaRNAtion, was implemented in Python
2.7. We used RNAinverse from the Vienna Package 2.0

(Hofacker et al., 1994). All-time benchmarks were run on a

single AMD Opteron(tm) 6278 Processor at 2.4GHz with

cache of 512 kb. The penalty �, associated with invalid base

pairs, was set to 15.
Figure 3 presents the average times spent running

IncaRNAtionþRNAinverse to generate one sequence with

the required GC-content. As expected, the time grows linearly in

function of the length of the structures for IncaRNAtion.

3.2 Dataset

To evaluate the quality of our method, we used secondary struc-

tures from the RNA STRAND database (Andronescu et al.,

2008). Those are known secondary structures from a variety of

organisms. We considered a subset of 50 structures selected by

Levin et al. (2012), whose length ranges between 20 and 100nt.

To ease the visualization of results, we clustered together struc-

tures having similar length, stacks density and proportion of free

nucleotides in loops, leading to distributions of structures shown

in Figure 4.

3.3 Design

We ran our method as follows. First, we sampled approximately

100 sequences per structure. Then, we use these sequences as seed

in RNAinverse. Finally, we computed the Minimal Free-

Energy (MFE) with the RNAfold program from the Vienna

Package 2.0 (Hofacker et al., 1994).
Before starting our benchmark, we asses the need for our

methods and performed an analysis of the GC-content drift

achieved with state-of-the-art software. Using our dataset of 50

structures, we generated 100 samples per structure with classical

softwares that do not control the GC-content. Namely,

RNAinverse, INFO-RNA, NUPACK:Design and Frnaken-
stein. We show the distribution of the GC-content of the se-

quences produced with these softwares in Figure 5.
As anticipated, we observe a clear bias toward high GC-con-

tents and a complete absence of sequence with530% of GC.

This striking result motivates a need for methods that enable to

explicitly control the GC-content and more precisely that enable

to design sequences with low GC-content (i.e. �30%). To pro-

vide a complete overview of the performance of IncaRNAtion,
we provide additional statistics for these softwares in the

Supplementary Material.

3.4 Success rate

We started by estimating the success rate of our methodology

and computed the percentage of sequences with a MFE structure

identical to the target secondary structure. Figure 6 shows our

results. We clearly see that before the postprocessing step (i.e.

RNAinverse) the sequences sampled by IncaRNAtion have a

Fig. 2. General workflow of our adaptive sampling algorithm

(Waldispühl and Ponty, 2011)

Fig. 3. Average time in seconds to generate one sequence for

IncaRNAtion and RNAinverse
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low success rate (first row). As mentioned earlier, this could be

explained by the fact that no selection criterion has been at this

stage applied to unpaired nucleotides. Remarkably, after the

local search optimization (with RNAinverse) of nucleotides in

unpaired regions (second row), we observe a dramatic improve-

ment of our success rate. As expected, we observed that length is,

in general, not a good predictor for the hardness of designing a

structure. Instead, a high number of free nucleotides in the struc-

ture seems to be a good measure of the hardness of its design.

Similarly, these data also show that designing sequences with low

GC-content is challenging for all types of targets.
We investigated further the quality of the sequences generated

by IncaRNAtion. In particular, we estimated the capacity of

our methods to generate ‘good’ sequences with desired folding

capabilities regardless of the property to fold exactly into the

target structure. In Figure 7, we show the ratio of well-predicted

base pairs in the MFE structure of our sampled sequences. As

above, we can observe that, in all cases, the sequences that are

the hardest to design are those with an extremely low GC-con-

tent. Indeed, the energetic contribution of the base pairs to the

stability of the structure is weaker. Interestingly, we also notice

that the most accurate sequences yield a GC-content of

70� 10%. Overall, we observe that all our samples have good

folding properties, and that there is a correlation between the

‘precision’ of the samples and the hardness of the design.

We noticed a highly decreased structural sensitivity for the

sequences with 15% free nucleotides in the loops. However,

one must remain careful interpreting this observation, as the

structures within this class all originate from the PDB, and are

relatively small (for the complete STRAND DB, the average

length is 	 526 nt, compared with 	 38 nt around 15% unpaired

bases).

3.5 Properties of designed sequences

In this section, we further analyze the generated sequences with a

MFE structure that folds into the target structure.
A desirable feature in sequence design is to produce samples

with a high sequence diversity and stable secondary structure.

Therefore, in the following, we will use two useful measures,

which are the sequence identity of the samples, and the

Boltzmann probability of the target structure in the low-energy

ensemble.
The sequence identity is defined over a set S of aligned se-

quences (in our case, all sequences have the same length and can

be trivially aligned) as follows:

X
s1, s22S
S

1

js1j

X
i

s1
i
�s2

i

1

0
BB@

1
CCASeq:identity ð7Þ

where si is the nucleotide at position i in sequence s. Intuitively,

this measure captures the diversity of sequences generated by a

given method. Next, the Boltzmann frequency is defined for a

structure S and a sequence s as follows:

e
�Eðs,SÞ

RT =ZsFrequency ð8Þ

where Zs is the partition function of sequence s. This measure

tells us how dominant is a structure S in the Boltzmann ensemble

of structures over a sequence s. A high value implies a stable

structure. We compute this frequency with RNAfold from the

Vienna Package 2.0 (Hofacker et al., 1994).
Figure 8 shows the number of solutions generated (i.e. se-

quences with a MFE structure identical to the target structure).

Here, we note that low GC-contents have a strong (negative)

influence on the number of sequences generated, and in parallel

also affect negatively the sequence diversity. This observation

emphasizes the difficulty to design sequences with low GC-con-

tent. Once again, large percentages of free nucleotides increase

the difficulty of the task.
The thermodynamical stability of the target structure on the

designed sequence is another important property when estimat-

ing the performance of RNA design algorithms. We estimate the

quality of our solutions in Figure 9. First, we observe a slow

Fig. 5. Overall GC-content distribution for sequences designed using

RNAinverse, INFO-RNA, NUPACK:Design and Frnakenstein

folding in the desired structure

Fig. 4. Number of secondary structures per bin, according to our three clustering criteria
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Fig. 8. Number of solutions generated with IncaRNAtionþRNAinverse on the first row and their average sequence identity on the second

Fig. 6. Success rate IncaRNAtion before and after RNAinverse postprocessing. The first row shows the percentage of sampled sequences folding into

the target when using only IncaRNAtion. The second shows after processing previous results with RNAinverse

Fig. 7. Structural sensitivity (i.e. number of well predicted base pairs/number of base pairs in target) of the sampled sequences MFE

Fig. 9. Thermodynamical stability of the target structure. The curves report the average Boltzmann probability of the target structure (which is also the

MFE structure) at various GC-contents with respect to the length of the target (left), density of stacked base pairs (centre) and number of unpaired

nucleotides in loops (right)
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decline of the structure stability (i.e. the frequency) when the

target structure increases in size. Yet, for an average GC-content,

the frequency stays410% even at size of 100 nt. Next, we note

that for the most difficult target structures (i.e. the longer ones or

those with high percentages of unpaired nucleotides in loops) the

GC-content has a limited (almost null) influence on the stability

of the target structure on the designed sequence. By contrast, this

is less true for easiest and small structures with only few free

nucleotides in internal loops.

3.6 Global sampling versus Local search versus Glocal

approach

To conclude this study, we estimate the impact of the design

methodology on the performances. More precisely, we aim to de-

termine the merits of a global sampling approach (IncaRNA
tion), compared with a glocal procedure (IncaRNAtionþ
RNAinverse) and a local search methodology (RNA-SSD). To

the best of our knowledge, RNA-SSD, beside IncaRNAtion, is
the only software that implements an explicit control of the GC-

content.
Here, we compare the running time and the sequence diversity

of the solutions produced by each software. In addition, we focus

on the design of sequences with low GC-contents (�30%) as they

are almost impossible to design with classical software (Figure 5).
Figure 3 shows the running time of each software. These data

demonstrate the efficiency and scalability of our techniques. In

particular, this figure suggests that our strategy has the potential

to be applied efficiently for designing sequences on long (and

difficult) target secondary structures at low GC-content—a

task that could have not been achieved before due time

requirements.
Next, we show in Figure 10 the average sequence identity

achieved by the various methods. Our results show that at ex-

tremely low GC-contents (i.e. 10%), IncaRNAtion slightly out-

performs RNA-SSD, while this advantage becomes less evident

when the GC-content increases. Our experiments on higher

GC-contents (i.e. �50%) showed that our glocal strategy and

the local search approach perform similarly. Similarly, we did

not find any clear evidence that a global, local or glocal approach

outperforms others when we compare at the thermodynamical

stability of the target structure (data not shown).

4 CONCLUSION

In this article, we described a novel algorithm, IncaRNAtion,
for the RNA secondary structure design problem, i.e. the design

of an RNA sequence adopting a predefined secondary structure

as its minimal free-energy fold. Implementing a global sampling

approach, it optimizes affinity toward the target secondary struc-

ture, while granting the user full control over the GC-content of

the resulting sequences. This extended control does not necessar-

ily induce additional computational demands, and we showed

the linear complexity of both the preprocessing stage and the

generation of candidate sequences for the design, allowing for

the design of larger and more complex secondary structures in a

matter of minutes on a single processor (e.g. 	28min for 100

candidate sequences for a 	1500nt 16S rRNA). We evaluated

the method on a benchmark composed of target secondary struc-

tures extracted from the RNA STRAND database. We observed

good overall success rate, with the notable exception of very low

targeted GC-content (10%), and a good to excellent entropy

within designed candidates. Finally, we implemented a hybrid

approach, using the RNAinverse software as a postprocessing

step for unpaired regions. This approach greatly increased the

success rate of the method, allowing for the design of highly

diverse candidates for almost all of the structures in our bench-

mark, while largely preserving the targeted GC-content.

In the future, we would like to complement this study by fur-

ther investigating the potential of hybrid local/global—or

glocal—approaches. A global sampling approach would capture

the positive aspects of design, optimizing affinity toward a given

structure while allowing the specification of expressive systems of

constraints. Designed sequences would serve as a seed for a

Fig. 10. Sequence identity of IncaRNAtion and RNAinverse for 10 and 30% of GC
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restricted local approach which, by breaking unwanted symme-
tries, would perform the negative part of the design, while ideally
maintaining obedience to the constraints. Another perspective of
this work is the incorporation of the full Turner energy model,

which should in principle yield better designs for unpaired
regions.
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