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1  |  INTRODUC TION

Coronavirus (CoV) is currently one of the important viruses that en-
danger human health. It transmits through the respiratory tract of 
mammals, and causes mild-to-severe respiratory infections. In the 
past two decades, two highly pathogenic coronaviruses, including 
Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and 
Middle East Respiratory Syndrome coronavirus (MERS-CoV) have 
caused global epidemics of excessive morbidity and mortality in 

human community.1,2 For example: In 2002, SARS-CoV occurred 
in Guangdong, China, and spread to Southeast Asia and the world. 
About 8098 people were infected worldwide, of which 774 peo-
ple died, which caused direct or indirect global economic losses of 
US $ 3 to 100 billion.3,4 According to data from the World Health 
Organization (WHO), in addition to SARS-CoV, MERS-CoV began in 
Saudi Arabia in 2012. As of November 2019, it caused 2494 infec-
tions, including 858 deaths.5 In December 2019, a third pathogenic 
human coronavirus (HCoV) was discovered in Wuhan, China, which 
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Abstract
Amid the COVID-19 crisis, we put sizeable efforts to collect a high number of experi-
mentally validated drug–virus association entries from literature by text mining and 
built a human drug–virus association database. To the best of our knowledge, it is the 
largest publicly available drug–virus database so far. Next, we develop a novel weight 
regularization matrix factorization approach, termed WRMF, for in silico drug repur-
posing by integrating three networks: the known drug–virus association network, the 
drug–drug chemical structure similarity network, and the virus–virus genomic se-
quencing similarity network. Specifically, WRMF adds a weight to each training sam-
ple for reducing the influence of negative samples (i.e. the drug–virus association is 
unassociated). A comparison on the curated drug–virus database shows that WRMF 
performs better than a few state-of-the-art methods. In addition, we selected the 
other two different public datasets (i.e. Cdataset and HMDD V2.0) to assess WRMF's 
performance. The case study also demonstrated the accuracy and reliability of WRMF 
to infer potential drugs for the novel virus. In summary, we offer a useful tool including 
a novel drug–virus association database and a powerful method WRMF to repurpose 
potential drugs for new viruses.
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is known as a new enveloped RNA betacoronavirus2 named SARS-
CoV-2.6,7 On February 11, 2020, the World Health Organization 
named the new coronavirus-infected pneumonia “COVID-19”. As of 
July 30, 2020, there were more than 16.85 million COVID-19 infec-
tions worldwide and more than 660,000 deaths. However, scientists 
still cannot find a special drug that could deal with all variants of 
SARS-CoV-2. In addition, scientific research teams in several coun-
tries are developing vaccines for the prevention and treatment of 
COVID-19, but the incidences of infection are still rising. Therefore, 
there is an urgent need to find novel treatment plans for COVID-19.8,9

The development of a new drug for a disease (e.g. COVID-19) 
is a long and expensive process. Therefore, drug repositioning is 
an effective drug discovery strategy, which can greatly reduce the 
time and cost compared with de novo drug discovery.10–12 Drug 
repositioning has been successfully applied in diseases like can-
cers.13,14 However, how to prioritize potential drugs for specific 
diseases is still a bottleneck for drug repositioning. Research teams 
in various countries are constantly striving to find existing drugs to 
treat COVID-19, For example, Draghici S et al. analysed the changes 
in the gene expression, pathways and putative mechanisms induced 
by SARS-CoV2 and found that methylprednisolone (MP) could im-
prove outcomes in severe cases of COVID-19.15 But there are few 
drugs effective for COVID-19 so far.16 Therefore, there is an ur-
gent need for novel computational methods to repurpose drugs for 
COVID-19.

The computational drug repositioning method provides new 
testable hypotheses for repositioning old drugs, which can predict 
potential drug–target interactions to direct the experimental veri-
fication and improve the drug discovery efficiency. In recent years, 
many computational association prediction methods have been 
developed. For example, Iorio et al. proposed a transcriptional-
network based approach, which applied the network theory and uti-
lized similarity in gene expression profiles following drug treatment 
for drug repositioning.17 Sirota et al. developed a systematic com-
putational approach based on compendia of public gene expression 
data to predict novel therapeutic indications.18 Peyvandipour et al. 
proposed a systems biology approach by considering the different 
roles of genes and their dependencies at the system level.19 Saberian 
et al. designed a novel machine learning-based drug repositioning al-
gorithm based on the theory that the distances between disease and 
its associated FDA-approved drugs are smaller than that of other 
disease-drug pairs.20 Martínez et al. presented a new network-based 
methodology (called DrugNet) by constructing a heterogeneous net-
work including drugs, proteins, and diseases.21 Yang et al. proposed 
a bounded nuclear norm regularization (BNNR) method to complete 
the drug–disease matrix for the prediction of drug–disease associa-
tions.22 Luo et al. proposed a novel network-based method, called 
MBiRW, which uses some comprehensive similarity measures and 
Bi-Random walk (BiRW) algorithm.23 Zeng et al. integrated ten net-
works (i.e. one drug–disease, one drug-side-effect, one drug–target, 
and seven drug–drug networks) and proposed a deep-learning 
based method (named deepDR), consisting of a multi-modal deep 

auto-encoder and a collective variational auto-encoder.24 Li et al. 
developed a new neural induction matrix completion method of the 
graph convolutional network (termed NIMCGCN).25 NIMCGCN was 
first utilized to predict miRNA–disease associations and was proven 
to have great potential in drug repositioning.

The above-mentioned computational prediction approaches 
are mainly classified as network-based approaches and machine 
learning-based approaches. As the most typical machine learning-
based method, matrix factorization represents drugs and diseases in 
a shared latent space and reconstructs the drug–disease association 
using their latent vectors. Recently, a few variants of matrix factor-
ization have also been widely and successfully used in bioinformatics 
researches,26 such as prediction of drug–drug interaction.27,28 pre-
dicting drug side effects,29 predicting drug–target interactions,30 
identifying drug–disease associations,31,32 anticancer drug response 
prediction in cell lines,33 potential miRNA-disease association pre-
diction,34–36 and imputing the dropout entries of a given single-cell 
RNA-sequencing expression matrix.37 However, drug repositioning 
against human coronavirus like COVID-19 prediction with limited 
information is challenging and meaningful.

In this study, we developed a new weight regularization ma-
trix factorization method (WRMF) for drug repositioning against 
COVID-19 based on similarity constraints, which mainly includes the 
following four steps: (i) collect experimentally verified drug–virus 
associations from the literature, (ii) calculate the chemical structure 
similarity of drugs and the genome sequence similarity of viruses, 
(iii) build heterogeneous networks based on known drug–virus as-
sociations, drug–drug similarity and virus–virus similarity, and (iv) 
use the similarity constrained weight regularization matrix factor-
ization method to predict drugs most likely to be effective on the 
virus. Via comprehensive evaluation on 5-fold cross-validation (CV), 
local leave-one-out-cross-validation (LOOCV), and two additional 
independent datasets, we found that WRMF achieved higher per-
formance in comparison with several state-of-the-art methods. To 
fully prove the reliability of WRMF, we further conducted a case 
study about MERS. The experimental results showed that six of the 
top ten WRMF-predicted anti-MERS drugs had been confirmed. We 
expect that WRMF-predicted anti-COVID-19 drug candidates might 
have a therapeutic effect. In summary, WRMF provides a powerful 
model to predict new drug–virus associations for accelerating drug 
repurposing.

2  |  MATERIAL S AND METHODS

We give the main idea of WRMF in Figure 1, which mainly includes 
the following four steps: (i) collect data by searching literature to 
construct a data set; (ii) calculate (the similarity between viruses and 
the similarity between drugs; (iii) build a heterogeneous network 
based on existing data; and (iv) use the similarity constrained weight 
regularization matrix factorization method on heterogeneous net-
works to obtain potential viral therapeutics.
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2.1  |  Human drug–virus association network

Since the databases of drug–virus associations are urgently de-
manded in biomedical researches amid the COVID-19 crisis, Mongia 
et al. curated a comprehensive Drug Virus Association database, 
called DVA, which includes 38 viral species and 119 drugs.38 
Meanwhile, we put sizeable efforts to collect a high number of ex-
perimentally validated drug–virus association entries from litera-
ture by text mining and built an experimentally supported human 
drug–virus association dataset consisting of 34 human infectious 
viruses, 218 therapeutic drugs, and 451 known human drug–virus 
associations (i.e. the drug is observed to have a known therapeutic 
role in the virus). Compared with DVA, the viruses we collected are 
mainly human-infected coronaviruses and RNA viruses. In addition, 
we included 218 antiviral and broad-spectrum drugs, which contains 
nearly 100 more drugs than DVA. As far as we know, our dataset is 
the largest in the sense that it contains the largest number of drugs 
and drug–virus associations.

We define the adjacency matrix of the drug–virus association 
network as the variable Y, that is, if the drug d(i) is observed to have a 
therapeutic effect on the virus v(j), the entity Y(i, j)is equal to 1; oth-
erwise, it is 0. The two variables nd and nv represent the number of 
drugs and viruses, respectively. In this study, we integrate the drug–
virus association network, drug–drug similarity network, virus–virus 
similarity network into a heterogeneous network. For the drug–drug 
similarity network, we measure the similarity of drug pairs by calcu-
lating the chemical structure similarity. For the virus–virus similarity 

network, we evaluate the similarity of virus pairs by calculating the 
gene sequences similarity. Therefore, the adjacency matrix of the 
drug–virus heterogeneous network can be defined as:

The sub-matrix Y represents the collected drug–virus associa-
tion network, YT is the transposition of Y, Sd, and Sv, respectively, 
represent the adjacency matrix of drug–drug similarity network and 
virus–virus similarity network.

2.2  |  Chemical structure similarity of drugs

There are many algorithms for calculating drug similarity, among 
which classic algorithms usually include molecular similarity.39 In this 
article, we use the Tanimoto coefficient to express the similarity be-
tween drugs. The chemical structure information (SMILES format) 
was downloaded from the DrugBank database, and the MACCS fin-
gerprint of each drug was calculated using Open Babel v2.3.1. If the 
MACCS fragment bit strings of two drug molecules are set with bits 
a and b, then c is set in the fingerprints of the two drugs, and the 
Tanimoto coefficient (T) of a drug pair is defined as:

G =

⎡
⎢⎢⎣
Sd YT

Y Sv

⎤
⎥⎥⎦

(1)T =
c

a + b − c

F I G U R E  1  The workflow of WRMF
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T is widely used in various drug development and relocation pro-
cesses, and its value ranges from zero (no common bits) to one (all 
bits are the same).

2.3  |  Genome sequencing similarity of viruses

With the development of gene sequencing technology, our understand-
ing of any virus often starts with its sequence. MAFFT is a multiple se-
quence alignment program for Unix-like operating systems.40 It offers a 
range of multiple alignment methods, L-INS-i (accurate; recommended for 
<200 sequences), FFT-NS-2 (fast; recommended for >2000 sequences), 
etc. In the research of this paper, we use MAFFT to calculate the se-
quence similarity between viruses to express the similarity of viruses.

2.4  |  WRMF

The drug repositioning against Human Coronavirus Like COVID-19 
problem can be modelled as a recommendation system that recom-
mends novel indications by filling out the unknown entries in the 
drug–virus association matrix, which is known as matrix completion. 
Matrix completion algorithms have been widely and successfully 
used in bioinformatics research, such as uncovering lncRNA–disease 
associations,41 predicting miRNA-disease associations,42–44 identify-
ing drug–disease associations,45–47 and selecting anti-viral drugs for 
COVID-19.48 In our study, there are 451 confirmed human drug–virus 
associations in the database we collected, which indicates that the 
known drug–virus association matrix is sparse. Based on the premise 
that similar drugs tend to treat similar viruses, the hidden factors 
that control the drug–virus associations are highly correlated, which 
results in an also highly correlated data matrix, and thus the number 
of underlying independent factors is much smaller than the existing 
number of drugs or viruses. In other words, the underlying latent 
factors determining drug–virus associations are highly correlated, 
and the drug–virus matrix to be completed is low-rank. In fact, many 
studies used matrix completion methods for similar bioinformatics 
by constructing low-rank matrix approximations consistent with 
known association matrix.22,41,47

Generally, when the matrix is of low rank, the matrix factoriza-
tion minimization problem can be expressed as:

where ‖⋅‖F represents the Frobenius norm, �w and �h are regularization 
parameters.

In the drug–virus association database, there are many unob-
served entries, and we do not know negative samples (i.e. the drug–
virus pair is unassociated). We define a problem with only positive 

feedback as a type of one-class problem because there are only 
positive samples.49,50 For one-class problems, we proposed a novel 
weight regularization matrix factorization approach, which adds 
weight R to each training sample for reducing the influence of un-
known samples. R represents the confidence of the drug's prefer-
ence for the disease. In addition, the traditional matrix factorization 
does not take into account the similarity between viruses and the 
similarity between drugs. To solve the aforementioned problems, we 
propose a weight regularized matrix factorization model (WRMF), 
formalized as follows:

 

Among them, the hyperparameter � controls the contribution of 
positive samples to model training.�w,�h, �1,and �2 are the regulariza-
tion parameters.

Since the WRMF model is a fitting of matrix Y, directly using 
SGD optimization will face the problems of overfitting and train-
ing efficiency.22 Therefore, we use the gradient descent algo-
rithm to learn model parameters. The specific optimization steps are 
followed as:

 

According to formula (5) and formula (6), iteratively update W 
and H until the local minimum of the objective function. Finally, the 
predicted drug–virus association matrix is Y∗ = WTH. The i th column 
of Y∗indicates the association score between virus vi and drugs. The 
larger the score, the more relevant it is.

2.5  |  Performance evaluation of WRMF

To evaluate the performance of the algorithm, we used the 5-fold 
CV and local LOOCV. In the 5-fold CV experiment, all known drug–
virus associations are randomly divided into five equal and disjoint 
parts. Then, leave a part as a test set in turn, and the remaining four 
parts are used as a training set to train the model. The process is 
repeated for five times until all samples are predicted once. In the 
local LOOCV experiment, for each virus vi, we remove all the known 
associations of the virus vi and build prediction model using the re-
maining data. We then calculate the relevance score of each node in 
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the test dataset, and rank these nodes according to their scores. The 
higher the grade of the positive sample, the better the performance 
is. If the score of the marked node is higher than a given threshold 
θ, it is regarded as a positive sample for successful identified. If the 
score of the unlabeled node is lower than θ, it is regarded as a nega-
tive sample correctly identified. By changing h, the true positive rate 
(TPR) and false positive rate (FPR) can be calculated to obtain the 
receiver operating characteristic (ROC) curve.22,51

 

TP and TN are the numbers indicating that the positive and 
negative samples are judged correct, respectively. FP and FN 
indicate the number of positive and negative samples that were 
judged wrong.

3  |  RESULTS

3.1  |  Comparison with the state-of-the-art 
methods

To evaluate the performance of our proposed WRMF, we compared 
WRMF with five state-of-the-art association prediction methods 
listed below.

•	 IMC (Chen et al.),42 a novel inductive matrix completion method, 
which is designed by Chen et al. for predicting miRNA-disease 
associations.

•	 CMF (Shen et al.),52 a collaborative matrix factorization method 
for identifying potential miRNA-disease associations. CMF is 

widely used in recommendation systems and has great potential 
in drug repositioning.

•	 MBiRW (Luo et al.),23 a novel network-based method, which uses 
comprehensive similarity measures and Bi-Random walk (BiRW) 
algorithm to predict drug–disease associations.

•	 BNNR (Yang et al.),22 a bounded nuclear norm regularization 
method to complete the drug–disease matrix for the prediction of 
drug–disease association.

•	 NIMCGCN (Li et al.), 25 a deep learning approach, which is a new 
neural induction matrix completion method of the graph con-
volutional network. It was first used to predict miRNA–disease 
associations.

In our proposed WRMF algorithm, the hyperparameter �, which 
controls the contribution of positive samples to model training, 
ranges from 1 to 10 and is set as 5. Meanwhile, there are four main 
parameters needed to be determined, including �w, �h, �1, and �2 . 
Based on the drug–virus association dataset we constructed, we 
performed cross-validation on the training dataset to tune the pa-
rameters, which are increasing from 0.1 to 1 with a step of 0.1, and 
the ones with the best AUC were selected. WRMF achieves the best 
performance when �w = �h = 0.3 and �1 = �2 = 0.1 (see Figure  S1). 
To ensure a fair comparison, the parameters in the compared ap-
proaches are set to the best values according obtained by using grid 
search (see Figure S2). Specifically, like WRMF, we chose the optimal 
parameters (IMC: �1 = �2 = 1; CMF: �d = �m = 0.5, �l = 0.1) in the 
same way. In BNNR algorithm, there are two parameters (i.e. � and �  ) 
needed to be determined, and we obtained the optimal parameters 
(� = 1, � = 10) by determined from {0.1, 1, 10, 100}. In MBiRW algo-
rithm, � is chosen from {0.1, 0.2, … , 1} and the optimal value of � is 
0.5. The parameters l and r are set as 2. For the NIMCGCN algorithm, 
we chose the optimal parameters � = 0.4 from {0.1, 0.2, … , 0.9}, 
l = 3, and t = 2.

(7)TPR =
TP

TP + FN

(8)FPR =
FP

TN + FP

F I G U R E  2  The performance of WRMF on our constructed drug–virus association dataset in comparison to the state-of-the-art prediction 
methods. (A) ROC curve and AUCs value based on 5-fold CV; (B) PR curve and AUPRs value based on 5-fold CV
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3.2  |  Performance of WRMF on our constructed 
drug–virus dataset in 5-fold CV

We applied WRMF, BNNR, CMF, IMC, MBiRW, and NIMCGCN into 
our constructed drug–virus association dataset, containing 451 
unique associations between 34 viruses and 218 drugs. We plotted 
the receiver operating characteristic (ROC) curves and calculated the 
area under the ROC curve in the 5-fold CV (see Figure 2A). As can 
be seen, AUCs of WRMF, BNNR, CMF, IMC, MBiRW, and NIMCGCN 
are 0.8691, 0.8443, 0.8331, 0.6513, 0.8369, and 0.750, respec-
tively, indicating that WRMF performed the best in predicting drug–
virus associations. Given the limited known drug–virus associations 
searched through the literature, we also used the precision-recall 
(PR) curve and the area under the PR curve (AUPR) to comprehen-
sively evaluate the performance (see Figure 2B). Generally, the PR 
curve shows similar changes to the ROC curve at different thresh-
olds, and if the AUPR is close to 1, the prediction performance will 
be better. As shown in Figure 2B, the AUPRs of WRMF, BNNR, CMF, 
IMC, MBiRW, and NIMCGCN are 0.4363, 0.4004, 0.4030, 0.1719, 
0.2634, and 0.3367. The AUPR obtained by WRMF is superior to 
those of the other methods, which again proves that WRMF per-
forms best in drug repurposing.

3.3  |  Performance of WRMF on our constructed 
drug–virus dataset in local LOOCV

Cross-validation probably leads to over-optimistic results because 
SARS-CoV-2 is a completely new virus. There was no connection 
between the drugs and COVID-19. We further performed the local 
LOOCV to further evaluate the performance of WRMF. As can be 
seen in Figure 3A, the AUC of WRMF is the highest of all methods. 

In terms of AUPR (see Figure  3B), we find that WRMF achieves 
the second-best performance (AUPR is 0.1776) in our constructed 
drug–virus dataset. The possible reason is that WRMF only uses 
drug chemical structure and virus genome sequence to calculate 
drug and virus similarity, while MBiRW considers the influence of 
known association information on the similarity measures and uti-
lizes comprehensive similarity measures. In summary, WRMF has a 
good performance in predicting the potential therapeutic drugs of 
a new virus.

3.4  |  Performance of WRMF on two different 
types of datasets

In addition to the drug–virus association dataset collected by our 
study, we selected more challenging scenarios to assess the gen-
eralizable ability of WRMF. We compared WRMF with other three 
matrix factorization & completion methods (i.e. BNNR, CMF and 
IMC) on two different public datasets, which are the drug–disease 
association dataset (Cdatase)23 and the human microRNA disease 
database (HMDD V2.0),53 respectively.

Cdataset is generated by combining DNdatasets21 and the gold 
standard dataset,54 which contains 663 drugs collected in DrugBank, 
409 diseases listed in the OMIM database, and 2352 known drug–
disease associations. Figure 4 illustrates the performance compari-
son from the Cdataset. WRMF achieves a higher performance over 
the other comparison methods in terms of both AUC and AUPR. 
Specifically, WRMF obtains an AUC value of 0.9270 in 5-fold CV, 
while BNNR, CMF, and IMC achieve AUCs of 0.9017, 0.9140, and 
0.6392, respectively. The PR curves illustrate that WRMF obtains 
the highest AUPR of 0.5059, while those of BNNR, CMF, and IMC 
are 0.4780, 0.4846, and 0.0420, respectively. Moreover, WRMF 

F I G U R E  3  The prediction performance of WRMF on our constructed drug–virus association dataset by comparing with the other five 
published methods. (A) ROC curve and AUCs value based on local LOOCV. (B) PR curve and AUPRs value based on local LOOCV
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identifies 827 associations in the top 1000 ranking, while BNNR, 
IMC, and CMF only predicted 815, 819, and 145 associations, 
respectively.

The effective identification of disease-related miRNAs plays 
an important role in the discovery of drug targets and the devel-
opment of new drugs. In our study, we also tested the prediction 
performance of WRMF on the most commonly used miRNA-disease 
database (HMDD V2.0), which has 10,381 experimentally veri-
fied miRNA–disease associations. For HMDD V2.0, as shown in 
Figure 5A, WRMF obtains an AUC value of 0.9128 in five-fold CV, 
in comparison to BNNR (0.8982), CMF (0.8899), and IMC (0.8363). 
As shown in Figure 5B, WRMF achieves an AUPR value of 0.4007, 
outperforming that of BNNR (0.3720), CMF (0.3807), and IMC 
(0.2507). Additionally, WRMF identified 656 associations in the top 
1000 rankings, while BNNR, IMC, and CMF only predicted 634, 648, 
and 547 associations, respectively (see Figure 5C). Figure 5 indicates 
that WRMF performs better than the other comparison methods. 
The results on two different types of datasets prove that WRMF is 
generally a good model in association prediction.

3.5  |  Case study: WRMF identified the potential 
drugs for COVID-19

COVID-19 is a brand-new (i.e. there is no interaction between 
COVID-19 and any drug) and zoonotic disease. To further vali-
date the prediction performance of WRMF, we conducted a case 
study to predict novel anti-COVID-19 drugs from a computational 
perspective. Specifically, we put the other known drug–virus as-
sociations to as the input of WRMF, then ranked the predicted 
scores of the potential anti-COVID-19 drugs. Following previous 
studies,45,55 we adopted Clini​calTr​ials.gov and the Comparative 
Toxicogenomics Database (CTD)56 as references to validate 
whether the predicted drugs for COVID-19 are efficacy or not. 
Table 1 shows that eight out of ten drugs (80% success rate) are 
validated by the reliable source, clinical trials, and previous litera-
tures. For example, ribavirin (ranked the second) was predicted by 
WRMF to have an interaction with COVID-19. Such a prediction can 
be supported by Clini​caltr​ials.gov and CTD. Nitazoxanide (ranked 
the fourth), a broad-spectrum anti-infective drug, can inhibit 

F I G U R E  4  The performance of WRMF and other three matrix factorization & completion methods for predicting drug–disease 
association on Cdataset in 5-fold CV. (A) ROC curves of the prediction results. (B) PR curves of the prediction results. (C) The number of 
confirmed drug–disease associations for various rank thresholds in top predictions of WRMF, BNNR, CMF, and IMC

F I G U R E  5  The performance of WRMF and other three matrix factorization & completion methods for predicting miRNA-disease 
association on HMDD V2.0 in 5-fold CV. (A) ROC curves of prediction results. (B) PR curves of predicting candidate miRNAs for diseases. (C) 
The number of confirmed miRNA-disease associations for various rank thresholds in top predictions of WRMF, BNNR, CMF, and IMC

http://clinicaltrials.gov
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COVID-19 at low micromolar concentrations (EC50  =  2.12 M).57 
In addition, chloroquine (ranked the third), camostat (ranked the 
fifth), favipiravir (ranked the sixth), and remdesivir (ranked the 
eighth) predicted by WRMF have been confirmed by both CTD 
and clinical trials for COVID-19 promising treatment. In summary, 
eight out of ten WRMF-predicted anti-COVID-19 drugs were veri-
fied by the evidences from Clini​calTr​ials.gov and CTD. It indicates 
that WRMF offers a useful tool to prioritize potential repurposed 
drugs for COVID-19.

Second, molecular docking research is a method that provides 
valuable information and can be used to design well-known ligands 
for specific active sites of large molecules. This is an economic 
and modern trend in drug discovery, where the technology-based 
ligand–protein interaction reveals the possibility of pre-synthesis. 
Hexachlorophene (ranked the first) and N4-Hydroxycytidine 

(ranked the seventh) were conducted blind docking both in online 
and offline modes. The Autodock 4.2 package (http://autod​ock.scrip​
ps.edu) was used for offline docking. The X-ray crystal structures of 
protein were retrieved from the RCSB protein database (www.rscb.
org). A macromolecule with PDB ID: 6LZG, which is a novel coro-
navirus spike receptor binding domain complexed with its receptor 
ACE2. All proteins and ligands were prepared using MGL Tools 1.5.6 
and Autodock Tool (ADT). ADT is used to calculate the binding free 
energy and inhibition constant of the optimal docking complex of 
the aforementioned proteins. The negative value of the combined 
free energy further indicates the stability of the complex (Table 2). 
Additionally, Figure 6 reveals that the two unproven drugs predicted 
by WRMF interact with multiple residues on its receptor ACE2 and 
once again shows that the drugs discovered by WRMF may have an 
inhibitory effect on COVID-19.

F I G U R E  6  The predicted ligand-
protein binding mode between the two 
unconfirmed potential anti-COVID-19 
drugs and the receptor ACE2 (angiotensin 
conversion Enzyme 2) using molecular 
docking

DrugBank IDs Candidate drugs Evidences

DB00756 Hexachlorophene NA

DB00811 Ribavirin Clini​calTr​ials.gov, CTD, PMID:32222463

DB00608 Chloroquine Clini​calTr​ials.gov,CTD, PMIDs:32070753, 32,173,110

DB00507 Nitazoxanide Clini​calTr​ials.gov, PMID:33361100

DB13729 Camostat Clini​calTr​ials.gov, CTD, PMID:33676899

DB12466 Favipiravir Clini​calTr​ials.gov, CTD, PMID:32346491

DB15660 N4-Hydroxycytidine NA

DB14761 Remdesivir Clini​calTr​ials.gov, CTD, PMIDs:32145386, 32,445,440

DB00218 Moxifloxacin Clini​calTr​ials.gov, PMID:32546446

DB06803 Niclosamide Clini​calTr​ials.gov, PMID:34664162

TA B L E  1  The Top 10 potential COVID-
19-associated drugs predicted by WRMF 
on our constructed drug–virus dataset

Rank Candidate drugs Free Energy of Binding (kcal/mol)

1 Hexachlorophene −5.4

2 Ribavirin −7.6

3 Chloroquine −6.4

4 Nitazoxanide −6.6

5 Camostat −7.8

6 Favipiravir −5.5

7 N4-Hydroxycytidine −5.6

8 Remdesivir −6.8

9 Moxifloxacin −6.5

10 Niclosamide −8.1

TA B L E  2  The binding affinity of top 10 
drugs predicted by WRMF to the Target 
PDB ID: 6LZG

http://clinicaltrials.gov
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Next, we listed the top 20 WRMF-predicted anti-COVID-19 
drugs based on our constructed drug–virus dataset (see Figure 7 and 
Table S1). As shown in Figure 7, some verified drug–virus associa-
tions are shown as light blue lines, while potential relationships are 
shown as magenta lines.

Finally, as the number of people infected with SARS-CoV-2 
continues to increase, the drug–virus database is also increasing. In 
order to assess the expansibility and practicality ability of WRMF, 
we also applied WRMF to the DVA dataset38 from the study of 
Mongia et al. by comparing it with different types of approaches, in-
cluding network-based prediction method: MBiRW,23 deep learning-
based method: NIMCGCN,25 and several matrix factorization-based 
algorithms: GRMF,58 GRMC,59 and WGRMF.58 The top-10 predicted 
anti-COVID-19 drugs by these algorithms have been listed in Table 3. 
We validated the top-10 candidate drugs of these algorithms by Clini​
caltr​ials.gov. The bold font in Table  3 indicates that the predicted 
candidate drug has been validated by Clini​calTr​ials.gov. As can be 

seen, our proposed method WRMF obtains seven Clini​calTr​ials.gov-
validated drugs, more than that of GRMF, GRMC, and WGRMF. The 
promising clinical results signify that the practicality of BGNN in 
predicting potentially drugs for COVID-19.

4  |  DISCUSSION

In this study, we proposed a novel in silico drug repositioning ap-
proach for uncovering the potential associations between viruses 
and drugs, termed WRMF. Apart from the known drug–virus as-
sociation network via literature mining, we integrated one drug–
drug chemical structure similarity network, and one virus–virus 
genome sequencing similarity network to construct a heterogene-
ous network, which contains a comprehensive view for screening 
anti-COVID-19 drug candidates. We have validated the prediction 
ability of WRMF in terms of five-fold CV, the local LOOCV, two ad-
ditional datasets validation, and a case study. The results show that 
our method achieves state-of-the-art performance for repurposing 
anti-COVID-19 drugs. In future studies, since WRMF is a scalable ap-
proach, collecting and incorporating more relevant association data 
from more databases and literatures might improve its power.

We acknowledged several potential limitations in the current 
study. Although we take sizeable efforts to collect experimentally 
reported drug–virus associations from published literature, data 
quality is unassured and the drug–virus association data may be in-
complete. We provided the top 20 WRMF-predicted anti-COVID-19 
drugs. State-of-the-art pharmaco-epidemiologic analysis on patient 
data (e.g. health insurance claims data) and in vitro or in in vivo mech-
anistic studies for the WRMF-predicted anti-COVID-19 candidates 
are required in the future.

In summary, our findings suggest that in silico drug repurposing 
could benefit from constraints on drug and viral similarity, matrix 
factorization, and drug–virus heterogeneous network. WRMF could 
help offer novel efficacious therapies for multiple complex diseases 
if broadly applied.

F I G U R E  7  Top 20 anti-COVID-19 drug candidates predicted by 
WRMF on our constructed drug–virus dataset

TA B L E  3  The top-10 anti-COVID-19 drugs predicted by WRMF and the other five algorithms based on the DVA dataset

MBiRW NIMCGCN GRMF GRMC WGRMF WRMF

Remdesivir Remdesivir Remdesivir Remdesivir Remdesivir Umifenovir

Ribavirin Ribavirin Ribavirin Umifenovir Umifenovir Ribavirin

Taribavirin Taribavirin Umifenovir Ribavirin Ribavirin Remdesivir

Sofosbuvir Boceprevir Taribavirin Taribavirin Sofosbuvir Taribavirin

Vidarabine Vidarabine Sofosbuvir Sofosbuvir Paritaprevir Ibuprofen

Umifenovir Tecovirimat Baloxavir marboxil Vidarabine Taribavirin Sofosbuvir

Ganciclovir Ganciclovir Geldanamycin Tenofovir alafenamide Boceprevir Chloroquine

Foscarnet Foscarnet Tenofovir alafenamide Nelfinavir Tenofovir alafenamide Baloxavir marboxil

Cidofovir Amprenavir Tecovirimat Amprenavir Favipiravir Peramivir

Didanosine Didanosine Peramivir Boceprevir Chloroquine Favipiravir

Note: The bold font indicates that the candidate drug has been validated by Clini​calTr​ials.gov.
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