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ABSTRACT

Autophagy can act either as a tumor suppressor or as a survival mechanism for established tumors. To
understand how autophagy plays this dual role in cancer, in vivo models are required. By using a highly
heterogeneous C. elegans germline tumor, we show that autophagy-related proteins are expressed in a
specific subset of tumor cells, neurons. Inhibition of autophagy impairs neuronal differentiation and
increases tumor cell number, resulting in a shorter life span of animals with tumors, while induction of
autophagy extends their life span by impairing tumor proliferation. Fasting of animals with fully
developed tumors leads to a doubling of their life span, which depends on modular changes in
transcription including switches in transcription factor networks and mitochondrial metabolism. Hence,
our results suggest that metabolic restructuring, cell-type specific regulation of autophagy and neuronal
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differentiation constitute central pathways preventing growth of heterogeneous tumors.

Introduction

Germ cell-derived tumors usually result from precocious differentia-
tion of cells in the gonads or the embryo." In C. elegans, induction of
germline tumors can be achieved by depletion of gld-1, a member of
the STAR KH-domain family of RNA binding proteins and a sup-
pressor of translation.” Depletion results in tumors containing fully
differentiated neurons, muscle and gut cells (Fig. 1A).> Their over-
proliferation leads to gonad swelling and invasion of other tissues by
germline tumor cells, resulting in premature death of animals.*
Mutations that generally extend C. elegans life span inhibit gld-I
tumor growth and prevent tumor-dependent life-span shortening,
although the mechanism is not fully understood.* Interestingly, met-
abolic adjustments including upregulation of autophagy have been
proposed for these long life-span mutants.”>”

Autophagy is thought to play a dual role in cancer. It can either
act as a tumor suppressor mechanism and prevent tumor initiation,
or act as an adaptive response to cancer survival-associated stress
and sustain cancer metabolism of established tumors.® Therefore, it
is essential to understand the context-specific functions of autophagy
in tumorigenesis. These will depend on tumor type, stage, and
genetic alterations, among others.” A recent study showed that intra-
tumor heterogeneity in the form of clonal diversity occurs over clini-
cally relevant timeframes and can lead to clinically important

phenotypic properties.” Hence, the heterogeneity of C. elegans
germline tumors suggests that they could constitute an appealing
model to study the role of autophagy in tumorigenesis.

Autophagy pathways have been shown to regulate key stages of C.
elegans development.'' During embryogenesis, autophagy selectively
eliminates paternal mitochondria'*** and P granules' and contrib-
utes to clearance of cell corpses.'® Autophagy also regulates cell
size,'” is essential for dauer development”'® and, together with apo-
ptosis, is required for proper embryonic development.' In the for-
mer examples, regulation of autophagy has been mostly studied at
the post-transcriptional level. Recently, the nuclear hormone receptor
NHR-62,% the transcription factor HLH-30/TFEB**' and the con-
served transcription factor PHA-4/FOXA>* have been identified as
transcriptional regulators of autophagy. In addition, pathways such
as XBP-1-mediated ER stress and ATFS-1-mediated mitochondrial
stress also regulate autophagy at the transcriptional level in C. ele-
gans.” However, transcriptional and post-transcriptional regulation
of autophagy during differentiation remains to be explored.

We reasoned that the heterogeneity of C. elegans germline
tumors, with cells expressing a variety of markers otherwise
only found in differentiated somatic cells, calls for studying the
role of autophagy in tumorigenesis. Thus, we analyzed expres-
sion of autophagy markers and performed a comprehensive
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Figure 1. Autophagy-related proteins are expressed in a subset of cells within germline tumors. (A) The C. elegans gonad as a model for tumorigenesis. Anatomy of an
adult hermaphrodite. One gonad arm (boxed area) is shown enlarged on the right for wild-type and gl/d-7 (mutant or RNAi) animal. GLD-1/quaking expression region is
indicated by the green dashed line. (B) GFP:LGG-1 expression in the gonad of wild-type and gld-1 RNAi-treated animals. Left panels: Representative gonad arms recon-
structed from maximum projections of gonad z-planes. Boxed areas are shown enlarged on the right. The region reconstructed is depicted in the boxed area of the
scheme in panel A. (C) GFP:LGG-1 expression in the gonad of a gld-7 RNAi-treated animal from d 1 to d 9 of adulthood. Maximum projections of gonad z-planes. Boxed
area in the scheme represents the region depicted in the z-projections of panels (C, D, and F) GFP::LGG-2 and BEC-1:GFP expression in the gonad of wild-type and gld-1
knockdown animals at d 3 of adulthood. Maximum projections of gonad z-planes. Scale bars: 20 uwm. (E) Quantification of GFP:LGG-1 fluorescence intensity in gld-1
tumors in DMSO (control) and Baf-treated animals (n = 10 each), ***, P < 0.001. (F) Representative maximum projections of GFPzmCherry:LGG-1 expressing animals. A
control animal’s gonad turn region (left) and a gld-1 RNAi-treated animal’s germline tumor turn region (right) are shown. Boxed areas are shown enlarged on the right.

Scale bar: 10 um

transcriptome analysis of animals with germline tumors. Genes
related to stress response and proteolysis, such as autophagy-
related genes, are upregulated in animals with tumors. In agree-
ment, autophagy-related proteins are expressed in germline
tumor neurons and inhibition of autophagy impairs neuronal

differentiation. Conversely, autophagy inhibition leads to an
increase in germ cell number and a rapid invasion of head and
vulva by the tumor. In addition, depletion of autophagy-related
genes shortens the life span of animals with germline tumors,
while induction of autophagy extends their life span. In animals



with fully developed tumors, fasting doubles their life span by
triggering both an upregulation of autophagy-related genes and
a remodeling of the metabolic transcriptome, including an
upregulation of oxidative metabolism. Mitochondrial oxidative
stress signaling and potentially also modular activation of gene
networks governed by nuclear hormone receptors seem to be
part of a positive feedback that leads to upregulation of auto-
phagy. This suggests that even in mature tumors a straight-for-
ward dietary intervention can inhibit tumor growth and that
autophagy, metabolic restructuring and mitochondrial stress
signaling constitute central antitumorigenic pathways in the C.
elegans germline tumor model.

Results

Autophagy-related proteins are expressed in gld-1
germline tumors

Since many tumors require drastic changes in metabolism and
particularly in catabolism to grow, we asked whether autophagy
is induced in germline tumors in C. elegans. To test this, we
examined if autophagy-related proteins are expressed in the
wild-type gonad and/or in the gld-1 germline tumor. We used
transgenic animals that express fluorescence-tagged versions of
the following proteins: GFP:LGG-1 (GABARAP ortholog),
GFP:LGG-2 (LC3 ortholog), and BEC-1::GFP (BECN1 ortho-
log). Consistent with previous reports,”'®** we observed that
autophagy-related proteins are highly expressed in the nervous
system, pharynx, intestine, hypodermis, vulva, spermatheca
and somatic gonad of wild-type animals, but not in wild-type
germline cells (Fig. 1B). However, cells within the germline
tumor in gld-1 RNAi animals show high expression of the
autophagy pathway proteins from the first day of adulthood
throughout their life span (Fig. 1C and D). Notably, these
transgenes (with the exception of BEC-1:GFP) are not
expressed in wild-type germlines and only become activated
during zygotic gene activation in embryos (Fig. 1B) or somatic
trans-differentiation in the tumor.

To test whether tumor formation leads to a general induc-
tion of autophagy rather than to a block of autophagosome
maturation, we treated animals with germline tumors with bafi-
lomycin A; (Baf) which blocks autophagosome-lysosome
fusion. This leads to an increase in GFP:LGG-1 levels in germ-
line tumors, consistent with the idea that autophagy is generally
upregulated during tumor formation (Fig. 1E). Additionally, we
also observed a massive increase of autophagosomes and lyso-
somes when using a germline-expressed transgene, Ppie-1::
GFP::mCherry:lgg-1, that allows to monitor autophagosome
maturation due to quenching of GFP fluorescence and mainte-
nance of mCherry fluorescence after acidification following
autophagosome-lysosome fusion (Fig 1F).

Consistent with germline tumors containing cells expressing
different fate markers,>* we also observed heterogenetity in
nuclear shape, size and nucleolar structure as well as cell shape
(Fig. 2A). Importantly, germline tumor cells show a heteroge-
nous pattern of GFP:LGG-1 expression, with many cells show-
ing elevated cytoplasmic expression and about 90% of them
contain clearly discernible autophagosomes with rather uni-
form size of around 0.5 um (Fig. 2B). Thus, unlike what has
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been reported for larval seam cells where only few autophago-
somes can be detected, germline tumor cells show a distribution
of autophagosome numbers with 4 or 5 autophagosomes per
cell on average (Fig. 2B). Moreover, many cells expressing
GFP:LGG-1 have elongated protrusions which are often con-
nected to neighboring cells, thereby resembling neurons in
their shape (Fig. 2C). By performing time-lapse microscopy of
germline tumors, we also found that while most tumor cells
show little intracellular autophagosome movement, in a few
tumor cells with high levels of GFP:LGG-1, fast, random-walk-
ing autophagosomes can be observed (Fig. 2D; Movie S1).

In gld-1 animals, changes in translation seem to be accom-
panied by transcriptional changes. Several gld-1 targets have
been identified;*>*” some of them are transcriptional regula-
tors, like pal-1/Caudal, whose translation is repressed by GLD-
1> Additionally, GLD-1 can bind and protect its targets from
nonsense-mediated mRNA decay (NMD), for instance the glu-
cosamine 6-phosphate N-acetyltransferase gna-2 and the puta-
tive transposase Y75B12B.1.** To confirm our data using
integrated reporters (Figs. 1 and 2) and to gain deeper under-
standing of the transcriptional regulation in gld-1 tumors, we
performed a comprehensive analysis of the transcriptome in
wild-type and gld-1 RNAi animals. Genome-wide transcrip-
tome analysis of tumor-containing gld-1 RNAi animals (third d
of adulthood) was carried out and compared with wild-type
animals of the same age as well as young adults. First, we ana-
lyzed the transcripts of the 2 targets protected from NMD.
These are strongly downregulated when comparing gld-1 tumor
animals with staged gravid adults and young adults (5.2- and
2.6-fold for gna-2, 3.5- and 2.0-fold for Y75B12B.1, respec-
tively). Second, we performed a gene ontology (GO) analysis,
which showed that genes related to stress response pathways
(e.g., DNA repair, ubiquitin-mediated proteolysis) and autoph-
agy (9 genes) are upregulated in gld-1 RNAi animals compared
to young adults (Fig. 3A and B; Table S1), but not compared to
wild-type adults of the same age (Table S2) since expression of
these genes in the embryos seems to mask the differences
between gld-1-depleted and older wild-type animals. All
together, these findings are consistent with a transcriptional
upregulation of autophagy-related genes followed by protein
synthesis in tumor cells.

Autophagy-related proteins are preferentially expressed in
germline tumor neurons

gld-1 germline tumors do not only comprise germ cells but also
ectopically differentiated somatic cells, such as muscle, neurons
and intestinal cells (Fig. 1A and S1A).”> We observed that the
morphology of cells expressing autophagy markers within the
germline tumor resembles the morphology of neuronal cells
(Figs. 1 and 2C). Therefore, we used a C. elegans strain express-
ing a pan-neuronal marker (UNC-119:mCherry) and GFP::
LGG-1. Confocal microscopy of germline tumors induced by
gld-1 RNAI, showed that LGG-1 is expressed in cells differenti-
ating as neurons (Fig. 4A). Concomitantly, we examined differ-
entiation of other somatic cell types in gld-1 germline tumors,
by knocking down gld-1 in reporter strains expressing GFP or
mCherry under the control of tissue-specific—neuronal (unc-
119), muscle (myo-3) or pharyngeal (pha-4)—promoters.
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Although gld-1-deficient germ cells reprogram mainly as neu-
rons, we also observed—to a lesser extent—differentiation of
muscle and pharynx cells (Fig. S1A). Consistently, transcrip-
tome analysis showed that neuronal-specific genes are consis-
tently upregulated in gld-1-depleted animals (Fig. S1B) and, to
a lesser extent, muscle- and pharynx-specific genes are also
upregulated (Fig. S1B). Hence, the concurrence of neuronal dif-
ferentiation and high-level expression of autophagy pathway
genes suggests that both processes might depend on each other.

Inhibition of autophagy impairs neuronal differentiation
within germline tumors

A growing body of evidence suggests a crucial role for autoph-
agy during neuronal differentiation.”*** To investigate whether
modulation of autophagy affects neuronal differentiation
within germline tumors, we depleted 2 mRNAs simulta-
neously.”*”> We used dual depletion for gld-1 and an autoph-
agy-related protein to induce both the formation of a tumor
and to inhibit autophagy in the same animal. Jgg-1 RNAi and
lgg-14+-gld-1 RNAI lead to similar depletion of Igg-1; likewise,
lgg-3 RNAi (Atgl2 ortholog) and Igg-3+gld-1 RNAi result in
similar accumulation of the unmodified form of LGG-1 and
the percentage of animals displaying tumors was similar to sin-
gle depletion of gld-1 (Fig. S2C and D). To assess neuronal dif-
ferentiation, the tumor was induced in the pan-neuronal
marker (UNC-119:mCherry) strain by gld-1 RNAi and maxi-
mum z-projections covering whole gonad arms were used to
score the area occupied by UNC-119::mCherry-expressing cells.
Concomitant downregulation of either Igg-3 or atg-7 — both
required for autophagy (Fig. 3C) - leads to a reduction of the
area occupied by UNC-119:mCherry-expressing cells in the
tumor by around 50% and 30%, respectively (Fig. 4B and C).
Therefore, downregulation of autophagy results in an
impairment of neuronal differentiation within the germline
tumor.

Autophagy affects tumor growth and apoptosis

A balance between self-renewal and differentiation of stem cells is
critical for proliferation control and maintenance of a stem cell
pool in mammalian tissues.”® Hence, we tested whether autophagy
downregulation impinges on this balance in gld-1 germline tumors.
Contrary to the effect of autophagy depletion on neuronal differen-
tiation, simultaneous knockdown of gld-I and autophagy-related
genes leads to a higher number of germ cells, indicative of increased
tumor growth (Fig. 5A). In accordance, invasion of the head and
vulva region by the tumor occurred earlier in autophagy-deficient
animals than in controls (Tables S1 and S2). Moreover, quantitative
analysis of gld-1 RNAi-induced tumors shows that nuclei density
increases by ~40% in the central and proximal part of the tumor in
atg-7(bp411) animals (Fig. 5B and C), and large and dense accumu-
lations of nuclei can be observed under these conditions (Fig. 5B,
red arrows; Fig. 5E). Also, a large number of chromosome threads
that emerge from apoptotic corpses can be observed. These show a
~3-fold increase in atg-7(bp411) animals (Fig. 5C), particularly in
the gonad turn (Fig. 5D) but also in the proximal part of the tumor
(Fig. 5B and data not shown). However, upregulation of apoptosis
cannot compensate for the strong upregulation of proliferation

since the tumor apoptosis rate is very low (0.7 &= 0.1% apoptotic
cells in atg-7(bp411) vs. 0.3 = 0.1% in wild-type animals with gld-1
induced tumors).

Next, we asked whether induction of autophagy would have
an opposite effect on tumor growth. Indeed, induction of
autophagy by silencing the gene encoding the C. elegans TOR
ortholog (let-363) (Fig. 3C) results in a significant reduction of
the percentage of animals displaying invasion of the head and
vulva region, even at the seventh day of adulthood, both in
gld-1 RNAi and mutant animals (Fig. 5A; Tables S3 and S$4).
Invasion of the vulva region often results in the appearance of a
tumor prolapse that protrudes from the vulva (Fig. S2C; Movies
S2 and $3). Prolapses form by a flow of individual tumor cells
and animals with tumor prolapses are motile and often shed
their prolapse. In line with modulation of autophagy affecting
tumor growth, inhibition of autophagy leads to an increase in
the percentage of animals displaying a tumor prolapse both in
gld-1 RNAi and mutant animals (Fig. S2D and E). Conversely,
let-363 RNAI results in a reduced percentage of gld-1 mutant
animals with a tumor prolapse, consistent with impaired tumor
growth (Fig. S2). Moreover, the inhibitory effect of let-363
RNAI is partially mediated through autophagy (Fig. 5E). Taken
together, our data demonstrate that autophagy is crucial for
curbing tumor proliferation.

Autophagy impinges on gld-1 animals’ life span

As autophagy inhibition resulted in faster tumor growth, we
asked whether it affects life span of gld-1 mutants. Overprolifer-
ation of gld-1 tumors is lethal and manifests in strongly short-
ened life spans when compared to wild-type animals without
tumors (Fig. 6A; as reported previously refs. 3 and 4). Interfer-
ing with autophagy by Igg-3 RNAI further shortens the life
span of gld-1 RNAi and mutant animals by ~12% but did not
affect wild-type life span (Fig. 6A and B).>** The functionality
of the RNAIi approach is also obvious from the changes in the
ratio between lipidated/unlipidated LGG-1 (Fig. 3C).

Since we observed that induction of autophagy, by let-
363 knockdown, extends the life span of gld-1 mutants by
~40% (Fig. 6B), we wondered whether inducing autophagy
after tumors are already established would affect longevity
of gld-1 animals. We triggered autophagy by uninterrupted
fasting (Fig. 3C) and found that gld-1 worms fasting from
d 2 of adulthood display a striking increase in life span by
~100% (Fig. 7A). Remarkably, fasting inhibited tumor
growth most likely by enhancing neuronal differentiation
within the tumor (Fig. 7B), in line with a function for
autophagy on tumor growth or differentiation balance.

Autophagy is required for fasting-induced life-span
extension

Next, we analyzed whether autophagy is required for the fast-
ing-induced life-span extension observed in gld-1 deficient ani-
mals. To this end, atg-18(gk378) and atg-7(bp411) autophagy
mutants were fed with gld-1 RNAI till d 2 of adulthood and
then either fasted or kept under feeding conditions throughout
their life span. Fasting extends the life span of gld-1 RNAi-
treated wild-type animals by ~100% (Fig. 7C). This is a
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Figure 2. Characterization of tumor cells and autophagosomes. (A) Tumor cells as visualized by their plasma membranes (left, PH domain of PLCd1 fused to GFP) or their
nuclei (histone-mCherry fusion proteins). Scale bar: 10 ;um. (B) Left: Autophagosomes in tumor cells as visualized by GFP::LGG-1, a representative maximum projection of
a central tumor area is shown, scale bar: 10 um. Top right: Quantification of numbers of autophagosomes per cell. Bottom right: Quantification of autophagosome size.
Quantifications were performed by manual counting/measurements. (C) 3D reconstruction of cell shapes of those cells in the germline tumor expressing GFP:LGG-1. Top:
Original microscopy 3D projection data, scale bar: 5 um; bottom: 3D reconstruction performed in imod (see Methods). (D) Movement of autophagosomes inside tumor
cells. Left: Stills from time-lapse recordings, the dashed lines mark the initial position of an autophagosome, scale bar: 5 ;um. Right: Magnified data from autophagosome
tracking using Endrov (see Methods). Autophagosome paths are shown as black lines. Note that the movement of the bottom autophagosome is due to the sample shift-

ing (see Movie S1). All panels in Fig. 2 show animals at the d 3 of adulthood.

substantially longer life-span extension than previously
reported for fasting of wild-type animals without tumors.””*®
On the other hand, fasting prolongs the life span of atg-18
(gk378) and atg-7(bp411) mutants by only ~15% and ~26%,
respectively (Fig. 7C), showing that autophagy is a central path-
way for fasting-induced life-span extension.

Fasting induces modular metabolic switches

Fasting does not exclusively induce autophagy, but it triggers
changes at both transcriptional and post-transcriptional lev-
els.*® To acquire a broader picture, we performed a transcrip-
tome analysis of gld-1 RNAIi animals fasted for 48 h, from d 2
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Figure 3. Stress-response related genes are upregulated in animals with germline tumors. (A) KEGG pathway enrichment analysis of gld-7 RNAi animals. Only upregulated
pathways in gld-1 RNAi animals compared to young adults with P values lower than 0.01 are shown. (B) Top: Heatmap depicting expression profiles of autophagy-related
genes in gld-1 RNAi animals compared to young adult controls. log,-fold changes are shown. Bottom: The autophagy pathway in C. elegans. Genes were classified in func-
tional modules according to ref. 77. (C) Modulation of autophagy by RNAi in the RNAi-mediated germline tumor model. GFP:LGG-1 animals with the respective RNAi were
treated as indicated for 24 h and lysed. Protein samples (25 11g) were separated by SDS-PAGE and immunoblotted with the indicated antibodies. Where indicated, RNAI(s)
against 2 different genes cloned in the same vector were used only when more than 80% of the animals presented a germline tumor.

of adulthood, and compared their transcriptome with fed gld-1
RNAIi animals. Consistent with autophagy being required for
fasting-induced life-span extension, we observed that autoph-
agy-related genes, are upregulated in fasted gld-1 RNAi animals
(Fig. 7D). In accordance with previous reports*>*! fasting also
induced upregulation of components of SCF-E3 ubiquitin
ligase complexs, members of the P450 family of cytochromes,
C-type lectins, secreted cysteine-rich, and saposin-like proteins
(Table S5).

Functional clustering showed a modular reshuffle of metab-
olism in fasted, gld-1-depleted animals (Fig. 8A). A consistent
upregulation of genes involved in fatty acid B—oxidation, citric
acid cycle, amino acid and propionate catabolism (Fig. 8B and
C; Table S5) was detected in fasted gld-1 RNAi animals. Con-
versely, fatty acid synthesis genes are downregulated in fasted
animals (Fig. 8C). Regarding carbohydrate metabolism,

upregulation of genes involved in glycolysis, gluconeogenesis
and glycogenesis was detected (Fig. 8B). In line with a meta-
bolic reorganization in fasted gld-1 animals, module 142
‘Generation of precursor metabolites and energy, positive regu-
lation of growth, ion transport’ described by Vermeirssen and
colleagues*” is coregulated in fasted animals (Fig. 8D; all com-
ponents except c¢st-1 and dox-1, which are also found inversely
regulated in other experiments*?). This module was identified
using transcription profiles from various experiments by apply-
ing a reverse-engineering algorithm to extract ensembles of
coexpressed genes. Module 142 is related to mitochondrial
metabolism and contains transcripts of the mitochondrial
phosphate carrier F01G4.6, the complex IV subunit F26E4.6,
the ATP synthase subunits F58F12.1 and H28016.1, the outer
membrane voltage-gated anion channel vdac-1, the fructose
bisphosphate aldolase aldo-2, and the peroxidase prdx-2. Taken
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(boxed area). Scale bar: 20 um. (C) Area occupied by UNC-119 expressing cells per gonad arm normalized by gld-1 RNAi-treated animals. Qualitative scoring of the
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resent mean =+ SEM of 3 independent experiments, n = 3 to 6 (6 to 12 gonad arms), per experiment.

together, the coregulation of several metabolic pathways and of
module 142 during fasting leads to an upregulation of the
major catabolic pathways and a downregulation of fatty acid
synthesis, suggesting that mitochondrial respiration will
increase under these conditions (Fig. 8E).

To corroborate whether changes on the transcript level corre-
spond to metabolic alterations, we analyzed fat content of gld-1
RNAIi animals by vital staining of lipid droplets with BODIPY
493/503.* In agreement with the observed transcriptional upre-
gulation of genes involved in B-oxidation and downregulation

of fatty acid synthesis, the number of lipid droplets in fasted ani-
mals is lower than in fed animals (Fig. S3; lipid droplets are also
observed in tumor prolapses). This observation sustains the
hypothesis that metabolic adjustments reflect the observed tran-
scriptional changes. We additionally examined N-acetyl-D-
glucosamine (GlcNAc) levels, as we observed an upregulation of
the hexosamine pathway in the tumor and a downregulation
when the animals containing tumors were fasted (Fig. S4A).
This pathway has been associated with life-span extension.**
Again in agreement with the transcriptome data, we observe that
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cated by red arrows in panel [B]).

O-linked GlcNAc-modified proteins are increased when tumors
are formed and are not further increased under starvation since
the transferase OGA-1 is downregulated (Fig. S4B).
Additionally, we analyzed the expression of genes comprised
in a central C. elegans metabolic gene regulatory network.*’
This network was generated from experimental interactions
between genes involved in lipid metabolism*® and fasting
responsive genes.*” A substantial number of genes in this net-
work are nuclear hormone receptors (NHRs), that can function

as metabolic sensors and represent an expanded gene family
(284 members in C. elegans vs. 48 in H. sapiens). Using topolog-
ical overlap analysis, 5 modules could be identified in this net-
work.* Two of these 5 modules, IT and III, are coregulated in
fasted gld-1-depleted animals (Fig. 8F), both containing several
NHRs. Importantly, all components of module III that are
directly linked to lipid catabolism are consistently upregulated
during fasting, including nhr-28, -66, -70, -79, -109, -178, and
-273, while transcription factors involved in developmental
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regulation are inversely regulated, ceh-20, -40, mab-5, and pag-3
(Fig. 8F, see also Fig. 2 in ref. 45).

To establish whether these NHRs indeed play roles in tumor
metabolism, we focused on NHR-178. For this NHR, it has
been shown that depletion by RNAi results in increased lipid
levels and that its expression is upregulated in the epidermis on
food withdrawal.*” Consistent with these results and a function
of NHR-178 in tumor metabolism, we observed weak expres-
sion in germline tumors that increases ~3-fold during starva-
tion (Fig. 8G, red). This demonstrates that NHR-178 and most
likely also additional NHRs of module III involved in metabo-
lism function in adapting tumor metabolism to environmental
conditions.

Although only moderately upregulated during tumorigene-
sis (1.1-fold) and further upregulated during fasting (1.1-fold),
we also analyzed expression of the transcription factor NHR-49
in germline tumors by using an integrated reporter construct
that drives histone H1 expression from an nhr-49 promoter.
NHR-49 is a major regulator of metabolism and autophagy.***’
Notably, we detect expression of the nhr-49 reporter in germ-
line tumors which increases ~10-fold during fasting (Fig. 8G,
blue). Therefore, the global changes that we detect by RNAseq
seem to underestimate the expression changes inside the tumor.
Thus, far-ranging, coordinated changes in transcriptional net-
works seem to govern the response to fasting, including known
(NHR-49, NHR-178, mitochondrial energy metabolism) and
previously unknown regulators (Fig. 8F). These findings also
support the notion that NHRs seem to act redundantly during
metabolic adaptations.*’

Two other regulators, PHA-4 and HLH-30, have been previ-
ously proposed as regulators of metabolic changes and

autophagy. To gain an even broader picture, we also analyzed
their contribution to autophagy-related gene expression in the
tumor. Expression of PHA-4 within the tumor is found only in
a very low number of tumor cells (Fig. S1) and we could not
detect coregulation of PHA-4 targets in the transcriptome data
(Table S6). Hence, PHA-4 does not seem to be involved in
autophagy regulation in the tumor. Regarding HLH-30, we
examined whether HLH-30 depletion in the tumor affects
LGG-1 expression or autophagosome formation. We did not
observe major changes in GFP:LGG-1 levels in the tumor
upon hlh-30 RNAI, although we observed a slight decrease in
the number of autophagosomes and an increase in number of
large autophagosomes, the latter statistically not being signifi-
cant (Fig. S5A to C). To examine the expression of HLH-30 in
the tumor, we generated a strain expressing both HLH-30::GFP
and UNC-119:mCherry transgenes. Very few cells express
HLH-30 compared to the number of cells expressing UNC-119
and those expressing HLH-30 are not tumor neurons
(Fig. S5D). This suggests that HLH-30 is not a key transcription
factor in autophagy regulation either. In agreement, transcrip-
tome analysis showed that HLH-30 targets are not coregulated
in the tumor (Table S7) and lysosomal genes, previously shown
to be influenced by HLH-30 levels,® are also not coregulated
(Table S8).

ROS stress signaling affects tumor autophagy and
differentiation

Our analysis reveals that all major pathways leading to
mitochondrial catabolism are upregulated in fasted animals,
including pathways that lead to anaplerotic reactions for
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the tricarboxylic acid cycle (Fig. 8E). Activation of these
pathways under low glucose supply could lead to activation
of AMP-activated protein kinase (aak-2), the main activator
of general catabolism, and result in increased reactive oxy-
gen species (ROS) production. Under these conditions,
increased ROS levels have been suggested to act as a hor-
metic stressor, which induces defense mechanisms like
phase II detoxification, transduced by a peroxiredoxin
(prdx-2), thereby prolonging life span.*®** Remarkably, acti-
vators, transducers and downstream factors of mitochon-
drial stress signaling are upregulated in germline tumors

animals under starvation, including prdx-2 (being part of
module 142, Fig. 8D), aak-2, and many components of
phase IT detoxification (Fig. 9A).*°

To test a function of mitochondrial stress signaling in
tumor survival during starvation, we used mutants in this
signaling pathway, prdx-2(gk169) and aak-2(ok425). After
induction of tumor formation by gld-1 RNAi, we performed
life span analysis either under feeding (aak-2 and prdx-2;
Figs. 9B and S6A) or starvation conditions (aak-2 only;
Figs. 9C and S6B) with animals being additionally exposed
either to DOG (2-deoxy-D-glucose, to increase ROS levels),
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or an antioxidant (N-acetyL-cysteine, NAC). Notably, life
span under feeding in animals with tumors depends on
both aak-2 and prdx-2 function (Fig. 9B), whereas starva-
tion-induced life-span extension is not affected in the aak-2
mutant (Fig. 9C), consistent with recent findings.’ ! More-
over, glucose restriction by DOG only extends life span in
wild-type animals but not in aak-2 mutants (Fig. 9C) and
life span under fasting conditions was severely reduced in
animals exposed to NAC, demonstrating that ROS produc-
tion is crucial for starvation-induced life-span extension in
animals with tumors (Fig. 9C). To understand whether ROS
scavenging also influences tumor cell autophagy and differ-
entiation, we first quantified the extent of neuronal differen-
tiation in the tumor of fasted animals treated with NAC.
NAC led to a severe reduction in the tumor area occupied
by neurons (Fig. 9D) and exposure to NAC also leads to a
severe reduction in the number of autophagosomes (Fig. 9E
and F). Collectively, these findings suggest that a reciprocal
dependence exists between induction of autophagy and
mitochondrial oxidative metabolism during germline
tumorigenesis.

Discussion
A metabolic model for tumor growth control in C. elegans

We show here that catabolic pathways including autophagy
influence cell differentiation and proliferation in germline
tumors. Regulation of tumor growth by autophagy, a pathway
of central importance when animals rely on internal energy
stores, has important implications for the life span of animals
with tumors. Autophagy is required for life-span extension by
various longevity pathways in C. elegans.”>*">> Here, however,
we show that inhibition of autophagy further decreases the life
span of severely short-lived, tumor-bearing animals (Fig. 6).
Strikingly, induction of autophagy by fasting animals with
completely developed tumors from d 2 of adulthood extends
their life span by ~100% (Fig. 7A and C), fully rescuing the
short life-span phenotype of these animals. Fasting from d 2 of
adulthood was also reported to extend the life span of wild-
type animals, but only by 40 to 50%.%">®

Furthermore, our genome-wide transcriptome analysis
uncovered a reshuffle of the metabolic transcriptome
(Fig. 8). Our observations, together with previous reports,
suggest a model (Fig. 9G) in which induction of autophagy
seems to collaborate with other pathways to affect tumor
proliferation through induction of cell-type specific effects:
(1) stress-response genes are upregulated in animals with
germline tumors (Fig. 3A); (2) long life-span mutations
(eat-2, isp-1, clk-1, daf-2), known to induce autophagy, trig-
ger tumor proliferation arrest;*”***®* and (3) autophagy
promotes neuronal differentiation vs. proliferation within
germline tumors while inhibition of autophagy leads to the
opposite (Figs. 4C, 7B and 9D to F). Additionally, ROS pro-
duced by metabolic activity were also reported to be early
activators of fasting-induced autophagy,”® by oxidizing both
AMPK,>” leading to its activation, and Atg4, resulting in
inhibition of its delipidating activity toward the LC3 and
GABARAP subfamilies at the autophagosome formation
site.”® Therefore, it is possible that increasing oxidative

metabolism and inducing autophagy collaboratively estab-
lish cytoprotection, being crucial for positive regulation of
life span during fasting.

Strengthening the link between neurogenesis and
autophagy

To date, a role for autophagy in cell differentiation during
development in C. elegans is restricted to a microRNA-regu-
lated case of bilaterally asymmetric neuron specification.® In
mammals, accumulating evidence supports a role for autoph-
agy in cell differentiation, particularly neuronal differentia-
tion.®” We suggest that autophagy might be similarly required
for differentiation of neurons or the maintenance of the meta-
bolic needs of this cell type in C. elegans gld-1 tumors since sys-
temic inhibition of autophagy reduces neuronal differentiation
(Fig. 4B and C). In addition, autophagy proteins are strongly
reexpressed in transdifferentiating neurons and not much in
any other cell type within gld-1 tumors (Figs. 1, 2 and 4). Their
regulation appears to be mainly transcriptional (Fig. 1C) with
the exception of LGG-1/GABARAP and LGG-2/MAPI1LC3
(LC3) whose mRNAs are direct GLD-1 target526’27 and their
expression is probably regulated post-transcriptionally. Inter-
estingly, in line with our observations, a role for autophagy in
neuroendocrine differentiation of human prostate cancer cells
has been recently reported,®’ suggesting that a conserved inter-
dependency exists in C. elegans and mammalian tumors.

Moreover, we observed that fasting not only inhibits tumor
growth but also induces neuronal differentiation within the
tumor (Fig. 7B), in line with observations showing that dietary
restriction in mice enhances neurogenesis.®> Fasting and die-
tary restriction have shown positive effects in both cancer pre-
vention and treatment in diverse mice models.*® However,
Pinkston and colleagues did not observe changes in the fre-
quency of neuronal differentiation within the tumor in the daf-
2 mutant,* pointing to the possibility that specific pathways
inducing tumor growth arrest, likely also through autophagy,”
might affect differentiation differently. It is therefore essential
to better understand the molecular mechanisms that underlie
tumor growth arrest upon activation of different catabolic
pathways.

Triggering modular changes in metabolic networks

Our data show that fasted animals with germline tumors
upregulate major catabolic pathways and downregulate fatty
acid synthesis (Fig. 8), reminiscent of DAF-16-dependent
metabolic restructuring. ®* However, DAF-16 targets®* are
not consistently regulated in fasted animals, suggesting that
other regulatory mechanisms are responsible for the meta-
bolic remodeling of fasted animals with germline tumors.
Nonetheless, gene expression profiles of fasted animals with
germline tumors partially overlap with those of daf-2
mutants®* and fasted wild-type animals,*' indicating that
related pathways underlie longevity extension regardless of
the presence of germline tumors. For instance, it has been
suggested that the coregulated module 142 ‘Generation of
precursor metabolites and energy, positive regulation of
growth, ion transport’ may be part of insulin-like signaling
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coordinating oxidative stress tolerance, metabolic programs
and life span since all promoters of module 142 genes con-
tain the DAF-16 consensus binding element.**

At the organismal level, we observed coregulation of bioin-
formatically predicted gene modules (Fig. 8D and F).***
Remarkably, 2 modules that are part of a metabolic gene regu-
latory network® are coregulated in fasted animals (Fig. 8F).
These modules are enriched for specific NHRs, the majority of
which are consistently upregulated in fasted animals (Fig. 8F).
NHRs are transcription factors that integrate intrinsic and

environmental cues to coordinate transcriptional cascades that
control reproduction, development, metabolism and homeosta-
sis.”” In particular, NHR-49 and NHR-62 have been shown to
mediate the response to nutrient availability’>*® and NHR-62
is required for dietary restriction- induced autophagy and lon-
gevity.”® Recent studies®® show that autophagy is also regulated
by the NHRs FXR and PPARA (the ortholog of NHR-49) in
mammals and that these factors might have antagonistic effects
on transcription of autophagy genes. Additionally, NHR-49 has
been shown to be involved in the control of fat consumption
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and the upregulation of mitochondrial ﬂ-oxidation47’67, which
we find is also upregulated in our RNAseq analysis (Fig. 8C).
Our findings also implicate NHR-49 in this regulation
(Fig. 8G). Furthermore, additional NHRs (e.g., NHR-67, NHR-
91 - the latter a likely ortholog of FXR, and the fasting-respon-
sive NHR-178; Fig. 8F and G) seem to be involved in the
response to fasting most likely as part of a transcription factor
network. Further studies will be required to identify the NHRs
directly affecting autophagy gene expression and which addi-
tional regulatory roles these NHRs have.

Altogether, our data suggest that spontaneous neuronal dif-
ferentiation in germline tumors seems to rely on the induction
of autophagy, which in turn depends on metabolic restructur-
ing. Differentiation in this context apparently has a positive
effect on animal survival. Thus, manipulation of metabolic
restructuring seems to constitute a powerful way to drive cell
differentiation and to interfere with tumor growth.

Materials and methods
C. elegans strains

Worms were maintained using standard procedures.®® The fol-
lowing strains were obtained from the Caenorhabditis Genetics
Center (CGC): AZ212 (ruls32[pie-1::GFP:H2B + unc-119(+)]
III); DA2123 (adlIs2122[lgg-1p::GFP:1gg-1 + rol-6(sul006)]);
EG4887  (oxIs322[myo-2p:mCherry:H2B  +  myo-3p:
mCherry:H2B + Cbr-unc-119(+)]); JK1466 (gld-1(q485)/dpy-
5(e61) unc-13(e51) 1); HZ1686 (atg-7(bp411) IV; him-5(e1490)
V. bnlsl [pie-1p:GFP:pgl-1 + unc-119(+)] I); MS1180 (irIs83
[pMM824 (unc-119:mCherry) + pMM768 (end-3(+))]); wild
isolate N2, Bristol variety; OP37 (wgls37 [pha-4:TYl:
EGFP:3xFLAG + unc-119(+)]); OP433 (wgls433 [hlh-30:
TY1:EGFP:3xFLAG + unc-119(+)]); OP454 (wgls454[nhr-
178:TY1:EGFP:3xFLAG + unc-119(4+)]); VC893 (atg-18
(gk378) V); RB754 (aak-2(0k524) X); RW10226 (itls37[pie-1P::
mCherry:H2B::pie-1 3’UTR + unc-119(+)]. stls10226[his-72
pomoter HIS-24:mCherry translational fusion with let-858 3’
UTR + unc-119(+)]); RW11084 (zuls178[his-72(1kb 5" UTR)::
his-72::SRPVAT::GFP::his-72 (1KB 3’ UTR) + 5.7 kb Xbal -
HindIIl unc-119(+)]. stIs10024[pie-1P::H2B::GFP::pie-1 3
UTR + unc-119(+)]. stls10932[nhr-49.c:H1-wCherry + unc-
119(+)]); VC289 (prdx-2(gk169) II). CHP8 was generated by
crossing DA2123 and MSI1180. For the analyses shown in
Fig. 5, atg-7(bp411) was outcrossed from strain HZ1686 into
RW10226. CHP17 [bec-1:TY1:EGFP::3xFLAG(92C12)+unc-
119(+)] was generated by biolistic transformation of DP38
worms (unc—119(ed3)III)) with a fosmid obtained from the C.
elegans TransgeneOme resource (https://transgeneome.mpi-
cbg.de/) according to published protocols and progeny that
showed integration of the vector were selected after 3 or 4 wk.*’
Transgenes Ex[gfp:lgg-2; rol-6(sul006)] and Ex[unc-119(+);
Ppie-1::GFP::mCherry:lgg-1] were kindly provided by Renaud
Legouis.

Preparation of L1 larvae

To obtain synchronized L1 larvae, gravid adults were bleached.
The eggs recovered were left to hatch in M9 (3.0 g KH,PO,,

6.0 g Na,HPO,, 5 g NaCl, 1 ml 1 M MgSO,, H,O to 1 L), over-
night, at room temperature.

RNAI treatment

RNAi was performed by feeding according to standard proto-
cols.”® Clones used were prepared from ¢cDNA or obtained
from commercially available libraries (http://www lifesciences.
sourcebioscience.com/clone-products/mammalian/rnai/mirna-
rnai-resources.aspx). To knock down 2 target genes simulta-
neously, a gld-1 cDNA fragment was amplified, digested with
Xhol and inserted into a vector (pL4440) containing already a
cDNA fragment of the other gene, as described elsewhere.”**>
Vectors were transformed into the HT115 E. coli strain. Syn-
chronized L1 or L3 (for let-363 clones) larvae were used for
RNAI feeding. The following gene—specific primers were used
to generate RNAIi clones: let-363 (forward: CATCGTAGAT-
CTTCGGAATTCTTGGAGCAATGC; reverse: GATACTAGA-
TCTTCATCAACCACTGCAACCAT).

RNA sequencing

Synchronized L1 larvae were placed on L4440 control or gld-1
RNAI plates and kept at 20°C. Animals were either collected
as young adults or picked as synchronized adults at the first d
of adulthood into fresh RNAi plates. When performing gld-1
RNAI, only animals displaying a tumor at the first d of adult-
hood were picked. gld-I RNAi animals were kept in gld-1
RNAi plates until d 3 of adulthood, when harvested. Control
animals, kept in L4440 plates, were washed off the plates twice
a day with M9 to remove the progeny and harvested at d 3 of
adulthood. Fasted gld-I RNAi animals were moved to
unseeded plates at d 2 of adulthood for 48 h, before harvest-
ing. Fed gld-1 RNAi control animals were moved to L4440
seeded plates at d 2 of adulthood for 48 h, before harvesting.
A total of approximately 3000 animals pulled from 2 indepen-
dent experiments were collected per condition. The animals
were washed off the plates with M9, washed 4 additional times
with M9 to remove remaining bacteria and the pellet of
worms was frozen in liquid nitrogen. RNA isolation, cDNA
libraries construction and sequencing were conducted by
GATC Biotech AG.

RNAseq data analysis

3’-adaptor sequences were trimmed from the RNA sequencing
reads using custom-built Perl script. Resulting reads were then
aligned to Ensembl WS220 assembly using the TopHat.”"
Uniquely mapped reads were quantified by counting the over-
lap of reads with genes using the HtSeq python package (http://
www-huber.embl.de/users/anders/HTSeq). Differential expres-
sion analysis was performed using the DESeq software.”” Count
data were variance-stabilized to overcome the influence of bias
due to difference in library size. DAVID”® was used for gene
ontology analysis of genes with 1.2 or higher fold-change
between the experimental conditions. Heat maps of log, fold-
changes in gene expression were produced using the heatmap2
package of R.7*
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BODIPY 493/503 staining

For vital lipid droplet staining, live animals were incubated in
M9/BODIPY 493/503 (6.7 ng/ml; ThermoFisher Scientific, D-
3922) solution for 20 min.** Animals were then washed 3 times
with M9 and used immediately for microscopy.

DAPI staining

As described previously,” intact worms were fixed in cold meth-
anol for 5 min at —20°C and incubated for 30 min in 100 ng/
mL DAPI (Sigma-Aldrich, D9542) in modified M9 (no Mg*™).

Bafilomycin A, (Baf) treatment

Animals were either injected with 50 M Baf (LC Laboratories,
B-1080) or DMSO (Carl Roth, A994.1) and imaged 3 h later or
incubated in an M9 solution with 25 uM of Baf or DMSO for
6 h.

Microscopy

Animals were mounted in 3 pl of 15 mM tetramisole (Sigma-
Aldrich, L9756) in M9 buffer suspension containing 45-um
polystyrene microspheres (Polysciences, 07314-5), and sealed
between 2 coverslips (Corning, 2845-18 and 2975-246) with
vaseline. Alternatively, for time-lapse recordings (Movies S1, S2
and $3), a recently described procedure was used.”> Microscopy
was performed with a VisiScope spinning disk confocal micro-
scope system (Visitron Systems, Puchheim, Germany) based
on a Leica DMI6000B inverted microscope (Leica Microsys-
tems, Wetzlar, Germany), a Yokogawa CSU X1 scan head
(Yokogawa Electric Corporation, Tokyo, Japan), and a Hama-
matsu ImagEM EM-CCD (Hamamatsu Photonics, Hama-
matsu, Japan). All acquisitions were performed at 21°C to 23°C
using a Leica HC PL APO 40x/1.3 oil or a Leica HC PL APO
63x/1.4-0.6 oil objective.

Animals stained with DAPI were imaged using a Leica DM
IL epifluorescence microscope (Leica Microsystems, Wetzlar,
Germany) equipped with a Leica HC PL FL 10x/0.3 objective
and a Motic Moticam 1SP camera (Motic Deutschland GmbH,
Wetzlar, Germany) with Motic acquisition software.

3D reconstructions were performed using imod (http://
bio3d.colorado.edu/imod/) for cell outlines and Endrov (http://
www.endrov.net/) for autophagosome movement.

Quantifications

To quantify the area occupied by UNC-119 expressing cells per
gonad arm, a qualitative scoring was performed blindly from
maximum z-projections covering the whole gonad arms (0% to
25%, 25% to 50%, 50% to 75% or 75% to 100% of area occupied
by the tumor scored 0, 1, 2 or 3 respectively) and the average
score per gonad arm was calculated. The average score per con-
dition was normalized by the control. Mean and standard error
are shown including P values from Student ¢ test statistics or
from N-1 2 proportion statistics. The number of animals dis-
playing head or vulva invasion (with clear disruption of the
gonadal basement membrane) was counted in DAPI stained
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animals. Nuclei density and apoptotic nuclei number were
counted from maximum projections of the superficial cell layer
of the tumor. Autophagosomes were counted using fluores-
cence intensity cut-offs and defined circular windows in
Image].

Life-span analysis

Life-span experiments were carried at 20°C. Synchronized L1
larvae were placed on RNAI plates. Animals were picked as
synchronized adults at the first day of adulthood into fresh
RNAi plates. When gld-1 RNAi was used, only animals display-
ing a tumor at the first d of adulthood were picked. Worms
were transferred to new plates every other day until the end of
the reproductive period and every 4 or 5 d in the case of gld-1
animals or after the end of the reproductive period. Animals
were fasted by transferring them to empty feeding plates at d 2
of adulthood; the respective control animals, kept under feed-
ing conditions, were transferred to RNAI feeding plates with
bacteria expressing the empty pL4440 vector. Animals were
examined every day for touch-provoked movement, until
death. Animals that crawled off the plate, displayed extruded
internal organs during the first 3 d of adulthood, or died from
internally hatched progeny were censored. Kaplan-Meier
method and Log-Rank (Mantel-Cox) test were performed using
OriginPro 8 or OASIS (Online Application for Survival
Analysis).”®

In parallel with life-span analysis, the number of animals
displaying tumor-extruded tissue through the vulva from d
3 of adulthood throughout their life span was quantified
and the percentage of animals showing tumor prolapses
calculated.

Protein extraction and western blot analysis

To prepare total worm extracts, worm pellets were resuspended
in lysis buffer (62.5 mM Tris-HCI, pH 6.8, 10% glycerol, 2%
SDS (Carl Roth, 0183.3) with glass beads (Carl Roth, N030.1),
vortexed for 2 min and heated with shaking at 95°C for 5 min.
The samples were centrifuged at 20,000 g for 5 min and super-
natant fractions were collected. Protein concentration was
determined by BCA assay (ThermoFisher Scientific, 23225).
The indicated amounts of protein were separated by AnyKD
polyacrylamide gels (Bio-Rad, 4569033) and transferred onto
polyvinylidene difluoride (Bio-Rad, 1620174) membranes. The
following antibodies were used: anti-GFP (1:1000; Santa Cruz
Biotechnology, sc-9996), anti-S-tubulin (1:1000; Developmen-
tal Studies Hybridoma Bank, E7), anti-O-linked N-acetyl-D-
glucosamine antibody (1:1000; antibody RL2, abcam, ab2739).

Abbreviations

aak/AAK AMP-activated kinase

atg/Atg autophagy (yeast Atg homolog)

bec-1 Beclin 1 (human autophagy) homolog
C. elegans Caenorhabditis elegans

daf abnormal dauer formation

DOG 2-deoxy-D-glucose

dsRNA double-stranded ribonucleic acid

GFP green florescent protein
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GlcNAc N-acetyl-D-glucosamine

gld/GLD defective in germline development

GO gene ontology

hlh/HLH helix loop helix

MAPILC3/LC3  microtubule-associated protein 1 light chain 3
let/LET lethal

Igg/LGG LC3 GABARAP and GATE-16 family
mCherry monomeric Cherry

mRNA messenger ribonucleic acid

myo myosin heavy chain structural genes
NAC N-acety-L-cysteine

nhr/NHR nuclear hormone receptor

pha/PHA defective pharynx development

prdx peroxiredoxin

RNAi ribonucleic acid interference

RNAseq ribonucleic acid sequencing

ROS reactive oxygen species.
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