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Purpose: It is very important to develop potential molecular associated with oral

squamous cell carcinoma (OSCC) malignant transformation and progression. Thus, the

aim of our study was to determine the amino acid metabolic characteristics of OSCC

patients and test their diagnostic value.

Experimental Design: Eight pairs of matched tumor and normal samples were

collected for gas chromatography–mass spectrometry (GC-MS) high-throughput

untargeted analysis. Another 20 cases (each case including tumor and normal tissues)

were also enrolled for ultrahigh-performance liquid chromatography–tandem mass

spectrometer (UHPLC-MS/MS) amino acid quantitative analysis. T-test and receiver

operating characteristic (ROC) curve analysis were used to determine candidate markers.

Principal component analysis, partial least squares discriminant analysis, and heat map

analysis were used to verify the ability of candidate markers to distinguish tumors from

normal tissues.

Results: A total of 10 amino acids biomarker were selected as OSCC candidate

diagnostic biomarkers by GC-MS high-throughput untargeted metabolomics analyses

[area under the curve (AUC) >0.80]. We further measured the specific concentration of

these candidate amino acids biomarkers in another batch of 20 cases by UHPLC-MS/MS

quantitative analysis. The result validated that nine amino acids had been detected, which

had statistically significant difference (t-test, p< 0.05). Moreover, three of nine amino acid

markers (glutamate, aspartic acid, and proline) displayed high sensitivity and specificity

(AUC >0.90) by ROC curve analysis and obtained optimal sensitivity and specificity by

binary logistic regression in the Glmnet package (AUC = 0.942).

Conclusions: In conclusion, a panel including three amino acids (glutamate, aspartic

acid, and proline) was identified as potential diagnostic biomarkers of OSCC by a

combination of non-targeted and targeted metabolomics methods.

Keywords: oral squamous cell carcinoma, non-targeted metabolomics, targeted metabolomics, amino acid

markers, diagnosis
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INTRODUCTION

Oral squamous cell carcinoma (OSCC) is one of the most
common malignant tumors in the head and neck region. Oral
squamous cell carcinoma kills 6 million people worldwide
every year (1); tobacco use, alcohol consumption, and human
papillomavirus infection are major risk factors of oral cancer
(2). Auxiliary methods for the diagnosis of oral cancer include
physical examination, histopathological examination of tissue
biopsies, endoscopy, computed tomography, and magnetic
resonance imaging. Although diagnostic methods for OSCC have
been greatly improved, survival rate remains poor due to regional
and distant metastases (3).

Dysregulation in metabolic pathways was observed in

almost all tumors, and the most striking feature of cancer
cells is that they alter their metabolic pathways to meet
cancer cell energy need. Changes in cell metabolism are
benefit of tumor development. Cell metabolic phenotypes
can be used to image tumors and predict patient’s outcomes
(4). It is very important to study the metabolic mechanism

FIGURE 1 | The overall design idea of this experiment and preliminary screening of differential metabolite in untargeted group. (A) Research flowchart: including

specimen collection, GC-MS analysis untargeted analysis, data analysis, and UHPLC-MS targeted validation. (B) Schematic diagram of sample collection site, tumor,

and normal tissue. (C) Mass spectrometry of the tumor and normal tissue. (D) Volcano plot analysis between tumor and normal by t-test. (E) Comparison of tumor

and normal using normalized intensities of 10 significance metabolites. The mean value of 10 metabolites in each group was obtained, and then Z-score

transformation generates heat map. (F) Scores plot segregated tumor and normal by PLS-DA analysis in untargeted group.

of oral cancer progression, which will help improve the
diagnosis and treatment of oral cancer. Many studies have
confirmed that OSCC tissues undergo significant metabolic
changes compared to normal tissues, such as lactate, glycine,
proline, and hydroxyproline, 3AMP, uracil, spermidine, and
c-glycosyltryptophan, 2-hydroxyglutarate, and glycerol-3-
monophosphate high expression in tumor tissues (21, 27). The
metabolic pathways associated with oral cancer mainly include
glycolysis, amino acid metabolism and pentose phosphate
pathway, and RNA biosynthesis. It had been reported that cancer
cells are able to gain energy from lactic acid fermentation, even
when oxygen is in plentiful supply, known as the Warburg
effect (5, 6). At the same time, cancer cells can get energy
from other metabolic pathways, such as amino acid and lipid
metabolism (7–9).

For example, glutaminolysis, deposing glutamine into
glutamate, further α-ketoglutarate for maintaining tricarboxylic
acid cycle, replenishes glucose metabolism and provides energy
for cancer cells. It has been reported that the oncogene c-myc
can regulate glutaminolysis catabolism (7).
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Therefore, we concluded thatmetabolic changes in tumor cells
were regulated by related gene.

In a word, it is urgent to develop a panel of useful biomarkers
for OSCC early diagnosis (10, 11). However, metabolomics
studies of OSCC are very limited up to date; many studies use
serum and saliva samples (12, 13), and there is lack of research
on a specific metabolic type, such as amino acid metabolism. In
this study, we aim to explore tissue-based amino acids metabolite
biomarkers of OSCC by untargeted and targeted metabolomics,
which not only distinguish cancer cell from normal tissues, but
also used as prognostic methods for early detection of OSCC.

TABLE 1 | Differential metabolites identified by t-test between tumor and normal

tissues.

Metabolites FC log2(FC) P –log10(p)

Lactic acid 0.026484 −5.2387 0.01 1.992

Glutamate 1.8472 0.88538 0.011 1.9707

Cholesterol 1.5545 0.63648 0.012 1.9145

L-kynurenine 4.1458 2.0517 0.017 1.7685

Maltose 0.43077 −1.215 0.017 1.7681

Glyceric acid 0.40825 −1.2925 0.02 1.6933

Muconic acid 0.45291 −1.1427 0.026 1.5698

Thymine 2.1013 1.0713 0.034 1.4656

Uridine 2.1739 1.1203 0.039 1.4024

Gamma-aminobutyric acid 2.1963 1.1351 0.048 1.3124

MATERIALS AND METHODS

Tumor Tissue Specimens
This study was reviewed and approved by the medical ethics
committee of Nanjing Stomatological Hospital, following the
Declaration of Helsinki. All cases included in the study were
between 30 and 70 years old and had signed informed consent
forms. Matching of collected of tumor and normal samples (eight
pairs, n = 16) was performed by gas chromatography–mass
spectrometry (GC-MS) high-throughput untargeted analysis.
Another 20 paired cases (each case including tumor and
normal tissues, Figures 1A,B) were also enrolled in this study
for ultrahigh-performance liquid chromatography–tandem mass
spectrometer (UHPLC-MS/MS) amino acid targeted quantitative
analysis. All fresh tissues were snap-frozen in liquid nitrogen
within 30min after operation and stored at −80◦C freezer until
they were processed.

GC-MS Untargeted Analysis
The GC-MS experiment was carried out in Nanjing University
of Chinese Medicine and was strongly supported by Associate
Professor Xie Tong. The materials needed for the experiment
were prepared by referring to the previous methods (14). The
specific operation steps are shown in reference.

UHPLC-MS/MS Targeted Quantitative
Analysis
Ultrahigh-performance liquid chromatography–tandem mass
spectrometer targeted quantitative analysis specific operation

FIGURE 2 | The list of amino acids selected as candidate tumor biomarkers by ROC curve analysis (AUC >0.80) in GC-MS untargeted group. (A–J) Individual amino

acid ROC curves. AUC (0.5–0.7), low accuracy; AUC (0.7–0.9), moderate accuracy; AUC (>0.9), high accuracy.
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FIGURE 3 | Candidate amino acids biomarkers (AUC > 0.80) identified by UHPLC-MS/MS quantitative analysis in another batch of 20 cases (targeted group). (A–I)

The results showed 9 of 10 were consistent with untargeted group (threshold, t-test, P < 0.05), which had significant differences between tumor and normal.

TABLE 2 | AUC values of potential OSCC biomarkers by ROC curve analysis in

development and validation group.

Untargeted group Targeted group

Metabolite AUC P AUC P

Glutamate 0.844 0.011 0.935 <0.0001

Aspartic acid 0.812 0.112 0.918 <0.0001

Proline 0.812 0.1 0.915 <0.0001

Tyrosine 0.844 0.289 0.825 0.001

Serine 0.812 0.068 0.822 0.0022

Threonine 0.812 0.167 0.816 0.0009

GABA 0.828 0.048 0.792 0.0026

Lysine 0.859 0.163 0.78 0.0035

Alanine 0.828 0.062 0.68 0.0405

Isoleucine 0.828 0.369 Not detected Not detected

ROC, receiver operating characteristic; P, P-values of t-test.

steps refer to our previous report (15). The UHPLC separation
was carried out using an Agilent 1290 Infinity II series UHPLC
System (Agilent Technologies, California, USA), equipped with
a Waters ACQUITY UPLC BEH Amide column (Waters
Corporation, USA) (100 × 2.1mm, 1.7µm). Mobile phase A
was 1% formic acid in water, and mobile phase B was 1%
formic acid in acetonitrile. The column temperature and auto-
sampler temperature were set at 35 and 4◦C, respectively.
An AJS–electrospray ionization interface was connected with

Agilent 6460 triple quadrupole mass spectrometer (Agilent
Technologies) for assay development. The MRM parameters of
the target analytes are controlled by flowing injection of the
standard solution of a single analyte.

Metabolomics Data Processing
For GC-MS raw data search and determination, see our previous
report. Peak area ratios of metabolites in each sample were
calculated with Xcalibur 2.2 (Thermo Scientific, Massachusetts,
USA) by normalization to the internal standard. Specific
concentrations of individual metabolites can be obtained directly
by UHPLC-MS/MS analysis (nmol/g).

Statistical Analysis
Our metabonomics statistical analyses were performed using
the MetaboAnalyst (https://www.metaboanalyst.ca). In the GC-
MS untargeted group, the bucketed experimental data were
normalized by the total spectral intensity, in addition to
Pareto scale (for multivariate analysis). Differential amino
acid metabolites were determined by volcano plot with fold-
change threshold (>1.5) and t-test threshold (<0.05). Then,
the differential metabolites were further analyzed by receiver
operating characteristic (ROC) curve to determined candidate
biomarkers. Univariate analysis was by Student t-test with (false
discovery rate–adjusted p-value of 0.05). Multivariate analysis
included unsupervised principal component analysis (PCA) and
partial least squares discriminant analysis (PLS-DA). Pheatmap
package was used to carry hierarchical cluster analysis.
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FIGURE 4 | The nine amino acids identified by quantitative analysis can significantly distinguish tumors from normal tissues in the targeted group. (A) Scores plot

accurately distinguishes tumor and normal by PLS-DA analysis in the targeted group. (B) Scores plot distinguishes tumor and normal by PCA analysis in the targeted

group. (C) Comparison of tumor and normal using normalized intensities of nine significance metabolites in the targeted group. The mean value of nine metabolites in

each group was obtained, and then Z-score transformation generates heat map.

In the UHPLC-MS/MS targeted group, the correlation
coefficients of all target analytes were >0.9959, indicating that
a good quantitative analysis result was obtained, which was
satisfying for targeted metabolomics analysis. For specific steps
and technical parameters, refer to our previous report (15).
The statistical difference of quantitative analysis results was
analyzed by GraphPad Prism 8 (GraphPad Software corporation,
California, USA) (t-test, p < 0.05).

RESULTS

Clinical Characteristics of the Patients in
This Study
The overall flowchart of this study is shown in Figure 1A. A total
of 28 cases were included in the study, eight cases (contain pair
tumor and normal tissues) of which were used for GC-MS high-
throughput untargeted analysis, and another 20 cases (contain
pair tumor and normal tissues) were used for UHPLC-MS amino
acid targeted quantitative analysis.

A total of 10 amino acids were selected as OSCC
candidate diagnostic biomarkers by GC-MS untargeted
metabolomics analyses.

In order to determine potential metabolic markers of the
OSCC, we first performed GC-MS high-throughput untargeted
metabolomics analysis for eight matched pairs (n = 16)
of OSCC (Figures 1B,C). The metabolites identified included

amino acids, carbohydrate, lipids, and other compounds. All
metabolites were first analyzed by volcano plot with fold-
change threshold (>1.5) and Student t-test threshold (p <

0.05). Ten metabolites were screened out (fold change >1.5 or
<0.5 and p < 0.05), including two amino acids (Figure 1D,
Table 1). Additionally, heat map and PLS-DA analysis achieved
great separation among tumor and normal based on the 10
metabolites (Figures 1E,F). As many literatures have reported
that amino acid metabolism reprogramming is involved in
tumor development, thus, our study mainly focused on OSCC
amino acid metabolism (4). Receiver operating characteristic
curve analysis of all metabolites revealed 10 amino acids were
selected as candidate metabolic biomarkers [area under the curve
(AUC) >0.80; Figure 2, Table 2]. Four of 10 amino acids had or
close statistical significance [glutamate, serine, γ-aminobutyric
acid (GABA), alanine], and the other six amino acids had no
statistical significance (t-test), which may be related to our
small samples.

Identification of Three Amino Acids as
OSCC Diagnostic Biomarkers by
UPHLC-MS Targeted Metabolomics
Analyses
In order to test whether the 10 amino acids we selected could
accurately distinguish tumors from normal tissues, we used
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FIGURE 5 | The list of three amino acids (AUC > 0.90) selected as potential tumor biomarkers by ROC curve analysis and binary logistic regression in targeted group.

(A–H) Individual amino acid ROC curves (AUC > 0.70). (I) Analyses for three amino acids (aspartic acid, glutamate, proline, AUC > 0.90, t-test P < 0.0001) were

performed by binary logistic regression in Glmnet package; optimal sensitivity and specificity in targeted group were obtained (AUC = 0.942). AUC (0.5–0.7), low

accuracy; AUC (0.7–0.9), moderate accuracy; AUC (>0.9), high accuracy.

another batch of 20 cases; each case contains paired tumor
and normal tissues. The specific concentration of the targeted
amino acids in all samples was examined by UHPLC-MS/MS
quantitative analysis. The results showed nine metabolites
were detected, which had significant differences (t-test, p
< 0.05; Figure 3, Table 2); one was not detected. Principal
component analysis, PLS-DA, and heat map analysis achieved
great separation among tumor and normal groups based on the
nine metabolites (Figure 4). We tested the efficiency of more
than nine amino acids by ROC curve analysis; three of nine
metabolites (glutamate, aspartic acid, and proline) displayed high
efficiency (AUC>0.90); six of nine amino acid markers displayed
moderate efficiency (AUC = 0.70–0.90; Figures 5A–H, Table 2).
Moreover, we obtained optimal sensitivity and specificity using
the top three amino acids (AUC >0.90, p < 0.0001) by binary
logistic regression in the Glmnet package (AUC = 0.942;
Figure 5I). These results suggest that the three amino acids
(glutamate, aspartic acid, and proline) could be used as OSCC
potential diagnostic biomarkers.

DISCUSSION

Metabolic change was one of the hallmarks of cancer cells, in
which regulatory networks were altered to adapt to the metabolic

pressures and provide energy for cancer cells growth, namely,
metabolic reprogram (16, 17). Compared to other “omics” (such
as proteome/genome/transcriptome), most metabolites are small
molecular compounds, are highly conservative, and have stable
performance. The statistical analysis of metabolomics data is
more convenient; the results are easier to understand and more
accurate. The study on metabolomics of cancer tissue specimens
is helpful to improve the diagnosis and treatment of OSCC.
Currently, metabolomics studies of oral cancer use primarily
biological fluids (e.g., plasma, urine, saliva) and cell lines (18–
22), because biofluids and cell lines are readily available. Most
biofluids-based metabolomics studies are relatively quantitative,
without in-depth study on a specific metabolic type and a specific
metabolite, such as amino acid metabolism and the specific
content of a certain amino acid. Therefore, we urgently need to
use tumor tissue and normal tissue samples to conduct systematic
studies on a certain subtype of metabolomics (such as amino acid
metabolomics) and finally develop a panel of markers for the
early diagnosis of OSCC.

In this study, we first performed GC-MS high-throughput
untargeted analysis of OSCC tumor tissue and matched
normal tissue samples, 10 differential metabolites were
selected by t-test to distinguish tumors from normal tissue.
Many literatures have reported that amino acid metabolism
reprogramming is involved in tumor development; moreover,
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the quantitative analysis of amino acids is convenient.
Therefore, we focused on the amino acid metabolism
of OSCC. A total of 10 amino acids (such as glutamate,
GABA, lysine, aspartic acid, tyrosine, serine, threonine,
alanine, proline, isoleucine) were selected as candidate
biomarkers by ROC curve analysis (AUC >0.80) in GC-MS
untargeted group.

In order to further accurately determine the oncogenic
metabolites that distinguish tumors from normal tissues,
UHPLC-MS/MS targeted quantitative analysis was performed
on another batch of 20 cases (each case contains tumor and
normal tissues). We measured the specific concentration of
the above 10 amino acids in all samples. The results validated
that 9 of 10 were detected, which had statistical differences
between tumor and normal (t-test, p< 0.05). Glutamate, aspartic
acid, and proline displayed high sensitivity and specificity
(AUC >0.90) by ROC curve analysis. Moreover, obtaining
optimal sensitivity and specificity uses the three amino acids
by binary logistic regression in the Glmnet package. These
results suggest that the three amino acids (glutamate, aspartic
acid, and proline) could be used as OSCC potential biomarkers.
It had been reported that OSCC tumor tissues had higher
amino acid levels than normal tissues (22, 23); our research
has produced similar results. However, there were reports
that revealed a lower relative concentration of amino acids as
compared to healthy groups in some cancers, such as breast,
pancreatic, oral, and colorectal cancers (24–26). This anomaly
suggests that cancer cells build a second metabolic pathway to
generate energy for rapid growth, which needs more glucogenic
amino acids.

It is famously known that cancer cells favor the “Warburg
effect,” that is, the enhanced glycolysis or aerobic glycolysis,
even when the ambient oxygen supply is sufficient. In addition,
deregulated anabolism/catabolism of fatty acids and amino acids,
especially glutamine, serine, and glycine, has been identified
to function as metabolic regulators in supporting cancer cell
growth (7, 28, 29). In addition to being utilized as substrates
for protein synthesis, amino acids have been documented by
mounting studies that they function as metabolites andmetabolic
regulators in supporting cancer cell growth, among which
research on glutamine, serine, and glycine has been focused
(30). It also revealed that cancer cells undergo biosynthesis
during proliferation, which requires a large amount of amino
acids, resulting in an increase in the concentration of amino
acids in cells during the synthesis process and a decrease in the
concentration of amino acids at the end of synthesis. Altered cell
metabolism enables tumors to sustain their increased energetic
and biosynthetic needs. Our results suggest that the three amino
acids (glutamate, aspartic acid, and proline) could be used

as OSCC potential biomarkers and may be involved in the
progression of OSCC.

However, because of the limited size of the patients, our
study is a preliminary study, and the accuracy of the diagnostic
values of our identified panels (glutamate, aspartic acid, and
proline) remained to be verified by more samples. The molecular
mechanism of amino acid metabolism promoting OSCC and
related metabolic pathways deserve further study.

CONCLUSION

The results from this study were based on GS-MS untargeted
metabolomics analysis and UHPLC-MS targeted quantitative
analysis revealing three amino acids (glutamate, aspartic acid,
and proline) as potential biomarkers of OSCC.
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