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Background: Evidence from prevailing studies show that hepatocellular carcinoma
(HCC) is among the top cancers with high mortality globally. Gene regulation at post-
transcriptional level orchestrated by RNA-binding proteins (RBPs) is an important
mechanism that modifies various biological behaviors of HCC. Currently, it is not fully
understood how RBPs affects the prognosis of HCC. In this study, we aimed to construct
and validate an RBP-related model to predict the prognosis of HCC patients.

Methods: Differently expressed RBPs were identified in HCC patients based on the
GSE54236 dataset from the Gene Expression Omnibus (GEO) database. Integrative
bioinformatics analyses were performed to select hub genes. Gene expression patterns
were validated in The Cancer Genome Atlas (TCGA) database, after which univariate and
multivariate Cox regression analyses, as well as Kaplan-Meier analysis were performed to
develop a prognostic model. Then, the performance of the prognostic model was assessed
using receiver operating characteristic (ROC) curves and clinicopathological correlation analysis.
Moreover, data from the International Cancer GenomeConsortium (ICGC) databasewere used
for external validation. Finally, a nomogram combining clinicopathological parameters and
prognostic model was established for the individual prediction of survival probability.

Results: The prognostic risk model was finally constructed based on two RBPs (BOP1 and
EZH2), facilitating risk-stratification of HCC patients. Survival was markedly higher in the low-
risk group relative to the high-risk group. Moreover, higher risk score was associated with
advanced pathological grade and late clinical stage. Besides, the risk score was found to be
an independent prognosis factor based on multivariate analysis. Nomogram including the risk
score and clinical stage proved to perform better in predicting patient prognosis.

Conclusions: The RBP-related prognostic model established in this study may function as a
prognostic indicator for HCC, which could provide evidence for clinical decision making.

Keywords: prognostic model, survival analysis, hepatocellular carcinoma, RNA-binding proteins, The Cancer
Genome Atlas (TCGA)
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INTRODUCTION

Hepatocellular carcinoma (HCC) is classified as one of the most
prevalent cancers globally, posing a serious threat to human
health. According to the global cancer statistics, there were
nearly 782,000 cancer-associated deaths and 841,000 new cases
of HCC, ranking fourth and sixth in all tumors, respectively (1).
Although much progress have been made in the diagnosis and
treatment of HCC, 5-year survival rate has not been improved
largely due to high rates of recurrence and metastasis (2, 3). The
occurrence and progression of HCC are driven by multiple
processes affected by both genetic and environmental factors
(4). In recent years, accumulating evidences have suggested that
post-transcriptional modifications play an important role in the
malignant phenotype of tumors, and these changes are strongly
linked to the clinical course of patients (5–7). Thus, it’s of great
significance to systematically explore relevant biological
biomarkers for HCC management.

RNA-binding protein (RBP) is a general term for the group
of proteins that exert its function by binding to RNA
specifically, such as RNA maturation, transport, localization
and translation. To date, human genome-wide screening has
identified 1,542 RBP genes, accounting for 7.5% of all protein-
coding genes (8). With few exceptions, most of RNAs are
required to form RNA-protein complex to perform specific
biological functions (9). In this process, RBPs exert essential
role, especially in gene expression and the maintenance of
genome integrity (10, 11). While the significance of post-
transcriptional regulation to tumor initiation and progression
has been recognized, the role of RBPs in HCC is still
rudimentary. Several studies have demonstrated the aberrant
expression of RBPs in HCC (6, 12–14). For instance, RBP RPS3
was markedly up regulated in HCC tumor tissues and served as
a critical tumor-promoting factor via up-regulating SIRT1.
Targeting against the RPS3/SIRT1 pathway holds much
promise as a target for therapeutic exploitation for the
treatment of HCC (12). RBP eIF3C has been reported to
promote cell growth in vitro and tumorigenicity in vivo (14).
Furthermore, Yang et al. reported that RBP MEX3A could
independently reflect the clinical course of HCC, and
overexpression of MEX3A predicted poor prognosis (13).
However, large-scale prognostic signature based on RBP
genes in HCC has rarely been investigated. Therefore, a
systematic study to explore prognosis-related RBP genes will
be helpful to understand their roles in the initiation and
progression of HCC, and will also have great value in guiding
decision-making.

In this study, RBP genes expression data was derived from
The Cancer Genome Atlas (TCGA), International Cancer
Genome Consortium (ICGC) and Gene Expression Omnibus
(GEO) databases to develop and validate a prognostic model for
long-term prognostic prediction of HCC patients. To make full
use of the complementary significance of molecular expression
and clinical features, we combined the prognostic model with
clinical parameters to construct a comprehensive prognostic
nomogram, further improving the predictive power.
Frontiers in Oncology | www.frontiersin.org 2
MATERIALS AND METHODS

Data Source
HCCGeneChip data (GSE 54236) was derived from the National
Center for Biorechnology Information (NCBI) GEO DataSets.
GSE 54236 was prepared from the Agilent GPL 6480 platform
(Agilent-014850 Whole Human Genome Microarray 4×44K
G4112F) including 81 human HCC tissue and 80 non-tumor
tissue samples. Besides, we downloaded the level-three
transcriptome RNA-sequencing data of LIHC from 344
samples with corresponding clinical data in the TCGA
database for establishing a prognostic model. Meanwhile, to
test the accuracy of the model, a validation set including
clinical information and RNA-seq data was also downloaded
from the ICGC database (LIRI-JP cohort). The detailed clinical
information of TCGA dataset and ICGC dataset was shown in
Supplementary Table 1. All data used in this study were freely
available online.
Identification of Differently Expressed
RNA-Binding Proteins
The GEO2R, an online analysis tool in GEO database, was
used to identify differently expressed genes (DEGs) in HCC
tissue samples and adjacent normal tissue samples (15). The
log2|FC|≥0.5 and adjusted P-value ≤0.05 were set as the cut-off
criterion. DEGs were then processed to generate a volcano plot
with GraphPad Prism 7 Software. Next, we used the Venn
diagram webtool to determine the overlapping between the
DEGs and 1542 Human RNA-binding proteins for further
analysis. Heat map of the differently expressed RBPs was
plotted by the online software NetworkAnalyst (16).
Gene Ontology and Kyoto Encyclopedia of
Genes and Genomes Enrichment Analyses
To further investigate the potential function and molecular
mechanisms involved by these differently expressed RBPs,
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses were conducted using
the clusterProfiler package in R (version. 4.0). The GO terms
covered three biological aspects including molecular function
(MF), cellular component (CC) and biological process (BP).
P values of <0.05 were regarded as statistically significant.

Protein–Protein Interaction Network
Construction and Hub Genes Analysis
Protein-Protein interactions (PPI) were assessed using the
online STRING database (https://string-db.org/). The
protein-protein pairs of differently expressed RBPs meeting
the criteria of combined score > 0.4 were selected and
displayed by the Cytoscape software (version 3.7.2). Then,
cytoHubba, a plug-in of Cytoscape, was used to screen out the
gene with the highest degrees of connectivity. The top ten
genes were considered the hub genes and hence used in
subsequently analyses.
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Screening and Analysis of Prognosis-
Related RBPs
The UALCAN database (http://ualcan.path.uab.edu/) is an open
network resource for data-mining, primarily based on the
respective cancer data in TCGA database. Herein, mRNA
levels of hub genes in normal and HCC tissues were compared
in the UALCAN database. Besides, the correlation between gene-
expression levels and tumor grades were further analyzed. The
protein levels of the hub genes were also compared between
normal and HCC tissues by immunohistochemical image in
Human Protein Atlas (HPA) database (http://www.proteinatlas.
org). To further explore the prognostic value of hub RBPs, we
conducted a survival analysis using Kaplan-Meier plotter (http://
www.kmplot.com). Survival curves and corresponding
parameters could be obtained at the website. Finally, genetic
alteration data of all prognosis-related hub genes were
downloaded and visualized in the form of mutation profiles
from the cBioPortal (http://www.cbioportal.org).

Construction and Validation of an RNA-
Binding Protein-Associated Prognostic
Model
Univariate Cox regression analysis was performed using the
“survival” package in R software to identify prognostic factors
from above prognosis-related RBPs. Variables with P < 0.05 in
univariate analysis were further included in the stepwise
multivariate analysis. A predictive model was then designed
based on the independent prognostic factors. The following
formula was used to determine the risk score: Risk score =
b1*Exp1+b2*Exp2+bi*Expi (b, regression coefficient; Exp,
prognostic factors). Afterwards, we sub-classified patients into
low and high risk groups according to the median risk score. The
difference of survival status between the two groups was assessed
by Kaplan-Meier curves. Meanwhile, the “time ROC” package
was used to establish a ROC curve to assess the prognostic value
of the model by calculating the area under the curve (AUC).
Finally, the prognostic model was externally validated using the
ICGC dataset to test its stability.

Establishing a Nomogram for Prognostic
Risk Assessment
To ascertain if the constructed model performed was independently
of clinical features, multivariate analysis was conducted using the
Cox regressionmodel. Then, we established a nomogram integrating
the factors with independent prognostic value, which could provide
quantitative methods to predict survival probabilities of HCC
patients. The prognostic accuracy of the nomogram was further
evaluated using the ROC curve analysis and calibration plots.
RESULTS

Differently Expressed RNA-Binding
Proteins in Hepatocellular Carcinoma
A flowchart of the study is provided as Supplementary
Figure 1. After removing duplicate samples, 78 HCC tissues
Frontiers in Oncology | www.frontiersin.org 3
and 77 adjacent non-tumor tissues were processed for data-
mining by GEO2R, and 2,936 differently expressed genes
(DEGs) meeting the screening criteria were identified
(Figure 1A). We then used Venn diagram to show the
intersection between these DEGs and candidate RBP genes
catalog. Finally, a total of 92 RBPs were found, among which
27 were down-regulated and 65 were up-regulated (Figure
1B). Heatmap of the top 50 differently expressed RBPs were
plotted in Figure 1C.

Functional Enrichment of Differently
Expressed RNA-Binding Proteins
GO enrichment and KEGG pathway analyses were applied to
clarify the gene function of differently expressed RBPs and
signaling pathways involved. The GO terms were clustered into
3 major GO ontologies: BP, CC and MF. As shown in Figure
2A, differently expressed RBPs were mostly enriched in BP:
including ncRNA metabolic process, regulation of mRNA
metabolic process and RNA splicing. For CC, DEGs were
mostly enriched in cytoplasmic ribonucleoprotein granule
and ribonucleoprotein granule. Molecule Function analysis
indicated that the DEGs significantly participated in double-
stranded RNA binding, mRNA 3’-UTR binding and translation
repressor activity. Moreover, for the KEGG pathway analysis,
our results revealed that DEGs were mostly enriched in
Spliceosome, Ribosome and mRNA surveillance pathway
(Figure 2B).

Protein–Protein Interaction Construction
and Hub Genes Identification
In vivo, protein–protein interaction is an important way to exert
their biological function. A PPI network of differently expressed
RBPs was established based on the STRING database and
visualized using Cytoscape Software. The network composed of
74 nodes and 214 links, as shown in Figure 2C. Next, applying
the cytoHubba plug-in, top ten genes were selected from the PPI
network according to their connectivity degrees. These hub genes
including POLR2K, HNRNPM, SNRPE, DDX39A, RRS,
HNRNPU, BOP1, SNRPB, EZH2, and ILF3 were all up-
regulated. The gene description and connectivity degrees of
these hub genes were summarized in Table 1.

Verification of the Hub Genes
To confirm the results, above hub genes were verified in the
UALCAN database including gene expression patterns and
correlation with clinicopathological parameters. The results
showed that a total of nine hub genes were matched in the
UALCAN database and their expression were significant
elevated in tumor tissues (Figure 3). Besides, hub gene
expression was positively correlated with tumor pathological
grade (Figure 4).

After detecting the hub genes expression at mRNA level, we
also compared their protein expression in normal and liver
cancer tissues using immunohistochemical results obtained
from HPA database (Supplementary Figure 2). We found that
RRS1, HNRNPU, SNRPB, EZH2, and ILF3 protein expression
January 2021 | Volume 10 | Article 597996
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levels were increased in HCC tissues than normal tissues,
whereas changes for HNRNPM and BOP1 were not significant.
Additionally, POLR2K and SNRPE were not detected in either
tumor or non-tumor tissues.
Frontiers in Oncology | www.frontiersin.org 4
Prognosis-Related RNA-Binding Protein
Selection and Genetic Alteration Analysis
Considering above results, expression of hub RBPs were strongly
correlated with the degree of tumor malignancy. Thus, the
A
B

C

FIGURE 2 | GO, KEGG enrichment analysis and PPI network. (A) GO analysis of differently expressed RBP genes. MF: molecular function; CC: cellular component,
BP: biological process; (B) KEGG analysis of differently expressed RBP genes. (C) PPI network of differently expressed RBP genes.
A
B

C

FIGURE 1 | Differently expressed RBPs in hepatocellular carcinoma. (A) Volcano plots of DEGs from GSE 54236. Red plots represent genes with log|FC| ≥ 0.5 and
adjusted P-value ≤ 0.05. (B) Venn diagram of the overlap between the DEGs from GSE 54236 and candidate RBP genes catalog. (C) Heatmap of top 50 differently
expressed RBP genes.
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association of the hub RBPs expression with the prognosis of
HCC patients was explored in the Kaplan-Meier Plotter
database. Survival data from 364 HCC patients were available
for analysis. As shown in Figure 5, higher expression of
HNRNPM (HR = 1.64, 95% CI: 1.16–2.32, and P = 0.0047),
SNRPE (HR = 1.65, 95% CI: 1.16–2.35, and P = 0.005), RRS1
(HR = 1.57, 95% CI: 1.11–2.22, and P = 0.011), BOP1 (HR = 1.85,
95% CI: 1.31–2.62, and P = 0.00039), SNRPB (HR = 1.61, 95%
CI: 1.13–2.28, and P = 0.0076), EZH2 (HR = 2.23, 95% CI: 1.56–
3.19, and P = 6.8×10−6), and ILF3 (HR = 1.55, 95% CI: 1.07–2.24,
and P = 0.02) were significantly associated with reduced survival
period of patients with liver cancer. However, high expression of
POLR2K or HNRNPU didn’t show significant prognostic value.
Frontiers in Oncology | www.frontiersin.org 5
Next, gene mutations of the seven prognosis-related RBPs
were analyzed in cBioPortal database. The results showed that,
out of the 345 HCC patients, the seven RBP genes showed altered
expression patterns in 214 (62%) samples. Moreover, we found
that the mutation rate of BOP1 was 38%, ranking first in all
prognosis-related RBPs (Supplementary Figure 3).

Construction and Validation of the
Prognostic Model
After identifying the seven prognosis-related RBPs, we then tried
to evaluate their independent prognostic value as biomarkers for
overall survival (OS) of patients with HCC. Cox regression
analysis was performed based on expression data of prognosis-
related RBP genes. Univariate analysis showed that all seven
RBPs were the influencing factors for unfavorable survival of
liver cancer patients. In the multivariate analysis, we found that
high expression of BOP1 (HR = 1.259, 95%CI: 1.064–1.489, and
p = 0.007) and high expression of EZH2 (HR = 1.801, 95%CI:
1.409–2.303, and p < 0.001) were related to poor prognosis
(Table 2). Then, the risk score formula based on regression
coefficients of the above two genes can be obtained as follow:

Risk score = 0.2304 * BOP1 + 0.5885 * EZH2.
To assess the ability of the model to predict prognosis,

survival analysis was conducted. A total of 344 HCC patients
were sub-classified into low and high groups based on the
medium risk score value. In the TCGA dataset, the OS rate of
patients in the high-risk group was markedly lower compared
to that of patients in the low-risk group (Figure 6A).
Time-dependent ROC curves at 1, 3 and 5 years were plotted,
A B

D E F

G IH

C

FIGURE 3 | mRNA expression of hub genes in HCC tissues and adjacent normal tissues. All these hub genes were highly expressed in tumor tissues (A–I). *** P < 0.001.
TABLE 1 | The top 10 hub genes with the highest degree of connectivity in the
PPI network.

Gene
symbol

Gene description Degree

POLR2K RNA Polymerase II Subunit K 16
HNRNPM Heterogeneous Nuclear Ribonucleoprotein M 15
SNRPE Small Nuclear Ribonucleoprotein Polypeptide E 15
DDX39A DExD-Box Helicase 39A 14
RRS1 Ribosome Biogenesis Regulator 1 Homolog 14
HNRNPU Heterogeneous Nuclear Ribonucleoprotein U 14
BOP1 BOP1 Ribosomal Biogenesis Factor 13
SNRPB Small Nuclear Ribonucleoprotein Polypeptides B And B1 13
EZH2 Enhancer Of Zeste 2 Polycomb Repressive Complex 2

Subunit
11

ILF3 Interleukin Enhancer Binding Factor 3 11
January 2021 | Volume 10 | Article 597996
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A B

D E F

G IH

C

FIGURE 5 | Survival analyses of the hub genes in patients with HCC (Kaplan–Meier Plotter). P < 0.05 was considered statistically significant.
A B

D E F

G IH

C

FIGURE 4 | The relationship between hub genes expression and tumor grades in HCC. *P < 0.05, **P < 0.01, ***P < 0.001.
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and the AUC at 1, 3 and 5 years survival was 0.744, 0.688 and
0.713, respectively (Figure 6B). Besides, the distribution of
patients’ risk score, survival time and survival status were
shown in Figures 6C, D. Then, the stability of this model was
examined in an ICGC-JP dataset. Consistent with the TCGA
dataset, patients in the high-risk group exhibited a substantially
worse outcome (Figure 7A). We also applied ROC curve analysis
to evaluate the performance of the prognostic model, and the
AUC value at 1 and 3 years was 0.751 and 0.738, respectively
Frontiers in Oncology | www.frontiersin.org 7
(Figure 7B). Risk score and survival information were presented
in Figures 7C, D. All these results suggested good accuracy and
stability of this model. Compared with OS, disease-free survival
(DFS) and disease-specific survival (DSS) can reflect clinical
benefits more specifically. To examine whether the prognostic
model is also related to DFS and DSS, these two prognostic
indicators were used as clinical endpoints for survival analysis.
Compared with the low-risk group, the DFS was significantly
reduced in high-risk patients (Supplementary Figures 4A, B).
The area under the curve (AUC) of time-dependent ROC curves
at 1, 3, and 5 years was 0.710, 0.582 and 0.747, respectively
(Supplementary Figure 4C). Similar conclusions could also be
reached for DSS (Supplementary Figures 4D–F).
Clinical Utility of the Established
Prognostic Model
Considering the risk score were closely related to the survival of
patients, we subsequently analyzed the relationships between the
prognostic model and clinical characteristics. As shown in
Figure 8, the risk score was remarkably higher in advanced
pathological grade (P < 0.001) and late clinical stage (P < 0.001).
No significant difference was found in age > 55 versus age ≤ 55
(P = 0.19), or female versus male (P = 0.91).
TABLE 2 | Association between genes expression and overall survival in
HCC patients.

Gene symbol HR(95%CI) P-Value

A. 　 　

HNRNPM 2.025(1.401–2.925) 0.000
SNRPE 1.287(1.026–1.615) 0.029
RRS1 1.242(1.014–1.521) 0.036
BOP1 1.321(1.121–1.558) 0.000
SNRPB 1.498(1.201–1.868) 0.000
EZH2 1.864(1.465–2.373) 0.000
ILF3 1.575(1.157–2.144) 0.004
B. 　 　

BOP1 1.259(1.064–1.489) 0.007
EZH2 1.801(1.409–2.303) 0.000
(A) Univariate regression analysis. (B) Multivariate regression analysis.
A B

D

C

FIGURE 6 | Determination of risk scores by the prognostic model in the TCGA dataset. (A) Survival analysis of high- and low-risk groups. (B) ROC curves analysis
of the prognostic model. (C) The risk score distribution of HCC patients. (D) The survival status of patients in the TCGA dataset.
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Construction of a Nomogram
for Clinical Practice
Further analysis revealed that risk score and pathological stage
were independent prognostic factors for OS (Figure 9A). Then,
the R software was used to integrate these two variables to
construct a nomogram-plot (Figure 9B). By drawing vertical
line to the points axis, we could calculate the sum of the scores of
all variables, and the corresponding probability is the survival
probability of patients. Calibration curves in TCGA dataset
suggested that the predicted values of the nomogram matched
well with the actual survival probability of the patients (Figure
9C). We also compared the discrimination performance among
the clinical stage, risk score and the nomogram. As shown in
Figure 9D, the nomogram exhibited the largest AUC value,
indicating good clinical application value. Moreover, we also
constructed a nomogram for DFS prediction, and confirmed the
model with good predictive power (Supplementary Figure 5).
DISCUSSION

HCC is a highly heterogeneous cancer with high mortality and
different clinical outcomes. So far, there have been no solidly
established prognostic biomarkers for risk prediction in clinical
Frontiers in Oncology | www.frontiersin.org 8
practice. Hence, the search for accurate, reliable and simple
prognostic biomarkers is especially significant for HCC
patients (17). Being important epigenetic factors involved in
post-transcriptional regulation, RBPs participate in the initiation
and development of various tumors including HCC, revealing
their potential to serve as prognostic biomarkers (18–21). In
studies by Feng et al. (22), RBM43 was identified as a tumor
suppressor by inhibiting carcinogenesis and tumor growth, and
its low expression was negatively correlated with HCC prognosis.
Similarly, low expression of SORBS2 was regarded as an adverse
prognostic marker (23, 24). Moreover, several other studies
revealed that overexpression of certain RBPs exhibited positive
correlations with the recurrence and poor prognosis of HCC
patients (13, 25, 26). Although these studies have explored the
possible functions of certain RBPs and confirmed their
prognostic value, further study is required to investigate the
clinical value of RBPs in HCC, comprehensively and
systematically. Herein, we mined expression profiles of RBP
from GEO, TCGA and ICGC datasets and aimed to explore
the impact of RBP gene expression level on the prognosis of
HCC patients.

A total of 92 differently expressed RBP genes between HCC
and non-tumor tissues were selected from the GEO dataset,
which were mainly enriched in the processes involved in the
A B

D

C

FIGURE 7 | Determination of risk scores by the prognostic model in the ICGC dataset. (A) Survival analysis of high- and low-risk groups. (B) ROC curves analysis of
the prognostic model. (C) The risk score distribution of HCC patients. (D) The survival status of patients in the ICGC dataset.
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regulation of RNA. Through the PPI network construction, ten
hub genes exhibiting the highest degrees were identified in the
network. After validation in the TCGA database, survival
analyses, univariate, and multivariate Cox regression analyses
were performed to screen out survival-related RBP genes. Based
on two survival-related RBP genes, a prognostic model was
finally constructed for prediction of clinical outcomes. Patients
with higher risk scores showed worse overall survival, which was
confirmed in both TCGA and ICGC databases. To specifically
reflect clinical benefits, DFS and DSS were additionally used as
the clinical endpoints, and this model still exhibited good
predictive capability. Furthermore, multivariate analysis
revealed that the prognostic model could be used as an
independent prognostic biomarker for HCC patients. A
nomogram combined pathological stage with prognostic model
will provide a more precise individualized prediction.

Two RBP genes identified in this study were previously
reported to function as important regulators driving the
initiation and progression of diverse tumors. The block of
proliferation (BOP1) gene, located on chromosome 8q24.3,
belongs to the WD40 protein family (27). As part of the PES1-
BOP1-WDR12 (PeBow) complex, the BOP1 gene is mainly
involved in 60S ribosome maturation process (28). Abnormal
expression of BOP1 modifies various aspects of colorectal cancer
and melanoma (29, 30). In colorectal cancer cells, BOP1 was
identified as a target gene of the Wnt/b-catenin pathway.
Overexpression of BOP1 promoted cell migration, epithelial-
mesenchymal-transition and experimental metastasis of CRC
Frontiers in Oncology | www.frontiersin.org 9
cells as a function of its crosstalk with the JNK signaling pathway
and downstream genes (29). In melanoma, Gupta et al. reported
that BOP1 knockdown played a crucial role in the acquisition of
BRAF kinase inhibitors resistance by targeting MAPK
phosphatases DUSP4 and DUSP6 (30). Recently, it has been
demonstrated that the BOP1 gene was overexpressed in HCC
tissues, and showed strong association with microvascular
invasion and advanced disease stage. Moreover, evidence from
in vitro studies suggested that BOP1 gene exerted oncogenic
effects by inducing EMT and actin cytoskeleton remodeling (31).
Similar roles of BOP1 gene in HCC progression were also found
in the present study. Our results showed that the expression level
of BOP1 was significantly higher in HCC tissues compared with
paracancerous tissues. Besides, high expression of BOP1 was
associated with tumor grade and poor survival, acting as an
independent prognostic factor for HCC patients.

The enhancer of zeste homolog2 (EZH2) gene encodes the
histone-lysine N-methyltransferase enzyme, participating in the
silencing of many tumor suppressor genes (32, 33). As expected,
over-expression of EZH2 was found in a variety of malignancies,
such as prostate cancers (34), breast cancers (35) and gastric
cancers (36). Studies from Xu et al. showed that EZH2 was over-
expressed in HCC tissues and cell lines, and miR-101 could
target EZH2 to inhibit HCC progression and increase
chemotherapeutic treatment sensitivity (37). Interestingly,
Hibino et al. found that the inhibition of EZH2 by small
molecule agents could also activate tumor-suppressor miRNAs
to exert antitumor effects in HepG2 cells (38). In recent years,
A B

DC

FIGURE 8 | The clinicopathological significance of the prognostic model. Age (A) and gender (B) were not associated with the risk score. Advanced pathological
grade (C) and late clinical stage (D) were found to be associated with a high risk score.
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immune checkpoint inhibitors appear to be a promising approach
for HCC treatment. Xiao et al. found epigenetic modifications
mediated by EZH2 could also affect immunotherapy effect.
Mechanistically, EZH2 could negatively regulate the expression
of PD-L1 by regulating the promoter H3K27me3 levels of CD274
(39). Herein, the protein and mRNA expression of EZH2 were
found significantly higher in HCC tissues, and mRNA expression
of EZH2 was highly correlated with tumor grades and prognosis of
HCC patients.

With the development of microarray or RNA sequence
techniques, several prediction models have been proposed to
facilitate the prediction of long-term outcomes of HCC
patients. However, some limitations should be considered and
addressed in these studies. For instance, Sun et al. constructed a
prognostic signature containing 33 immune gene pairs (40).
The model incorporating too many variables was not easy to
use, which limited its clinical application. Besides, the
robustness of predictive models was not given enough
attention in the research of Zheng et al. (41). An external
validation in different population was needed to test the
reliability of predictive models. Moreover, some predictive
models did not include relevant clinical parameters, which to
some extent weakened the diagnostic effectiveness of the
models (42, 43).
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the investigators constructed a gene signature containing 37
gene pairs to predict the overall survival of HCC patients (44).
The gene signature in our study contained only two genes,
which seemed to be less comprehensive than the former.
However, the gene signature in our study still showed good
predictive ability and high stability. In contrast, it could be
more easy-to-use and cost-effective in clinical practice. The
robustness of this prognostic signature was also validated in
the ICGC-JP series from the high incidence area of HCC,
further extending its applicability across different race
groups. Besides, the prognostic signature was confirmed
using different study endpoints including OS, DFS
and DSS, making the application more convenient and
accurate. On the basis of the model, pathological stage was
added to establish a nomogram, further enhancing the
performance for the prediction of survival. All these findings
may provide a better guidance for clinical decision-making of
individual therapy.

Meanwhile, some limitations of this study should also be
noted. Although we attempted to perform a comprehensive
analysis to conduct the retrospective study, further prospective
studies are needed to verify the conclusion. In addition,
considering the heterogeneity between study populations, it
A B

D

C

FIGURE 9 | A nomogram for overall survival prediction for HCC patients. (A) Univariate and multivariate Cox analyses for the prognostic model and clinical
parameters. (B). A nomogram to predict OS at 1 year, 3 years, and 5 years of patients with HCC. (C). Calibration plots showing the prediction of OS at 1 year, 3
years, and 5 years by the nomogram (D). Comparison of time-dependent ROC curves among nomogram, clinical stage and the prognostic model.
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will be necessary to validate the effectiveness and reliability of the
model with more patients’ samples from different centers.
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