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Quercetin Inhibits Pulmonary Arterial Endothelial Cell
Transdifferentiation Possibly by Akt and Erk1/2 Pathways
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This study aimed to investigate the effects and mechanisms of quercetin on pulmonary arterial endothelial cell (PAEC)
transdifferentiation into smooth muscle-like cells. TGF-𝛽1-induced PAEC transdifferentiation models were applied to evaluate
the pharmacological actions of quercetin. PAEC proliferation was detected with CCK8method and BurdU immunocytochemistry.
Meanwhile, the identification and transdifferentiation of PAECs were determined by FVIII immunofluorescence staining and 𝛼-
SMA protein expression. The related mechanism was elucidated based on the levels of Akt and Erk1/2 signal pathways. As a result,
quercetin effectively inhibited the TGF-𝛽1-induced proliferation and transdifferentiation of the PAECs and activation of Akt/Erk1/2
cascade in the cells. In conclusion, quercetin is demonstrated to be effective for pulmonary arterial hypertension (PAH) probably
by inhibiting endothelial transdifferentiation possibly via modulating Akt and Erk1/2 expressions.

1. Introduction

Pulmonary arterial hypertension (PAH), a devastating dis-
ease of heart-lung syndrome, is characterized by pul-
monary vasoconstriction, inflammation, and alveolar arte-
riole remodeling. The increase of pulmonary vascular resis-
tance and pressure leads to right ventricular failure and even
death [1]. The mortality rate of PAH remains at 40% in 5
years, and there is no effective therapeutic treatment to date
[2, 3]. The stagnation of treatment is attributed to a lack of
understanding of the PAH pathophysiological mechanisms
and the absence of any efficacious drug against pulmonary
vascular remodeling [4]. Recent studies have shown that
the muscularization of nonmuscular pulmonary arterioles

is a key characteristic of pulmonary vascular remodeling in
PAH pathogenesis [5–9]. The new smooth muscle cells in
muscularized nonmuscular pulmonary arterioles may origi-
nate from transdifferentiation and proliferation of pulmonary
arterial endothelial cells (PAECs). Therefore, inhibition of
PAEC transdifferentiation has the potential in the treatment
of PAH [10–12].

Transforming growth factor 𝛽1 (TGF-𝛽1), a multifunc-
tional cytokine closely involved in cell differentiation, pro-
liferation, and survival, can be used to induce transdiffer-
entiation of stem cells to muscle cells and epithelial cells
apoptosis by various signal pathways such as serine/threonine
kinase Akt and extracellular signal-regulated kinase (ERK)
[13, 14]. Recently, TGF-𝛽1 has been revealed to trigger the
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expression of 𝛼-smooth muscle actin (𝛼-SMA) in mature
vascular endothelial cells [15–19] and to regulate the transdif-
ferentiation progress of endothelial cells into smoothmuscle-
like cells [20]. Interestingly, increased synthesis and accumu-
lation of TGF-𝛽1 have been observed during progression of
PAH [21, 22]. However, its role in PAEC transdifferentiation
remains unknown.

Quercetin, a bioflavonoid with well-known antioxidant
and anti-inflammatory activities [23], is abundant in plants
including fruits, tea, and herbs. Some studies have already
revealed the bioactive function of quercetin in improving
heart and lung circulation. For instance, quercetin dilates
blood vessels constricted by a variety of endogenous factors
such as noradrenaline, endothelin-1, and thromboxane and
inhibits vascular remodeling through suppressing prolifer-
ation and migration of vascular smooth muscle cells and
endothelial cells [24–28]. Besides, dietary quercetin sup-
plementation significantly reduces blood glucose level in
obese mice and improved hyperinsulinemia in obese rats
[29, 30]. In particular, the inhibitory effect of quercetin on
intimal hyperplasia has been demonstrated in a rat artery
balloon injury model [31–33]. Nevertheless, the pharmaco-
logical actions of quercetin on PAH and pulmonary vascular
remodeling are unclear. In the present study, we aimed to
investigate the effects and mechanisms of quercetin on TGF-
𝛽1-induced transdifferentiation of human PAECs to smooth
muscle-like cells.

2. Materials and Methods

2.1. Cell Proliferation Assay. PAECs were purchased from
the American Type Culture Collection (ATCC, Manassas,
VA, USA) and cultured in RPMI1640 medium (Gibco, Life
Technologies, Rockville, MD, USA) according to the supplier
instructions. The medium was supplemented with 10% fetal
bovine serum and 1% penicillin/streptomycin, and cells were
used at third passage for experiments.

The CCK-8 assay was used to evaluate PAEC prolifer-
ation using a CCK-8 cell proliferation assay kit (Beyotime,
Shanghai, China) [34]. PAECs seeded in 96-well plates (104
cells/well) were pretreated with indicated concentrations of
quercetin for 1 h and then stimulated with 100 ng/ml TGF-
𝛽1 for 48 h. Next, 10 𝜇l CCK-8 solution was added to each
well and incubated for 4 h. After the medium was removed,
100 𝜇l dimethyl sulfoxide (DMSO) was added to each well.
The culture plate was oscillated for 10min in the shaking
table to adequately dissolve the crystals. Finally, cell viability
and proliferationweremeasured by reading the absorbance at
450 nm with Epoch Microplate Spectrophotometer (BioTek,
Winooski, VT, USA).

2.2. PAEC Identification and Transdifferentiation. PAECs
were grown on slides and then incubated with primary
antibodies against 𝛼-SMA (1 : 100, Santa Cruz Biotechnology)
and FVIII (1 : 100, Santa Cruz Biotechnology) and then
conjugated with FITC- or PE-secondary antibodies for 2 h to
specifically identify smooth muscle-like cells and endothelial
cells, respectively. 4󸀠,6-Diamidino-2-phenylindole (DAPI)
was used to stain nuclei and cells were then observed

under a laser scanning confocal microscope (TCS SP5 II,
Leica, Wetzlar, Germany) with a 60x oil objective lens to
detect the subcellular distribution of target proteins [35]. The
fluorescent signals of the corresponding target proteins were
collected through the filters with excitation wavelengths of
488 nm (FITC), 488 nm (DAPI), and 543 nm (PE).

2.3. BrdU Immunocytochemistry. PAECs grown on 13mm
round coverslips were incubated with a final concentration
of 10 𝜇mol/L bromodeoxyuridine (BrdU) (Sigma-Aldrich, St.
Louis, MO, USA) for 24 h. The cell cultures were fixed with
4% paraformaldehyde (PFA) in phosphate buffered saline
(PBS) (pH 7.6), washed with glycine and PBS respectively,
and then immersed in 0.5% Triton-X100 to permeablize the
membranes. To denature the DNA strands, the coverslips
were incubated with HCl at 0∘C, 25∘C, and 37∘C in sequence.
After the cells were treated with sodium-borate buffer (pH
8.4) for 12min, they were blocked with 2% BSA in PBS
for 1 h at room temperature and incubated with anti-BrdU
antibodies (1 : 1000, Cell Signaling Technology) overnight
at 4∘C. Alexa Fluor 488-conjugated anti-mouse IgG (Cell
Signaling Technology) was used as the secondary antibody.
Finally, the coverslips were stained with DAPI and observed
under the laser scanning confocal microscope (Leica, TCS
SP5 II, Germany). The signals of BrdU and DAPI were
counted in randomly selected four fields, and consequently
the ratio of BrdU/DAPI was calculated for each culture in a
blinded manner.

2.4. Western Blot. Equal amounts of proteins extracted from
different groups of PAECs were separated by sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and
then were transferred to polyvinylidene difluoride mem-
branes (EMD Millipore, Darmstadt, Germany). After block-
ing with 5% skimmed milk, the membranes were incubated
with anti-𝛼-SMA antibody (1 : 1000, Santa Cruz Biotechnol-
ogy), ERK antibody (1 : 1000, Cell Signaling Technology), p-
ERK antibody (Thr202/Tyr204, 1 : 2000, Cell Signaling Tech-
nology), Akt antibody (1 : 1000, Cell Signaling Technology),
p-Akt antibody (Ser473, 1 : 2000, Cell Signaling Technology),
GAPDH (1 : 1000, Cell Signaling Technology), and 𝛽-actin
(1 : 1000, Abcam) overnight at 4∘C. After washing three times,
the membranes were incubated with horseradish peroxidase
(HRP) conjugated secondary antibody (1 : 2000, Santa Cruz
Biotechnology) and finally detected by enhanced chemilumi-
nescence and analyzed using Kodak 1D 3.5 imaging software
(Eastman Kodak, Rochester, NY, USA).

2.5. Statistical Analysis. Measurement data were expressed
as means ± standard deviation (SD). One-way analysis
of variance (ANOVA) was used for comparisons between
multiple groups, and the variance homogeneity test was used
for variance homogeneity of multiple sample means. In the
case of variance homogeneity, the least significant difference
(LSD) test was used for comparisons among mean variances
of multiple samples. As for variance nonhomogeneity, the
Tamhane test was used for comparisons between mean
variances of multiple samples and Student’s 𝑡-test was used
for intergroup comparison. In addition, SAS 8.0 statistical



BioMed Research International 3
C

el
l p

ro
lif

er
at

io
n 

(fo
ld

 ch
an

ge
)

Control TGF-�훽1 TGF-�훽1 + quercetin

ns

∗ ∗

0.0

0.5

1.0

1.5

2.0

Figure 1: Effect of quercetin on PAEC viability was evaluated by
CCK-8 assay (𝑛 = 4 per group). ∗𝑃 < 0.05, the control group versus
the TGF-𝛽1-induced group and the TGF-𝛽1-induced group versus
the TGF-𝛽1 + quercetin-treated group.

software was used for statistical processing. A significant
difference was observed when 𝑃 < 0.05. QUANTITY ONE
software was used to analyze bands in the image to obtain
gray value, and the ratio of target protein to internal reference
𝛽-actin was used for semiquantitative analysis.

3. Results

3.1. Effect ofQuercetin on PAECViability andProliferation. To
determine the effect of quercetin onTGF-𝛽1-induced viability
and proliferation of human PAEC, a CCK-8 assay was
performed quantificationally. When treated for 48 h, TGF-
𝛽1 enhanced PAEC proliferation to 1.439-fold (𝑃 < 0.05),
and this viability rate was decreased significantly follow-
ing quercetin treatment, with distinct differences observed
between treatments (Figure 1). To confirm it, the direct
outcome of quercetin on cellular proliferation was examined
with BrdU incorporation immunocytochemistry (Figures
2(a) and 2(b)). Taken together, the results suggested that
quercetin may be a potential antagonist of PAEC excessive
growth.

3.2. Effect of Quercetin on PAEC Transdifferentiation by
Immunofluorescence and Western Blot. As observed using
fluorescence microscopy, PAECs stained red for the FITC-
labeled FVIII antibody (Figures 3(a)(A) and 3(a)(B)),
and green PE-labeled 𝛼-SMA was absent in these cells
(Figure 3(a)(C)).This result confirmed that the population of
PAECs was pure. However, after being induced by TGF-𝛽1,
green-stained cells increased significantly (𝑃 < 0.05), which
became fusiform or polygonal, suggesting these PAECs had
transformed into smooth muscle-like cells (Figures 3(a)(D)
and 3(b)). Furthermore, when the transdifferentiated cells
were treated by quercetin and TGF-𝛽1, the number of smooth
muscle-like cells in the PAEC culture decreased significantly
(𝑃 < 0.05) (Figure 3(b)), which demonstrated that quercetin
could successfully inhibit transdifferentiation of PAECs to
smooth muscle-like cells.

In PAECs from different treatment groups, 𝛼-SMA
expressionwas detected bywestern blot analysis to determine
the yield of smoothmuscle-like cells (Figure 4(a)). Compared
with the blank control group, TGF-𝛽1 significantly enhanced
𝛼-SMA protein (𝑃 < 0.05) and promoted PAECs to trans-
form into smooth muscle-like cells. Meanwhile, after further
treatment with quercetin and TGF-𝛽1, 𝛼-SMA expression
was reduced significantly compared with TGF-𝛽1 treatment
(𝑃 < 0.05) but was higher than that in the blank group
(Figure 4(b)). These data were consistent with the afore-
mentioned immunofluorescence findings, whereby PAECs
were induced to transdifferentiate into smooth muscle-like
cells, and this cellular process was effectively inhibited by
quercetin.

3.3. Effect of Quercetin on Akt and Erk1/2 Signal Pathways.
To investigate the molecular mechanism involved in how
quercetin inhibited TGF-𝛽1-induced cell growth, the expres-
sion and phosphorylation levels of Akt and Erk1/2 after TGF-
𝛽1 and quercetin and TGF-𝛽1 were determined by western
blot (Figure 5). The results showed that TGF-𝛽1 promoted
Erk1/2 expression rather than Akt, and meanwhile Erk1/2
signaling pathway was inhibited after quercetin treatment.
Akt was phosphorylated markedly when PAECs were treated
using TGF-𝛽1, but it was inhibited dramatically by quercetin
approaching the level of control group. In a similar way,
Erk1/2 phosphorylation of the cells was enhanced by TGF-𝛽1
and then was attenuated significantly by quercetin.

4. Discussion

The production of endogenous TGF-𝛽1 is promoted during
the early stage and implicates the pathogenesis of PAH [36].
It has been revealed that TGF-𝛽1 regulates the differenti-
ation and transformation of endothelial cells under some
conditions [20]. In this study, we hypothesized that PAEC
transdifferentiation is related to TGF-𝛽1. Consequently, we
found that TGF-𝛽1 in vitro triggered and promoted transd-
ifferentiation of PAECs to smooth muscle-like cells and that
the new smooth muscle cells causing pulmonary arteriole
muscularization could originate from PAECs.

Quercetin can alleviate vascular vasoconstriction [26, 37]
and inhibit proliferation and migration of smooth mus-
cle cells and endothelial cells [38–41]. Our results showed
that quercetin suppressed TGF-𝛽1-induced proliferation and
transdifferentiation of PAECs. Comparing with sildenafil,
a known inhibitor of hypoxia-induced transdifferentiation
of PAECs into smooth muscle-like cells [42], quercetin
promised well as a more inexpensive and effective candidate.
Thus, the pharmacological action of this natural compound
should be further investigated to use as a useful drug.

Meanwhile, we sought to show in Figure 3 the dynamic
change of the transition period of endothelial cells into
smooth muscle-like cells, at least indicating that some cells
have double positive staining for both endothelial/SMCs and
the percentage of endothelial-like cells transdifferentiating
into smooth muscle-like cells in vitro, but it failed. We are in
a puzzle about the cause. However, we think it did not affect
our results about transdifferentiation of PAECs into smooth
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Figure 2: Effect of quercetin on PAEC proliferation by BrdU methods. (a) BrdU immunocytochemistry (scale bar = 100𝜇m); (b) cell count
with BrdU staining, ∗𝑃 < 0.05, the control group versus the TGF-𝛽1-induced group and the TGF-𝛽1-induced group versus the TGF-𝛽1 +
quercetin-treated group.

muscle-like cells, and finally the percentage of transformation
was obtained by the immunohistochemical analysis.

It would be interesting to know the molecular mech-
anisms of transdifferentiation and proliferation of PAECs,

especially the change and function of signal pathways related
to TGF-𝛽1. Based on the recent reports about TGF-𝛽1-
induced cellular proliferation, differentiation, and epithelial-
mesenchymal transition (EMT), Akt and ERK1/2 pathways
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Figure 3: Transdifferentiation of endothelial cells in the cells
expressing 𝛼-SMA induced by TGF-𝛽1, as detected by cell
immunofluorescence. (a)(A) Blank control PAECs (4x); (a)(B) iden-
tification of human PAECs by immunofluorescence. Red staining
represents FVIII (10x); (a)(C) blank control PAECs (10x); (a)(D)
TGF-𝛽1-induced PAECs. Green staining represents 𝛼-SMA (10x);
(a)(E) TGF-𝛽1 + quercetin-treated PAECs (10x); (b) conversion rate
of PAECs in different groups (𝑛 = 4 per group), ∗𝑃 < 0.05, the
control group versus the TGF-𝛽1-induced group and the TGF-𝛽1-
induced group versus the TGF-𝛽1 + quercetin-treated group.

were important downstreammodulators activated byTGF-𝛽1
[14, 43–45]. In this study, Akt made more positive response
to TGF-𝛽1 stimulation than that of Ekr1/2, suggesting that
Akt may play the crucial rolein the PAEC proliferation.
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Figure 4: 𝛼-SMA protein expression in transdifferentiation of
endothelial cells. (a) Western blot assay; (b) comparison of gray
values of western blot (𝑛 = 4 per group), ∗𝑃 < 0.05, the control
group versus the TGF-𝛽1-induced group and the TGF-𝛽1-induced
group versus the TGF-𝛽1 + quercetin-treated group.

Actually Akt has been recognized to be a potent regulator
in cell differentiation and EMT processes [46, 47]. When
PAECs were treated by quercetin, Akt and Erk1/2 expression
reduced with an acute trend although it did not reach the
significant level, which may be attributed to the treatment
dosage of this drug. However, Akt and Erk1/2 both were
phosphorylated markedly when PAECs were treated using
TGF-𝛽1 and then inhibited dramatically by quercetin, and
thus it is reasonable to speculate that phosphorylation acti-
vation of Erk/Akt cascades was closely associated with the
inhibitory effect of quercetin on TGF-𝛽1-induced cell devel-
opment. These pathways had been demonstrated to mediate
the cellular differentiation, proliferation, and survival in
many types of cells [48], and here we furthermore reveled
that their activation induced by TGF-𝛽1 was attenuated
under the pretreatment of quercetin in phosphorylation
manner.

5. Conclusion

Quercetin effectively inhibited TGF-𝛽1-induced PAECs pro-
liferation and transdifferentiation into smooth muscle-like
cells and downregulated the expression of 𝛼-SMA protein
and activation of Akt/Erk1/2 cascade in the TGF-𝛽1-induced
PAECs. Therefore, quercetin may be used as a potential
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Figure 5: Expression and phosphorylation levels of Akt and Erk1/2 in PAECs in different treatment groups. (a1) Western blot assay of Akt
protein; (a2) comparison of gray values of western blot assay of Akt protein (𝑛 = 4 per group), ∗𝑃 < 0.05, the control group versus the TGF-
𝛽1-induced group and the TGF-𝛽1-induced group versus the TGF-𝛽1 + quercetin-treated group; (b1) western blot assay of Erk1/2 protein; (b2)
comparison of gray values of western blot assay of Erk1/2 protein (𝑛 = 4 per group), ∗𝑃 < 0.05, the control group versus the TGF-𝛽1-induced
group and the TGF-𝛽1-induced group versus the TGF-𝛽1 + quercetin-treated group.

drug treating vascular-remodeling related PAH by inhibiting
endothelial transdifferentiation possibly via modulating the
expression and phosphorylation levels of Akt and Erk1/2
pathways.
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