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Abstract

Background

LASSO is a penalized regression method that facilitates model fitting in situations where

there are as many, or even more explanatory variables than observations, and only a few

variables are relevant in explaining the data. We focus on the Bayesian version of LASSO

and consider four problems that need special attention: (i) controlling false positives, (ii) mul-

tiple comparisons, (iii) collinearity among explanatory variables, and (iv) the choice of the

tuning parameter that controls the amount of shrinkage and the sparsity of the estimates.

The particular application considered is association genetics, where LASSO regression can

be used to find links between chromosome locations and phenotypic traits in a biological or-

ganism. However, the proposed techniques are relevant also in other contexts where

LASSO is used for variable selection.

Results

We separate the true associations from false positives using the posterior distribution of the

effects (regression coefficients) provided by Bayesian LASSO. We propose to solve the

multiple comparisons problem by using simultaneous inference based on the joint posterior

distribution of the effects. Bayesian LASSO also tends to distribute an effect among collin-

ear variables, making detection of an association difficult. We propose to solve this problem

by considering not only individual effects but also their functionals (i.e. sums and differ-

ences). Finally, whereas in Bayesian LASSO the tuning parameter is often regarded as a

random variable, we adopt a scale space view and consider a whole range of fixed tuning

parameters, instead. The effect estimates and the associated inference are considered for

all tuning parameters in the selected range and the results are visualized with color maps

that provide useful insights into data and the association problem considered. The methods

are illustrated using two sets of artificial data and one real data set, all representing typical

settings in association genetics.
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Introduction
A large number of markers, segments of the DNAmolecule, are commonly available in genetic
studies involving association mapping and genomic prediction. Mapping studies focus on find-
ing a few major genes called quantitative trait loci (QTL) out of a large number of markers. In
genomic prediction, the number of markers included in the model depends on the genetic ar-
chitecture and the extent of collinearity between markers. In these studies, all markers are in-
cluded in the model a priori and variable selection is applied to arrive at a “sparse” subset of
trait-associated marker effects a posteriori. Variable selection regularizes the problem so that
the number of estimated non-zero marker effects hopefully becomes smaller than the number
of observations leading to meaningful but downwardly biased effect estimates.

Bayesian variable selection methods have been widely applied for QTL mapping and geno-
mic prediction [1]. Variable selection in these models typically uses either shrinkage analysis or
auxiliary indicator variables (i.e., slab-and-spike variable selection). The former method speci-
fies a marker effect prior that shrinks the effects of negligible markers heavily towards zero,
while assigning large effects to important markers. In the latter technique, each marker has its
own auxiliary indicator variable that has a much smaller prior probability for marker inclusion
than marker exclusion. While Bayesian shrinkage models are common tools for genomic pre-
diction, rigorous decision making in QTL mapping studies is still an open research problem
with such models [2]. The methods developed in this paper provide novel tools for finding rele-
vant genomic markers using the Bayesian LASSO [3, 4], a shrinkage-based method that uses a
Laplacian prior distribution for marker effects. We consider four problems that need special at-
tention: (i) controlling false positives, (ii) collinearity among explanatory variables, (iii) multi-
ple comparisons and (iv) the choice of the tuning parameter that controls the amount of
shrinkage and the sparsity of the estimates. The proposed techniques are relevant also in other
contexts where LASSO is used for variable selection.

Controlling false positives: One approach for controlling false positives is to use Bayes fac-
tors. While marker-specific Bayes factors can be derived for models with indicator variables, in-
cluding them in the shrinkage models can make the resulting Bayes factors suffer from a
double shrinkage effect [5]. Also, the derivation of the posteriors of indicator variables after-
wards in shrinkage models usually heavily depends on user-defined cut-off values to judge the
QTLs [6]. Exceptions are shrinkage methods with coherent decision making frameworks such
as [7] and [2] which both were able to derive Bayes factors without indicator variables as addi-
tional parameters in the model. In this paper, we instead control the false positives using the
posterior distributions of the marker effects.

Collinearity: Collinearity among markers hinders the detection of an association by weaken-
ing the QTL signal. In association genetics, derivation of a significance threshold to judge the
QTLs in the Bayesian LASSO has been suggested using (i) phenotype permutation [8, 9], (ii)
Wald test statistic [10], or (iii) credible intervals [11]. All of them seem to suffer from collinear-
ity between markers. Phenotype permutation works quite well but collinearity between mark-
ers weakens QTL signals by distributing parts of the signal over several markers. Wald test
statistic does not work well in QTL detection since collinearity inflates the standard errors of
the estimated effect sizes. Similarly, due to the bimodality of a QTL effect posterior caused by
collinearity between adjacent markers, the credible interval of a true QTL often includes zero.
To handle the problem of a weakened QTL signal caused by collinearity, combination of QTL
signals over several adjacent markers has been suggested [12, 13]. We propose to take the po-
tential collinearity among the markers into consideration by considering not only the credibili-
ty of each marker locus separately but also sums and differences of pairs of marker effects.
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Multiple testing: There has been discussion about the need for multiple testing correction in
Bayesian inference [14]. Bayesian perspectives on multiple comparisons are discussed also in
[15]. One approach to correct for multiple testing is the Bayesian false discovery rate procedure
(BFDR) [16]. However, BFDR requires that the posterior model includes a discrete indicator
vector that defines the variable inclusions. If the posteriors for such indicator variables are de-
rived afterwards, the definition of the cut-off values for variable inclusion is critical. We instead
apply the method of highest point-wise probabilities (HPW) first described in [17] that detects
variables with high enough joint posterior probability for effects and needs no extra user input
in the inference.

The choice of the tuning parameter: Bayesian LASSO has a single shrinkage or tuning pa-
rameter that controls both the sparsity of the model (number of variables to be selected) and
the amount of shrinkage applied to all effect coefficients. This tuning parameter may be consid-
ered either fixed [18] or random with its own prior [3]. The latter approach seems to be more
common in practice. It corresponds to numerically integrating over the parameter and while
analytical integration has also been suggested, it is reported to result in increased sensitivity to
the hyperprior parameters [19]. If the tuning parameter is fixed, choosing an appropriate value
with a criterion such as BIC or cross-validation has been suggested in [20]. Use of BIC leads to
a sparser model than cross-validation which measures predictive performance. A bootstrap
procedure of choosing the tuning parameter has also been suggested [21]. In a genetics context
a different approach has been suggested where the relationship between heritability and the
tuning parameter is derived under simplified conditions [22, 23] and then used to guide tuning
parameter selection for traits with known heritability. In the case of prediction the performance
of random tuning parameter was compared to the results obtained when a fixed tuning param-
eter was selected with cross-validation in [24]. Their results obtained using a random tuning
parameter and using the best fixed value were close to each others.

The estimation and decision making results depend heavily on the value of the tuning pa-
rameter. Therefore different conclusions might be made about the coefficients depending on
the method to choose the tuning parameter. Here, instead of setting the tuning parameter ran-
dom or estimating it from the data, we apply the idea of a scale space and consider a whole
range of tuning parameter values in our analyses. The scale space concept has its origins in
computer vision research (see for example [25]). The basic idea of scale space is that an object
is viewed on several scales or resolutions. The smallest scales correspond to a microscopic vi-
sion where the finest details of the object are revealed, whereas the large scales correspond to a
macroscopic vision where only the coarse features remain. Since its introduction to statistics,
scale space has been extensively used in the analysis of data from various fields of research
which however so far have not included any genetic applications [26, 27]. When scale space
analysis is applied to Bayesian LASSO, a large value of the tuning parameter provides the mac-
roscopic view in which one is able to identify only well-defined QTL regions that remain after a
large number of marker effects are shrunk to zero. On the other hand, a small value of the tun-
ing parameter provides the microscopic view that shows other, small scale features, corre-
sponding to regions that can appear because a small value of the tuning parameter makes only
a small number of marker effects shrink to zero. In the context of decision making, larger tun-
ing parameter values can lead to false negatives in QTL detection, since a large number of SNP
effects is ‘forced’ to zero. Similarly, small tuning parameter values can produce false positive
QTLs, since a large number of markers now have their effects considered for detection. Infer-
ence methods such as HPW together with a scale space approach can provide a general and
comprehensive way to control false positive and negative rates. Such an approach also helps to
assess the sensitivity of the model to the choice of the tuning parameter and provides a means
to suggest reasonable choices to use in the data analysis. As usual in statistical scale space

Bayesian LASSO, Scale Space and Decision Making

PLOS ONE | DOI:10.1371/journal.pone.0120017 April 9, 2015 3 / 26



methods, we visualize our results using color maps. In these scale space maps the horizontal
axis represents the loci, the vertical axis represents the logarithm of the tuning parameter and
the color at each pixel represents either the credibility or the posterior mean of the coefficient
at a locus (cf. Fig. 1).

The importance of exploring a range of tuning parameter values is also emphasized in the
solution path of LASSO [28] and in Bayesian sparsity-path-analysis [29]. In these approaches
the results are visualized by drawing in same plot the estimated effect or the predictive rele-
vance of each loci as a function of the tuning parameter. These plots and our scale space maps

Fig 1. Scale space view of the Bayesian LASSO for the simulated Barley data.Upper panel: the
quantized estimated posterior mean of β for a range of tuning parameters λ. Color categories: setting B =
maxjjβjj, 0: j bj j< B

20
, S: B

20
< bj <

B
5
, M: B

5
< bj <

2B
5
, L: 2B

5
< bj � B. -S, -M, -L: similarly. Lower panel: credibility

analysis to judge QTLs. For a given λ, the loci with credibly positive or negative QTL effects are flagged red or
blue, respectively, and rest of the loci are gray. The locations of true QTLs are indicated with black dots in the
bottom part of the maps. As some of the markers with a non-zero effect were removed, the flanking loci are
indicated with black dots.

doi:10.1371/journal.pone.0120017.g001
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both provide information about the influence of the tuning parameter on the coefficients. The
advantage, however, of using the scale space maps is that the impact of the tuning parameter
on a given markers as well as the QTL candidates can be seen at a glance, whereas in the solu-
tion path type of plots, the markers can not be directly identified.

LASSO and ridge regression are similar penalized regression methods that differ only in the
form of the penalty used. Ridge regression has been criticized for not being able to shrink the
regression coefficients to zero and therefore being unable to perform proper variable selection.
Likewise, ridge regression is considered to suffer from correlation between covariates, distribut-
ing effects between collinear variables. In addition to LASSO, we therefore included in our tests
also Bayesian ridge regression.

The rest of the paper is organized as follows. In Section 2.1, we give a short overview of
LASSO and the Bayesian LASSO. Section 2.2 explains the basic idea of our approach and intro-
duces some of the graphical tools used in the analyses. Section 2.3 discusses methods for han-
dling collinearity and multiple testing. These methods can be used with a fixed or a random
tuning parameter. The scale space view is taken up again in Section 2.4 where the decision
making in scale space is discussed. The ideas suggested in this paper are applied to Bayesian
ridge regression and classic LASSO in the on-line supplement S1 Appendix. The feasibility of
the methods is demonstrated with three data sets in the Results section. First, in Subection 3.1,
we describe the suggested procedures in more detail using a simulated genetic data set. A larger
simulated data set is analyzed in Subsection 3.2 and a real dataset is analyzed in Subsection 3.3.
Finally, the last section contains a summary and a discussion of the results.

Methods

2.1 LASSO and Bayesian LASSO
Consider the regression model

y ¼ m1þXbþ �; ð1Þ
where y = [y1,. . .,yn]

T is the n×1 response vector, μ is the overall mean, X = [xij] is the n×m de-
sign matrix of standardized regressors, β = [β1,. . .,βm]

T is them×1 vector of regression coeffi-
cients and ε = [�1,. . .,�n]

T is an n×1 zero mean Gaussian i.i.d. noise vector with variance σ2.
In LASSO regression of [30], the estimates of the regression coefficients are obtained using

L1-constrained least squares. Thus,

b̂ ¼ arg min
b

k y� m1�Xb k2 þ l
Xm
j¼1

jbjj
 !

: ð2Þ

Here λ� 0 is a tuning parameter that controls the weight of the penalty term in the penalized
least squares. The larger the value of λ, the sparser the estimate of β is [30].

The minimizer of (2) is actually equal to the posterior mode of the model (1) when the re-
gression coefficients in β are assumed to have independent Laplace priors [30]. Laplacian dis-
tribution can be fitted either nonhierarchically [31] or hierarchically using so-called scale-
mixture parametrization [32]. In the Bayesian LASSO, the scale-mixture parametrization is
more often used as it provides straightforward and transparent conjugacy properties and easier
implementation [33]. Park and Casella [3] used a conditional Laplace prior of the form

pðbjs2Þ /
Ym
j¼1

e�ljbjj=
ffiffiffiffi
s2

p
ð3Þ
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with the scale-mixture approach and obtained the hierarchical model

yjm;X; b; s2 � Nðm1þXb; s2IÞ;
bjs2; t21; � � � ; t2m � Nð0; s2DtÞ;

Dt ¼ diagðt21; � � � ; t2mÞ;

pðs2; t21 � � � ; t2mÞ / pðs2Þ
Ym
j¼1

l2

2
e�l2t2j =2;

s2; t21; � � � ; t2m > 0:

ð4Þ

For σ2, they suggested an uninformative prior, p(σ2)/ 1/σ2, or any inverse-gamma prior and
for μ, a flat prior was proposed. In the prior (3), λ is scaled with σ2 to guarantee a unimodal full
posterior distribution. Park and Casella proposed to either estimate the tuning parameter λ
using marginal maximum likelihood or to set a gamma prior for λ2.

2.2 A scale space approach
In nonparametric regression, the signal underlying noisy data y is often estimated by a smooth
Sλ y, where Sλ is a smoothing operator and the smoothing parameter λ> 0 controls the level of
smoothing applied. Consider for example time series data

y ¼ mþ �;

where μ is the underlying truth and ε is noise. An example of a smoothing operator is the dis-
crete spline smoother defined by

Sly ¼ argmin
u

k y� u k2 þ luTQuf g ¼ ðIþ lQÞ�1
y; ð5Þ

whereQ = CT C and Cu is the vector of second differences of u (see [17, 34, 35]). The tradition-
al procedure is to look for a λ for which Sλ y� μ. This can be difficult and the scale space ap-
proach sidesteps the problem by considering all smoothing levels, with each smooth thought to
provide valuable information about μ at a particular scale. The effect of the smoothing parame-
ter on the data in a similar context is visualized e.g. in the top panel of Fig. 2 in [36].

Clearly, the role of the tuning parameter λ is similar in (2), (4) and (5) in that a small penalty
(small λ) produces an estimate with many details (variables), whereas a large penalty (large λ)
results in a smooth or sparse estimate with fewer details. We therefore propose a scale space
version of LASSO and the Bayesian LASSO where, instead of a single tuning parameter, a
whole range of λ’s is considered. And, just as in other statistical scale space methods (e.g. bot-
tom panel of Fig. 2 in [36]), the results are visualized in color maps that summarize the results
of the analyses. An example of such a map is the upper panel Fig. 1 with each row showing the
posterior mean of β for the value of λ indicated on the vertical axis.

In addition to estimating the coefficient vector β, we also want to detect the individual re-
gression coefficients βj that have a credible effect on the response variable. This is done by ana-
lyzing the posterior distribution of β for each λ. In association genetics one typically considers
the marginal posterior distributions of the individual regression coefficients βj separately and
detects loci j where the (1−κ)-level credible interval of βj does not contain zero (cf. [11]), and
where often the value κ = 0.05 is used. This is achieved by finding the loci where P(βj > 0jy)>
α or P(βj < 0jy)> α, with α = (1−κ/2) = 0.975. In practice, this is done by indentifying the loci
where the proportion of positives or negatives in the posterior sample exceeds 0.975. We call
such marginal inference point-wise (PW) as it only considers one locus at a time. The results
are again visualized using a map, an example of which is shown in the lower panel of Fig. 1. We
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believe that scale space analyses such as those summarized in Fig. 1 help to determine a reason-
able value for λ that then can be used in making decision about interesting associations in the
data. They also inform the analyst about the sensitivity of the results to the choice of the
tuning parameter.

For LASSO, Tibshirani [30] visualized the dependence of β on the tuning parameter by so-
called trace plots, drawing in the same plot the effects βj as a function of λ for all j = 1,. . .,m. In
solution path of LASSO [28] and Bayesian sparsity-path analysis [29] similar plots were also
used to visualize the dependence of the effects on the tuning parameter. While both trace and
solution path plots and our scale space maps all shed light on the effect of the tuning parameter
on the estimated regression coefficients, the advantage of scale space maps is that they enable
the identification of the possible QTL loci at a glance whereas in solution path type of plots the
QTL’s cannot be directly identified.

To increase the usefulness of the proposed methods, three problems need to be addressed.
First, a small value of λ produces a large number of false positives, that is, coefficients βj that

Fig 2. QTL credibility analysis of simulated Barley data with the Bayesian LASSO using a random λ. Top panel: the true effect vector β. Second and
third panels: the loci with credibly non-zero effects detected using point-wise and simultaneous inference, respectively. Here 1 corresponds to a credibly
positive locus and -1 corresponds to a credibly negative locus. Fourth and fifth panels: the loci with credibly non-zero coefficients detected using point-wise
and simultaneous inference when also combined effects are considered. See the text for the interpretation of the bar heights.

doi:10.1371/journal.pone.0120017.g002
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erroneously appear as credibly non-zero. This is due to the fact that when σ2 is treated as a ran-
dom variable, its posterior distribution depends on the value of λ. When the number of explan-
atory variables is about the same as the number of observations and λ is small, the posterior
mean E(μ 1+X βjy) resembles the data y and the posterior mean of σ2 is small, which produces
a lot of false positives. In a scale space map, QTL effects can be identified by a color bar that
persists through a wide range of λ’s. This approach is based on an assumption that the effect
sizes of the most important markers are substantially larger than those of the unimportant
ones and that therefore increasing λ shrinks them to zero more slowly than markers with no ef-
fect. A threshold for λ can be set by the eye by finding a value for which only the strongest ef-
fects are credible. In Section 2.4 we propose a more formal, phenotype permutation based,
approach for limiting λ. As a different approach we also propose to let the credibility level α de-
pend on λ and then determine α(λ) using phenotype permutations.

Second, if the explanatory variables are collinear, PW inference has difficulty in detecting
the important variables among all explanatory variables because an effect may be distributed
over several collinear variables so that none of them is detected separately. In Section 2.3.1 we
propose to solve this problem by considering not only individual effects but also their func-
tionals (sums and differences). Finally, there is the problem of “multiple comparisons” when
only the marginal posterior distributions are considered in the inference. This problem is ad-
dressed in Section 2.3.2.

2.3 Collinear explanatory variables and inference under multiple testing
The methods that we propose for handling collinearity and inference for multiple testing are
not tied to the scale space view and may therefore be used also in the traditional setting where
the tuning parameter λ is either set random or estimated from the data.

2.3.1 Posterior inference for correlated regressors. The most straightforward approach
to collinearity of variables xj and xk is to consider the proportion of posterior samples where at
least one of the coefficients βj or βk is positive/negative. This approach is particularly applicable
with methods in which inclusion of a locus j in the model is indicated by an auxiliary indicator
variable (slab-and-spike) but in principle it can be used in other contexts, too. Collinearity is
handled with such an approach e.g. in [12] using stochastic search variable selection (SSVS)
[37].

The problem with applying such an approach in the Bayesian LASSO or ridge regression is
that the posterior probability of an effect depends on the correlation between the explanatory
variables. This is of course undesirable and we propose to estimate the combined effect of xj
and xk using the posterior distribution of βj+βk or βj−βk. This can be justified as follows. The
combined effect of xj and xk is βj xj+βk xk and with the genetic data sets considered here, the
possible values of xlj and xlk are 1 and -1. Therefore, if xlj = xlk the combined effect of xj and xk
on the observation yl depends on the sum βj+βk. It may, however, happen that the direction of
indicator variables of a group of collinear loci may be opposite in which it is supposed to fit
[38, 39]. Therefore, we also consider the difference βj−βk. To reduce the number of combined
effects one needs to analyze, we choose a threshold 0.5< ρ< 1 and for βj+βk only test pairs for
which the proportion of observations with xlj = xlk exceeds ρ and for βj−βk we only test pairs
for which the proportion observations with xlj 6¼ xlk exceeds this limit. In all our examples we
took ρ = 0.8. In the following we will denote by δjk a combined effect, either βj+βk or βj−βk. The
posterior distribution of δjk is used to compute a credible interval and the combined effect is
considered credible if the interval does not contain zero.

Note that we do not require that the combined effects consist of neighboring loci. This is an
important point as the markers that are members of the same biological pathway could be
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highly correlated but their chromosomal positions do not have to be physically close to each
other. Also, if needed, the method could easily be extended to handle combinations of three or
more effects. If one tests only the combinations where the pairwise proportion of xlj = xlk
(or xlj 6¼ xlk) is higher than ρ, the number of combinations should not explode, given that the
value of ρ is high enough.

2.3.2 Simultaneous inference. We adopt here the method of highest point-wise probabili-
ties (HPW) suggested in [17]. Collecting the combined effects into a vector δ and denoting
γ = [βT,δT]T, HPW selects the components of γ in an order of descending marginal (PW) prob-
ability as long as the joint probability of positivity or negativity of the selected effects exceeds
the desired credibility level α. We use the value α = 0.95. Here we modify this procedure so that
γs = βj will not be included if a combined effect containing βj has already been selected. Also, a
combined effect γs = δjk cannot be selected if βj, βk, or δpq has already been selected and j or
k belongs to the set {p,q}.

The strength of the HPWmethod is that the detection of the most important loci does not
depend on the number of tested insignificant coefficients or combined effects, which is the case
for example with permutation tests. Hence, the few most important loci are equally detectable
among hundreds or thousands of dispensable coefficients.

2.4 Decision making and scale space
In this section we propose two alternative ways to handle the multiple false positives with small
values of the tuning parameter.

2.4.1 Limiting the tuning parameter value. In Section 2.2 we argued that the number of
false positives can be reduced by selecting a λ threshold where only the strongest effects are
credible. In addition to such a visual inspection, a more formal rule for limiting λ procedure
can be adopted. For this, we deviate from the Bayesian paradigm and propose to use a pheno-
type permutation based approach to limit the values λ considered in detection (see [8]). A limit
is obtained separately for PW and for HPW inferences as follows. Credibility maps such as the
one in Fig. 3 are constructed repeatedly using hypothetical data sets where the phenotype vec-
tor y is randomly permuted under the null hypothesis of no phenotype-marker association.
The limit of λ is then set to the level where 95% of the repetitions produce no false detections.

2.4.2 Connecting credibility level and the tuning parameter. One can also control the
number of false positives that appear for small values of λ by adjusting PW inference so that,
depending on λ, the credibility threshold α can have a higher value than the usual 0.975. Again,
phenotype permutation will be used (cf. [12]). For each λ we permute repeatedly the phenotype
vector y randomly. Then, for a fixed λ and a fixed permutation, we compute the maximum of
the marginal posterior probabilities of the effects and the combined effects of being either posi-
tive or negative. The value α(λ) is then the 0.95 quantile of this maximum when all permuta-
tions are considered. For a given λ, the effects and combined effects for which the marginal
probability exceeds max{α(λ),0.975} are then flagged as credible. Despite the fact that only
marginal probabilities are used, this procedure can be viewed as a version of simultaneous in-
ference because maximum taken over the individual probabilities is used to set the
credibility level.

Results

3.1 An illustrative example
We demonstrate the scale space approach in the Bayesian LASSO using an artificial genetic
data set with n = 145 observations andm = 127 explanatory variables. The design matrix
X = [x1,. . .,xm] is taken from the well-known North American Barley data set published in
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[40]. This is an experimental dataset arising from a line crossing experiment. Each entry of X
has two possible values, 1 or -1. We did not standardize the xj vectors. However, some values in
the original matrix X were missing and we treated them as follows. Five loci (variables) that
contained a considerable number of missing values (from 33% to 55%) were removed from X.
In all the remaining loci the percentage of missing values was less than 20 and on average 3.4.
The missing values in the remaining loci were imputed once at random with equal probability
for 1 and -1. The associated QTL effect vector β is shown in Table 1. Gaussian i.i.d. noise with
standard deviation 8 was added to X β to obtain y which then represents the observed pheno-
types. The heritability in the data, that is, proportion of phenotypic variance attributable to ge-
netic factors, Var(X β)/Var(y), was approximately 0.89.

One of the difficulties in genetic marker detection is that usually the QTL is located between
two markers. As the neighboring marker patterns are usually correlated, such an effect needs to
be found using the flanking loci. In this data set also, the correlation between the genotype pat-
terns xj and xj+1 is high in adjacent loci j and j+1. In order to emphasize the impact of collinear-
ity when the true genotypes of the QTL cannot be observed, four of the eight QTLs were

Fig 3. Scale space QTL credibility analysis of the simulated Barley data. Left: PWmap with combined effects. Right: HPWmap with combined effects.
The white horizontal line marks the posterior mean of the tuning parameter λ. The black line marks the phenotype permutation based threshold for λ. The
precise significance of the colors follows the conventions adopted in Section 3.1.2, where each associated numerical value corresponds to a particular
credible instance of a combined effect. These numerical values also determine the bar heights in illustrations such as Fig. 2.

doi:10.1371/journal.pone.0120017.g003
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removed from X before the analysis (see Table 1). The high heritability in the complete data
might suggest an easy detection task. However, as four QTLs have been removed from the data
prior the analysis, only partial QTL information is left in the data and carried by the closest
flanking markers.

In Section 3.1.1 we show the basic scale space analysis highlighting the problem of numer-
ous false positives obtained with small tuning parameter values and the need to take the collin-
earity into account. In Section 3.1.2 we demonstrate our solutions for collinearity and multiple
testing, for the sake of simplicity, first using a random tuning parameter. Finally, in Section
3.1.3 we return to the scale space setting and demonstrate the use of our tools for collinearity,
multiple testing and exclusion of the false positives produced with a small value of the
tuning parameter.

3.1.1 The basic scale space analysis. As suggested in [3], an uninformative prior p(σ2)/
1/σ2 was used for the noise variance. The posterior sample was drawn from (4) using the R-
package BLR [41]. To be able to obtain the marginal and joint posterior probabilities of the co-
efficients, we modified the BLR-function so that it returns the posterior samples. The modified
code can be downloaded from http://cc.oulu.fi/*lpasanen/SSBLASSO and lib.stat.cmu.edu/
general/SSBLASSO.zip. After a burn-in period of 2.5�104 iterations, we kept every 4th sample
until 104 samples were obtained. For scale space analysis, the λ-range included 80 values from
10−0.7 to 102 with logarithmic spacing.

The posterior mean of βj at each locus j and for each λ is displayed in the upper panel of
Fig. 1. For clarity, the effect sizes were quantized to 7 levels. The QTLs are indicated with black
dots in the lower part of the map. Large absolute values of the βj’s are indicated by the pattern
of strong colors in the lower part of the map. This is expected because the penalty for large jβjj
is mild for a small λ. Around λ = 101 most of the actual QTL effects clearly differ from zero
while the rest of the βj’s appear to have shrunk close to zero. When λ> 102 all coefficients have
become small.

The credibility map is shown in the lower panel of Fig. 1. In this map, each row summarizes
the credibility of the vector β for a given value of λ. Here credibility is assessed point-wise,
treating each locus separately and identifying the coefficients whose 95% posterior credible in-
terval does not contain zero. Red and blue flag the credibly positive and negative coefficients.
There is a large number of false positives for λ< 10−0.25. A threshold for λ can be set by the eye

Table 1. The non-zero components of the QTL effect vector β for the simulated Barley data.

Original locus Adjusted locus Simulated effects βj

3 (2,3) 3

10 9 3.5

20 19 4

34 33 -2.5

51 (48,49) -3

72 67 -2

84 (78,79) 3

108 (100,101) -3

The original and the adjusted loci indicate the locations of the QTL effects before and after modifying the

data (i.e. after removing the five markers with considerably many missing values and the four QTL

markers). As some of the markers with a non-zero effect were removed, the flanking loci are indicated in

the middle column.

doi:10.1371/journal.pone.0120017.t001
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by finding a value for which only the strongest effects are credible. In the credibility map of
Fig. 1, most false positives disappear while the actual QTLs remain credible when λ> 100.5. A
suitable threshold for λmight therefore be for example λ = 101.

In addition to false positives, another concern is the difficulty to detect effects in the pres-
ence of collinearity among loci genotype patterns xj. In this example, when λ> 100.5, the effect
at the locus (48,49) is not credible and the effect at (2,3) is barely so when λ> 100.5 and there-
fore both would be missed if a limit λ = 101 would be applied. The map of posterior means
(upper panel of Fig. 1) shows that the effect at (48,49) has been distributed over several neigh-
boring loci none of which is strong enough to be detected in the credibility map unless λ is well
below 100.5.

3.1.2 Analysis with a random tuning parameter. In this section we illustrate the perfor-
mance of our methods for handling collinearity and simultaneous inference using random tun-
ing parameter. We use λ with the improper uninformative prior p(λ)/ 1/λ and a random σ2

with the improper prior p(σ2)/ 1/σ2. A sample of size 1.5�104 from the posterior distribution
of β was drawn by keeping every 10th sample after a burn-in period of 7�104 iterations. Fig. 2
displays the credibly positive and negative effects obtained with different approaches. The top
panel in Fig. 2 presents the underlying true β. As the original trait loci (3, 51, 84, 108) were re-
moved from the data, their associated effects are in this plot divided equally between the two
flanking loci. The rest of the panels show the loci detected by PW and HPW inferences with
and without combined effects. The bar heights do not reflect the actual effect sizes but only the
type of credibility inferred at each locus as follows. In PW and HPW analyses without com-
bined effects, the values 1 and -1 indicate a locus with a credibly positive and credibly negative
effect, respectively. When also combined effects are considered, 1 at a locus j indicates that βj is
credibly positive whereas 0.75 and 0.25 indicate that at least one of the following is true: a sum
δjk (or δkj) is credibly positive or a difference δjk is credibly positive, (or the difference δkj is
credibly negative). Here the value 0.75 indicates that the effect βj is the member of the two ef-
fects involved in δjk (or δkj) with the higher marginal posterior probability of being positive or
negative and the value 0.25 indicates that βj is the effect with the lower marginal probability. If
more than one of these conditions hold at a locus j, the condition that results in the highest bar
height is applied. The interpretation is analogous for the negative values -1, -0.75 and -0.25.

As indicated by the upper map of Fig. 1, collinearity spreads the effects at the loci (48,49)
and (2,3) over their neighborhoods and Fig. 2 shows that these loci are in fact not detected un-
less combined effects are included in the analysis. We also notice that a false positive sum
β89+β90 is detected both by PW and HPW inference. This is due to the fact that the posterior of
the tuning parameter λ favors slightly too small values with this data set.

For these data, point-wise and simultaneous inference produce rather similar results. If
combined effects are not considered, the results are in fact identical. When the combined ef-
fects are included, several loci near the QTLs are detected by PW inference because for QTL
locus j, any combined effect involving βj can be credibly positive or negative. The best candi-
date for a QTL then is the locus with the larger marginal probability, that is, the locus where
the height of the bar is either 0.75 or 1. With simultaneous inference (HPW), only the strongest
sums or effects are detected.

3.1.3 Improved Scale space analysis. Fig. 3 presents the scale space view of PW and HPW
inferences when also combined effects are considered. For small λ, many false positives appear,
even with simultaneous (HPW) inference. In Section 3.1.1 we suggested that the QTLs could
be detected as the highest peaks in PW and HPWmaps. In both maps of Fig. 3 the QTLs in-
deed can be detected without false alarms provided that inference is limited to rows where
λ> 101.
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Next we will consider a phenotype permutation based threshold for λ. The summaries of
100 repetitions using PW and HPW inference are shown in Fig. 4. In the maps, each row repre-
sents the distribution of the number of false positives at a given value of λ. As one QTL may
create several credibly non-zero combined effects, the number of false positives here is defined
as the number of loci with “credibility type” 1, -1, 0.75 or -0.75 (cf. Section 3.1.2). For small val-
ues of λ all repetitions contain at least 10 false positives. The distribution changes rapidly when
λ is in the interval [100,101] so that at least 95% of the repetitions have no false positives at λPW
� 101.32 for PW inference and at λHPW � 101.45 for HPW inference. These levels are marked
with black lines in Fig. 3. In PW inference, the peaks at all QTL positions exceed λPW, whereas
for HPW the limit λHPW is rather conservative as three effects do not quite reach it. However,
the missing locus (48,49) is discovered anew when λ> 101.5 and therefore can be considered as
being detected. For comparison, the posterior mean of λ is marked with a white line. It is well
below the thresholds obtained by permutations. This is in line with the fact that in Section
3.1.1, PW and HPW inferences with a random λ detected all the QTLs but produced also one
false positive (cf. Fig. 2).

We observed in Section 3.1.1 that PW inference detected all combined effects that involve a
true QTL. For the same reason, the peaks in a PWmap such as the left panel of Fig. 3 are wide.
For example, the QTL at locus 9 is detected in sums β9+βk, k = 8,10,11,12. However, in all these
sums, the marginal posterior probability is higher at the locus 9, the rest of the loci being
weaker members of the sum. The best QTL candidate is therefore locus 9. The peaks in the
HPWmap (right panel of Fig. 3) are thin since only the strongest sum or an individual effect is
detected. For example, only the sum β9+β10 is flagged as credible, with locus 9 being the
stronger member.

Second, we consider the approach where the credibility level is let to depend on the tuning
parameter. The scale space map using this procedure with 100 random permutations is dis-
played in the left panel of Fig. 5. The color coding is the same as in an ordinary PWmap with
combined effects (cf. Fig. 3). The function α(λ) is displayed in the right panel with the limit α =
0.975 shown with a vertical dashed line. For small λ, α(λ) = 1 and none of the QTLs are

Fig 4. The distribution of the number of false positives for simulated Barley data under the null hypothesis of no effects. Each row represents the
distribution of the number of false positives in 100 samples generated under the null hypothesis with a fixed value of λ. Left and right panels represent the
results obtained with PW and HPW inference, respectively. The white horizontal line marks the posterior mean of the tuning parameter λ. The black line
marks the λ-level where 95% of the repetitions produce no false detections.

doi:10.1371/journal.pone.0120017.g004
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detected. As λ increases, α(λ) decreases and consequently the marginal posterior probability of
a positive or negative effect decreases at loci with zero true effect. At the same time, the posteri-
or probability of a non-zero effect for true QTLs hopefully remains high. In the present exam-
ple, every QTL is detected with at least one value of λ.

3.1.4 Comparisons. Detection results for the two methods proposed in Section 2.4 as well
the standard approach of treating λ as random are compared in Fig. 6. True effects are dis-
played in the top panel. The second and third panel show the results of HPW inference using
random λ and λ� λHPW, respectively. In the third panel, the bar height at a locus is set to the
maximum absolute “credibility type” value over all values of λ� λHPW in the HPW scale space
map (cf. Section 3.1.2 or caption of Fig. 3 where the numerical values associated with the credi-
bility types are defined). The fourth panel shows the results for a λ-dependent credibility
threshold α. The bar length at a locus j is now defined as the maximum absolute credibility
type value over all λ’s in the α(λ) scale space map shown in left panel of Fig. 5. All the QTLs are
detected, either by considering λ random or with PW inference, both by employing the lower
bound λ� λPW or a λ-dependent credibility level. However, random λ also produces one false
positive sum effect. Using the lower bound λ� λHPW seems to be more conservative and two
QTLs are missed.

3.2 Simulated Wheat data
In our second example, the regression model design matrix X is the design matrix of Wheat
data from International Maize and Wheat Improvement Center (CIMMYT) [42]. The data
was obtained from the BLR R-package [41], where the markers with a minor allele frequency
lower than 0.05 were first removed. In our experiments we used the 400×300 upper left corner
of this matrix. Hence, there arem = 400 explanatory variables and n = 300 observations. These
are more typical association data available for breeding populations. We used the coding -1
and 1 for the two genotypes without standardization. In contrast to the simulated Barley data,
now neighboring loci are practically uncorrelated. There are several loci where the frequency of
the value 1 is over 0.9 or less than 0.1. For meaningful inference, these loci were ruled out when
QTLs were defined. The QTLs set for this simulated example are presented in Table 2. The

Fig 5. Using a λ-dependent credibility threshold for the simulated Barley data. Left: QTL credibility
analysis using PW inference with a λ-dependent credibility threshold. For color coding see the caption of
Fig. 3. Right: The dependency between α and λ with the limit α = 0.975 marked with a dashed line. See the
text for more information.

doi:10.1371/journal.pone.0120017.g005
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observation vector y was obtained by adding Gaussian noise with standard deviation 8 to the X
β to. Heritability for these data is approximately 0.77.

For posterior sampling we used the same setup as with the simulated Barley data set of Sec-
tion 3.1. For scale space analysis we used 50 values of λ ranging from 10−0.3 to 101.7 with

Fig 6. Comparison of detectionmethods for the simulated Barley data when the Bayesian LASSO is used. Top panel: the true QTL effect vector β.
Second panel: the results for HPW inference with a random λ. Third panel: the results for HPW inference by limiting λ using phenotype permutation. Bottom
panel: results for the λ-dependent credibility threshold. See Section 3.1.2 for the interpretation of the bar heights.

doi:10.1371/journal.pone.0120017.g006

Table 2. The non-zero components of the QTL effect vector β for the simulatedWheat data.

Locus Simulated effects βj Locus simulated effects βj

7 1.75 218 -2.25

76 2 273 -1.75

118 2.5 344 2.5

162 -2.25 395 -2.25

181 1.5

doi:10.1371/journal.pone.0120017.t002
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Fig 7. Scale space Bayesian LASSOQTL analysis of the simulatedWheat data.On left, from top to bottom: the quantized estimated posterior mean of β
for a range of tuning parameters λ, QTL credibility analysis with PW and HPW inference. The white horizontal line marks the posterior mean of a random λ.
The black line marks the phenotype permutation based threshold for λ. Right from top to bottom: the QTL credibility analyses without combined effects with a
λ-dependent credibility threshold, PW inference and HPW inference. For color interpretation see captions of Fig. 1 and Fig. 3.

doi:10.1371/journal.pone.0120017.g007
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logarithmic spacing. The scale space Bayesian LASSO map is shown in the top left panel of
Fig. 7 and the corresponding PW and HPW credibility maps are in the middle and the bottom
left panels. The phenotype permutation based limit for λ (obtained using 100 permutations) is
marked with a black line and the posterior mean of a random λ is marked with a white line.
Most of the QTLs stand out from false positives as higher peaks in the HPWmap.

The high yellow and light blue peaks in the PWmap are caused by the QTL at locus 76
where most (87%) observations have the value -1, and which therefore correlates with some of
the other loci for which the frequency of 1 or -1 is high, making combined effects involving the
locus 76 and such loci credible. However, in all of these false detections the correlated locus is
the weaker member of a combined effect and therefore should not be considered as a QTL.
This underlines the importance of considering only the member of combined effect with the
higher marginal posterior probability as a QTL candidate. The numerous yellow and light blue
false alarms could be eliminated by using a higher threshold than the value ρ = 0.8 employed
now (cf. Section 2.3.1); for example, setting ρ = 0.9 would eliminate most of them. None of this
is a problem for HPW inference that picks only the strongest effect involving a locus. All QTLs
except for locus 76 exceed the phenotype permutation limit in PW inference. Also, only very
few weaker effect members are falsely flagged as credible. Being more conservative, HPW infer-
ence misses the QTLs at the loci 7 and 76. At loci 7 and 76, the frequency of the values 1 and -1
is high (0.86 and 0.87, respectively). This great imbalance probably explains the difficulty of de-
tecting these QTLs.

The PW and HPWmaps obtained without considering the combined effects are shown in
the middle and bottom right panels of Fig. 7. Now in the PWmap all QTLs exceed the permu-
tation based limit and for the HPWmap this is the case for all QTLs except locus 76. The fact
that the phenotype permutation approach now produces more liberal results stems from two
facts. First, unlike for the simulated Barley data considered earlier, the effects now are not dis-
tributed over several loci and the QTLs can in fact be found directly from the posterior mean
effects vector (top left panel of Fig. 7). Second, since combined effects were not included in the
inference, the number of effects involved in phenotype permutations used was smaller which
pushed the λ-limit lower. Locus 7 which was missed by combined effects analysis is now de-
tected both by PW and HPW inference. The result with λ-dependent credibility and no com-
bined effects is shown in the top right panel. All QTLs are detected. Including the combined
effects in the analysis would result in a large number of yellow and light blue peaks just as in
the ordinary PWmap in the middle left panel. However, such inference is more sensitive and it
detects locus 7 (see S1 Fig.).

Fig. 8 summarizes the results for the different approaches when combined effects are includ-
ed in the analyses. We note that this time treating λ as random in HPW inference produces the
falsely positive sum β65+β361 with the non-existent effect β361 flagged as the stronger partner.

3.3 Barley data
In our last example we analyze the real Barley data set described in [40] using the average value
of kernel weight over environments as the observed phenotype. This time the missing values in
X were not imputed but instead set to the neutral value 0. The posterior sampling scheme and
the scale space λ-range were the same as with the simulated Barley example in Section 3.1. The
HPWQTL credibility maps with and without combined effects are shown in the upper panels
of Fig. 9. The PWmaps with combined effects using either a fixed or a λ-dependent credibility
level are shown in the bottom panels. As before, the threshold for λ obtained with phenotype
permutation is marked with a black line and the posterior mean of a random λ is marked with
a white line.
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Since we now deal with a real data set, the true QTLs are not known. However, to compare
our methods with other approaches, we have denoted by black dots in the lower parts of the
maps the loci detected using LASSO, an elastic net or adaptive LASSO in [43] as well as the
ones detected in [44] using an empirical Bayes method (E-BAYES) that aims to map epistatic
QTLs under the mixed model framework. In E-BAYES, six most important markers are de-
tected without any specific decision making process. In LASSO, elastic net and adaptive
LASSO the multi-split method of Meinshausen et al. [45] was used. In that case, different com-
binations of markers 2, 11 or 12 and 101 or 102 were detected. In addition to these, markers 37,
43 and 75 were detected with E-BAYES.

In the HPW and PWmaps with the combined effects (top and bottom left in Fig. 9), there
are several peaks that stick out of an apparent background of false positives. However, the phe-
notype permutation based limit of λ (black line) is rather conservative with HPW inference,
flagging only the loci 2, 12 and 102 as QTLs. Using PW inference with a λ-dependent credibili-
ty level (lower right panel of Fig. 9) also the markers 34 and 43 are detected while PW inference

Fig 8. Comparison of the different detectionmethods with the Bayesian LASSO for the simulatedWheat data when combined effects are not
considered. Top panel: the true QTL effect vector β. Second panel: the results for HPW inference with a random λ. Third panel: the results for HPW
inference by limiting λ using phenotype permutation. Bottom panel: the results for λ-dependent credibility threshold. See Section 3.1.2 for the interpretation of
the bar heights.

doi:10.1371/journal.pone.0120017.g008
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detects loci 2, 12, 102 and 43 and almost locus 34 (left lower panel of Fig. 9). Random λ based
limit (white line) is again the most liberal adding the loci 27 and 32 to the set of QTLs. The dif-
ferent detection methods are compared using bar plots in Fig. 10.

The replacement of missing values with zero may cause combinations where the percentage
of xlj 6¼ xlk exceeds ρ due to the zero values. In this dataset there were 16 such combinations.
However, none of the corresponding effects could be considered credible at a reasonable level
of λ.

If combined effects are not included in the analysis, the peak at locus 2 does not exceed the
permutation based limit in HPW inference (upper right panel of Fig. 9) and with a random λ
the loci 2 and 27 and 32 are not detected in HPW inference (see panel 3 of S2 Fig.). Further, in

Fig 9. Scale space Bayesian LASSOQTL analysis for the real Barley data set.Upper left and right: HPW credibility maps with and without combined
effects. Lower left and right: PW credibility maps with combined effects using either a fixed or a λ-dependent credibility threshold. The white horizontal line
marks the posterior mean of a random λ. The black line marks the phenotype permutation based threshold for λ. For color interpretation see captions of Fig. 1
and Fig. 3.

doi:10.1371/journal.pone.0120017.g009
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PW inference with either a fixed or a λ-dependent credibility level only the loci 12, 43 and 102
are detected (see S3 Fig.).

Discussion
The tuning parameter λ plays an important role in Bayesian LASSO regression and it is usually
treated as a random variable. In the spirit of scale space methodology, we proposed to consider
instead a whole range of λ’s in the analyses and visualize the results with maps that sum up in-
ferences and help identify the important explanatory variables. In this way information about
the sensitivity of the results to the tuning parameter value is obtained and one does not have to
blindly trust the results obtained with a random λ. Compared to the visualization tools provid-
ed by other approaches that utilize a range of λ’s, the advantage of our scale space maps is the
possibility to locate the QTL candidates with one glance.

Fig 10. Comparison of the different detectionmethods with the Bayesian LASSO for the real Barley data set when combined effects are
considered. Top panel: the estimated effect vector β. Second panel: the results for HPW inference with a random λ. Third and fourth panels: the results for
HPW and PW inference by limiting λ using phenotype permutation. Bottom panel: the results for λ-dependent credibility threshold. See Section 3.1.2 for the
interpretation of the bar heights.

doi:10.1371/journal.pone.0120017.g010
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As the posterior mean of noise variance depends on the tuning parameter, a large number
of false positives are created when λ is too small. Visual inspection can then be used to associate
the highest peaks in a scale space map with important explanatory variables. We also proposed
a permutation based lower bound for useful values of the tuning parameter. As a completely
different approach, we let the credibility level in marginal posterior inference depend on the
value of λ. Other important goals were handling of collinearity among the explanatory vari-
ables and use of simultaneous inference to correct for multiplicity in hypothesis testing. Collin-
earity was taken into account by including combined effects, that is, sums and differences of
regression coefficients in the inference. The method of highest point-wise probabilities was
used for simultaneous inference (cf. [17]). When Bayesian shrinkage models are applied to ge-
netic datasets, the decision making to judge QTLs is often based on frequentist reasoning and
phenotype permutation is typically used to correct for multiple testing [8, 9]. In contrast, the
HPWmethod used here is a Bayesian procedure and we therefore deviated from a fully Bayes-
ian paradigm only to control for the false positives with small values of λ.

The novel methods were tested on three genetic data sets where the goal was to associate ge-
netic markers with observed phenotypes. The design matrix in all of them was taken from a
real data set but in the first two examples the observed phenotypes were artificially constructed.
In the third example, all data was real. In the first artificial data set, neighboring explanatory
variables were collinear and we mimicked a situation where the true QTL is located between
two markers by removing some QTL loci before the analysis. If collinearity was not taken into
account, some QTLs were not detected and considerably better results were obtained by includ-
ing combined effects in the analysis. For the real data set, fewer loci were flagged as QTLs when
the combined effects were not considered. In the second artificial example, none of the QTLs
were removed before the analyses and all QTLs were detected without including
combined effects.

The phenotype permutation based limit for a λ-dependent credibility level worked well for
all three data sets. On the other hand, the permutation based limit for λ seems to be somewhat
more conservative, especially when simultaneous inference was applied. Still, we feel that the
latter approach offers more insight into the data. As both maps can be drawn at the computa-
tional cost of one, we recommended to explore both. In all three examples, more credible vari-
ables were detected with a random λ than by either permutation based approach. However, a
random λmay lead to too liberal detection, as it produced one false positive for both simulated
data sets.

In on-line supplement S1 Appendix we also demonstrated the use of scale space analysis for
Bayesian ridge regression and the classic LASSO. Unlike LASSO, ridge regression has been crit-
icized for not being able to shrink any of the regression coefficients to zero and therefore being
incapable of proper variable selection. Moreover, according to the empirical results of Park and
Casella [3], Bayesian LASSO estimates of the regression coefficients tended to be somewhere
between the estimates produced by LASSO and ridge regression. This is consistent with our
findings. The truly non-zero coefficients were easy to identify from the map of LASSO esti-
mates while in the posterior mean maps for Bayesian ridge regression and the Bayesian
LASSO, the peaks at the QTLs were much harder to discern. LASSO also tends to select only
one variable from a set of collinear variables [46] and therefore does not seem to suffer from
collinearity as much as its Bayesian version or Bayesian ridge regression. However, using our
technique with the combined effects included, non-zero coefficients were detected with both
Bayesian LASSO and Bayesian ridge regression that produced comparable results in
this setting.

A scale space version of the classic LASSO combined with a permutation test led to a rather
conservative detection strategy and consequently many QTLs were missed. However, even
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fewer QTLs might be detected if, instead of the scale space view, the value of the LASSO tuning
parameter λ were estimated from the data using for example BIC or cross-validation. There-
fore, even with the classic LASSO, the scale space approach is valuable in that it provides a
means to evaluate the effect of the tuning parameter on the inference at a glance.

The number of loci included in the model has been moderate in our examples. Much larger
datasets could be analyzed by first screening for the most effective loci using for example the
sure importance screening suggested in [47] and applying then the Bayesian LASSO to the re-
sulting smaller subset of loci.

The Matlab codes used for computations together with instructions for its use and examples
are available at http://cc.oulu.fi/*lpasanen/SSBLASSO. The codes are also available at lib.stat.
cmu.edu/general/SSBLASSO.zip. Posterior sampling was carried out using the modified BLR-
function from R-package BLR [41] but all the computations can be done in Matlab because a
tailor-made interface is provided for running the R scripts from within Matlab. Modification of
the BLR-function so that posterior samples of the coefficients are saved facilitates also for ex-
ample the computation of the posterior distribution of the function of the marker effects in-
cluding heritability and genomic breeding values.

When computing the Bayesian LASSO scale space maps, MCMC posterior sampling is the
most time consuming part. As an example, for the artificial Wheat data, using a Dell OptiPlex
9010 PC with Intel Core i7-3770 CPU and 32Gb of RAM under Windows 7 64-bit operating
system, one MCMC run takes 90 seconds while the subsequent posterior inference takes only 4
seconds. For a scale space map with r λ-values and p phenotype permutations, pr+r distinct
MCMC chains need to be run. However, as all these sampling steps are independent of each
other, computations can be parallelized either by using several computers or
multiple processors.

Another possibility for a speed-up might be to use importance sampling [48]. Since, for a
given phenotype vector, the posterior sample changes only little between subsequent values of
λ, one could transform the MCMC sample obtained with λi to a sample that corresponds to λi
+1. With this approach one could compute a scale space credibility map with just p+1 MCMC
chains. Such an idea has been used with profile of likelihood ratio statistic in [49]. Sequential
Monte Carlo implementation for a similar problem was presented in [29].

A tempting approach to phenotype permutation would also be the “permutation within
Markov chain” technique proposed by Che and Xu [50], where the permutations are carried
out within a single chain. With this approach only 2rMCMC samples would be needed for a
scale space credibility map. Further, if this idea is combined with importance sampling, only
two MCMC chains would be needed. However, no theoretical justification has yet been provid-
ed for the permutation withing Markov chain procedure.

A simple method to speed up the search for the λ-limit would also be to first consider only
few phenotype permutations with a substantially sparser λ-grid than the one used in the scale
space map. This small phenotype permutation sample can be used to identify a λ-interval that
contains the desired limiting value. Finally, a larger number of permutations are generated for
this short interval with the same λ-value density employed in the scale space maps.

Finally we want to point out that while the focus of this paper has been on genetic datasets
with dichotomic explanatory variables, the proposed methods are likely to be applicable also in
other contexts and with other types of explanatory variables. The scale space approach could
also be used to select hyperparameters for other common prior distributions used in Bayesian
variable selection (e.g. [1, 51]).
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Supporting Information
S1 Appendix. Bayesian ridge regression and classic LASSO. Figure A in S1 Appendix: Scale
space view of Bayesian ridge regression for the simulated Barley data. Top left: quantized es-
timated posterior mean effects for a range of tuning parameters 684 λ see caption of Fig. 1 for
interpretation of colors. Top right: credibility map using a λ-dependent credibility threshold.
Bottom panels: PW and HPW credibility maps. In all credibility maps combined effects are in-
cluded in the analysis. For color coding see the caption of Fig. 3. The white horizontal line
marks the posterior mean of a random λ. The Black line marks the phenotype permutation
based threshold for λ.

Figure B in S1 Appendix: Scale space view of LASSO for the simulated Barley data. Left
panel: estimates of the posterior mean effects for a range of tuning parameters λ. Right panel:
scale space inference based on a permutation test. Red and blue flag the significantly positive
and negative effects. The estimates of λ obtained with BIC and cross-validation are marked
with yellow and green lines, respectively.

Figure C in S1 Appendix: Scale space view of Bayesian ridge regression for the real Bar-
ley data. Left: quantized estimated posterior mean effects for a range of tuning parameters λ
see caption of Fig. 1 for interpretation of colors. Right: HPW credibility map with combined ef-
fects combined effects. For color coding see the caption of Fig. 3. The white horizontal line
marks the posterior mean of a random λ. The Black line marks the phenotype permutation
based threshold for λ.

Figure D in S1 Appendix: Scale space view of LASSO for the real Barley data. Left panel:
estimates of the posterior mean effects for a range of tuning parameters λ. Right panel: scale
space inference based on a permutation test. Red and blue flag the significantly positive and
negative effects. The estimates of λ obtained with BIC and cross-validation are marked with
yellow and green lines, respectively.
(PDF)

S1 Fig. Scale space Bayesian LASSO QTL analysis of the simulated Wheat data. The PW
QTL credibility analyses with the combined effects with a λ-dependent credibility threshold.
(EPS)

S2 Fig. QTL credibility analysis of real Barley data with the Bayesian LASSO using a ran-
dom λ. Top panel: The estimates of β obtained with other methods. Second and third panels:
the loci with credibly non-zero effects detected using point-wise and simultaneous inference,
respectively. Here 1 corresponds to a credibly positive locus and -1 corresponds to a credibly
negative locus. Fourth and fifth panels: the loci with credibly non-zero coefficients detected
using point-wise and simultaneous inference when also combined effects are considered. See
the text for the interpretation of the bar heights.
(EPS)

S3 Fig. QTL credibility analysis for the real Barley data with PW inference without the
combined effects. Left: Fixed credibility level. Right: α-dependent credibility level.
(EPS)
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