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Abstract

Soil microbial metabolic potential and ecosystem function have received little attention owing to difficulties in
methodology. In this study, we selected natural mature forest and natural secondary forest and analyzed the soil microbial
community and metabolic potential combing the high-throughput sequencing and GeoChip technologies. Phylogenetic
analysis based on 16S rRNA sequencing showed that one known archaeal phylum and 15 known bacterial phyla as well as
unclassified phylotypes were presented in these forest soils, and Acidobacteria, Protecobacteria, and Actinobacteria were
three of most abundant phyla. The detected microbial functional gene groups were related to different biogeochemical
processes, including carbon degradation, carbon fixation, methane metabolism, nitrogen cycling, phosphorus utilization,
sulfur cycling, etc. The Shannon index for detected functional gene probes was significantly higher (P,0.05) at natural
secondary forest site. The regression analysis showed that a strong positive (P,0.05) correlation was existed between the
soil microbial functional gene diversity and phylogenetic diversity. Mantel test showed that soil oxidizable organic carbon,
soil total nitrogen and cellulose, glucanase, and amylase activities were significantly linked (P,0.05) to the relative
abundance of corresponded functional gene groups. Variance partitioning analysis showed that a total of 81.58% of the
variation in community structure was explained by soil chemical factors, soil temperature, and plant diversity. Therefore, the
positive link of soil microbial structure and composition to functional activity related to ecosystem functioning was existed,
and the natural secondary forest soil may occur the high microbial metabolic potential. Although the results can’t directly
reflect the actual microbial populations and functional activities, this study provides insight into the potential activity of the
microbial community and associated feedback responses of the terrestrial ecosystem to environmental changes.
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Introduction

Microorganisms are the most abundant organisms on earth and

play key roles in natural ecosystem, including the biogeochemical

cycling of carbon, nitrogen, sulfur, phosphorus, and metals, and

biodegradation or stabilization of environmental contaminants [1–

3]. Because of their important roles, changes in soil microbial

community may directly affect soil ecosystem function, particularly

carbon and nitrogen cycling [4]. A deeply analysis of microbial

community structure and their roles in ecological processes would

improve our understanding of the biogeochemical elemental cycles

affected by microbial communities in natural or man-made

environments [5]. However, our understanding of soil microbial

communities in terms of structure, composition, and functional

activity are still limited, especially for soil microbial metabolic

activity and ecosystem function have received little attention to

date.

Numerous studies have investigated the structure and diversity

of microbial communities and their relationships with the

surrounding environments [4–8]. Previous studies have shown

inconsistent or contradictory results, which might be caused by 1)

high microbial community complexity and plasticity in natural

environments, 2) different methods used to assess microbial

diversity, 3) frequency and magnitude of environmental distur-

bance, and 4) limited knowledge on the temporal and spatial scales

of microbial community in ecosystems [4–7,9]. To date, most

studies have only described microbial community complexity at

the phylogenetic level using 16S rRNA or single functional gene

analysis [8]. Further studies of the metabolic potential and

physiological traits of microorganisms are necessary to detect

specific metabolic processes and functions [4]. Functional gene

microarrays, with quantitative and high resolution capabilities,

may be a useful tool for this purpose [10,11].
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With the increasing efforts made towards implementing

sustainable forest management and conservation strategies since

last century [12], natural secondary forest, which form naturally

after disturbance of the primary forest by human activities or by

extreme natural events, are evident in temperate regions around

the world [13]. Shennongjia Mountain is located in the

northwestern region of Hubei Province, Central China, and this

region is considered to have one of the highest levels of biodiversity

in China owing to its unique geographic location and complex

terrain [14]. In this study, we selected natural mature forest and a

natural secondary forest, which formed in the 1970s following the

fall of the primary deciduous broadleaf forest on Shennongjia

Mountain and analyzed the soil microbial community and

metabolic potential using both GeoChip and high-throughput

16S rRNA sequencing approaches. The aims of this study were to

determine (i) the composition and structure of soil microbial

community in two deciduous broadleaf forest types, (ii) the soil

microbial functional gene diversity and the metabolic potential

involved in carbon and nitrogen cycling, and (iii) the major

environmental factors governing the soil microbial community

structure.

Materials and Methods

Site and sampling
The study site was located on Shennongjia Mountain, Hubei

Province, China, where deciduous broadleaf forest is a typical and

important forest type. Two forest types were selected in this study:

natural mature forest (MAT), and natural secondary forest (SEC),

which was formed in the 1970s following the felling of the primary

deciduous broadleaf forest. The two study sites had similar

geography in terms of slope (30u), aspect (NE30u), and elevation

(1715–1813 m), and were within 10 km of each other. The soil

type was mountain yellow brown soil [15]. The plant survey and

soil collected were permitted by the administrative bureau of

Shennongjia National Nature Reserve. The detail location for the

study site is N 31u299, E110u219 for MAT and N 31u259, E11u209

for SEC, respectively. At each study site, four plots (20 m620 m)

were selected with about 20 meters between adjacent plots. Ten to

fifteen soil cores, at a depth of 0–10 cm, were taken from each plot

and combined to obtain about 400 g of soil. Samples were sieved

with 2 mm mesh to remove roots and stones, then mixed

thoroughly. Soil samples were preserved at 280uC until DNA

extraction.

Plant diversity, soil geochemical properties and microbial
biomass analyses

Plant diversity was surveyed at each plot, including the plant

species, number, height and canopy of each tree or shrub, and

diameter at breast (1.3 m) height of trees (DBH.5 cm) and shrubs

(DBH.1 cm). Average soil temperature at each plot was

measured by placing the Long-Stem Thermomter (SPECTRUM,

US) at a depth of 10 cm in relatively open patches. Soil moisture,

soil pH, total soil organic carbon and nitrogen, available

phosphorous, available water-dissolved organic carbon, and

oxidizable organic carbon were measured as previously described

[16]. Microbial biomass carbon was determined by the chloroform

fumigation-extraction method [17].

DNA extraction, purification, and quantification
Soil microbial genomic DNA was extracted directly from each

soil sample (5 g) using a protocol that included liquid nitrogen

grinding, freezing and thawing, and treatment with sodium

dodecyl sulfate for cell lysis, as previously described [18]. The

freshly extracted DNA was purified twice using 0.5% low melting

point agarose gel. Final DNA concentrations were quantified by

the PicoGreen method [19] using a FLUOstar Optima microplate

reader (BMG Labtech, Jena, Germany).

DNA amplification, sequencing, and data analysis
The V4 hypervariable region of the 16S rRNA gene was

amplified in each soil sample using PCR primers 515F (59-

GTGCCAGCMGCCGCGGTAA-39) and 806R (59-GGAC-

TACH VGGGTWTCTAAT-39), using a sample tagging ap-

proach [20,21]. The amplification mix contained 10 units of

AccuPrime High Fidelity Taq polymerase (Invitrogen, Grand

Island, NY), 16 AccuPrime PCR buffer II (Invitrogen), 200 mM

dNTPs (Amersham, Piscataway, NJ), and 10 mM of each primer in

a volume of 25 ml. Genomic DNA (10 ng) was added to the PCR

mix. Each sample was amplified under the following conditions:

94uC for 1 min, 30 cycles of 94uC for 20 s, 53uC for 25 s, and

68uC for 45 s, then 10 min at 68uC. The purified PCR amplicons

were analyzed using a Miseq Benchtop Sequencer for 26150 bp

paired-end sequencing (Illumina, San Diego, CA).

To minimize the effect of random sequencing errors, only the

first 250 bp after the proximal PCR primer of each sequence was

analyzed. Sequence that did not perfectly match the PCR primer,

had non-assigned tags, or had reads ,250 bp was removed. All

sequences were aligned using the Ribosomal Database Project

Infernal Aligner [22], and the complete linkage clustering method

was used to define operational taxonomic units (OTUs) using 97%

identity as a cutoff [21]. The number of detected OTUs and

sequences at different levels of classification were counted. Details

of amplicon preparations, sequencing, and data analysis (e.g.

classification, OTU identification) were described in previous

reports [20,21]. To standardize samples, a sub-sample of 20,000

sequences per soil sample was used to compare relative difference

among samples. Singletons were removed for downstream

analyses. All the 16S rRNA sequences were deposited in GenBank

database and the accession number is SRP035449.

GeoChip hybridization and data analysis
GeoChip 4.0 was used for DNA hybridization. This microarray

contains .83,000 oligonucleotide probes targeting .150,000

genes in 410 gene categories involved in biogeochemical cycling of

carbon, nitrogen, phosphorus, and sulfur, and bioremediation of

metal and organic contaminants [24]. To produce consistent

hybridizations from all samples, the amplification was used to

generate approximately 3.0 mg of DNA from 50 ng of purified

DNA using a TempliPhi Kit (GE Healthcare, Piscataway, NJ)

following the manufacturer’s instructions. Amplified DNA was

labeled with Cy5 fluorescent dye (GE Healthcare) using a random

priming method [23]. All hybridizations were carried out at 45uC
for 10 h with 50% formamide using a TECAN HS4800 (TECAN,

US) microarray hybridization station, and arrays were scanned

using a ScanArray 5000 analysis system (Perkin-Elmer, Wellesley,

MA).

Signal intensities of each spot were measured using ImaGene

6.0 (Biodiscovery, El Segundo, CA), and only the spots automat-

ically scored as positive in the raw data output were used for

further data analysis [25]. Spots with a signal-to-noise ratio

(SNR = (signal intensity - background intensity)/standard devia-

tion of the background) greater than 2.0 were used for further

analysis [23]. The GeoChip data were further analyzed using the

following steps: (i) genes detected in only two out of four samples

from the same forest type were removed; (ii) the signal intensity of

each spot was normalized by dividing by the mean value of eight
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samples of total signal intensity; and (iii) the data were transformed

to the natural logarithmic form.

Statistical analyses
Relative abundance of the 16S rRNA gene was based on the

proportional frequencies of those DNA sequences that could be

classified at different OTUs. Diversity of the microbial community

based on sequencing analysis and diversity of functional gene from

GeoChip analysis were calculated using Simpson’s reciprocal

index (1/D) and the Shannon index (H9) using online software

(http://ieg.ou.edu/). Detrended correspondence analysis (DCA)

was used to determine the differences in overall microbial

community structure and functional gene diversity between the

two forest types. To examine the differences in soil microbial

community structure and functional diversity between the two

study sites, we used the Bray-Curtis similarity index to calculate

distance matrices from OTUs and GeoChip hybridization data

with the multi-response permutation procedure (MRPP) [26] and

Adonis [27]. Mantel tests, canonical correspondence analysis

(CCA), and variation partitioning analysis were used to evaluate

the linkages between microbial community structure, metabolic

potential related to carbon and nitrogen cycles, and environmental

factors. The variance inflation factor was used for step-wise

removal of redundant variables in CCA modeling [23]. All the

analyses were performed by functions in the Vegan package (v.

1.15-1) in R (v. 2.9.1) (http://www.r-project.org/).

Results

Plant diversity and soil geochemical properties
Plant diversity and soil properties in the MAT and SEC forests

were analyzed (Table 1). The number of plant species (including

trees and shrubs) was 63 and 91 in MAT and SEC, respectively.

The dominant trees were Fagus engleriana, Quercus aliena var.

acuteserrata, and Carpinus viminea at the MAT forest site, and

Toxicodendron verniciflua, Tilia paucicostata, Juglans cathayensis, and Q.

aliena var. acuteserrata at the SEC site, respectively. The Shannon

index of plant was significantly lower for MAT (1.18) than for SEC

(2.12).

Soil organic carbon, oxidizable organic carbon, and microbial

biomass carbon were significantly higher (P,0.01) in the SEC

samples than in the MAT samples. Soil geochemical properties,

such as total nitrogen, available nitrogen, available phosphorus,

pH, and soil moisture, were also significantly different (P,0.01)

between the two forest types (Table 1).

Soil microbial community composition and structure
To determine the overall composition of the soil microbial

community in the two forest types, soil microbial communities

were analyzed by 16S rRNA high throughput sequencing. After

preprocessing of all reads, 65,666 and 65,584 high-quality

sequences were obtained from the MAT and SEC sites,

respectively (Table S1). The number of sequences ranged from

15,521 to 16,919 in MAT samples and from 16,002 to 16,970 in

SEC samples. 10,160 OTUs were detected using 97% identity as a

cutoff. Phylogenetic analysis showed that one known archaeal

phylum and 15 known bacterial phyla as well as unclassified

phylotypes were presented in these forest types (Table 2), and that

all of the phylotypes were detected in both MAT and SEC, except

for BRC1, which was only found in SEC. At the phylum level, the

majority of OTUs were derived from Proteobacteria (4,048, 39.8%),

followed by Acidobacteria (1,787, 17.6%), Actinobacteria (1,019,

10.0%), and Verrucomicrobia (896, 8.82%) (Table 2).

The Shannon index of 16S rRNA sequences was 8.05 and 8.28

for the MAT and SEC sites, respectively (Table S1). The number

of OTUs and the Simpson index were significantly (P,0.05)

different between MAT and SEC samples (Table S1). DCA was

performed using the relative abundance values of sequencing data,

resulting in two distinct clusters (Figure 1A). The results of

nonparametric multivariate statistical tests, Adonis and MRPP,

showed significant differences (R2 = 0.688, P = 0.001, and

d= 0.387, P = 0.026, respectively) based on the abundance of all

OTUs detected in MAT and SEC samples (Table S2). Significant

(P,0.05) differences were also observed at the phylum level for

Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Proteobacteria,

Planctomycetes, and BRC1, except for WS3 (Table 2). The

differences in microbial diversity at the phylum level in the two

forest types varied. Ten known microbial phyla and unclassified

taxa were significantly (P,0.05) higher in SEC samples, including

the dominant phyla Proteobacteria and Actinobacteria. However,

Acidobacteria, Chlamydiae, and Planctomycetes were significantly

(P,0.05) lower in SEC soils. These results indicated that the

Table 1. Plant diversity and soil geochemical properties in two forest types.

Forest type MAT SEC Forest type MAT SEC

non index of tree and shrubs** 1.1860.27 2.1260.17 Soil organic carbon
(g/kg)**

36.4063.41 86.0769.70

Species number of tree* 6.0060.41 12.5062.10 Dissolved organic carbon
(g/kg)

0.1760.01 0.2660.08

Height of tree** 14.1460.54 8.7360.34 Liable organic carbon
(g/kg)**

2.0060.48 12.3761.58

Diameter at breast height
of tree**

19.8561.02 12.0660.75 Microbial biomass carbon
(g/kg)**

0.8160.05 1.3160.07

Soil Moisture (%) ** 50.1261.23 27.3262.45 Total nitrogen (g/kg)** 2.3360.45 5.8360.45

Temperature at 10 cm
depth (uC)

15.9260.15 15.3260.09 Available nitrogen (g/kg)** 0.2260.02 0.4160.03

Soil pH** 4.8160.05 5.9160.28 Available phosphorus
(g/kg) *

0.00460.00 0.01560.00

Data present the mean value and standard error.
*, P,0.05,
**, P,0.01.
doi:10.1371/journal.pone.0093773.t001
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overall soil microbial taxonomic composition and structure were

significantly different between the SEC and MAT samples.

Soil microbial functional gene diversity
A total of 38,925 and 50,068 gene probes were detected using

GeoChip 4.0 in the MAT and SEC samples, respectively (Table

S3). The detected gene groups were related to different

biogeochemical processes, such as carbon degradation, carbon

fixation, methane metabolism, nitrogen cycling, phosphorus

utilization, stress responses, sulfur cycling, contaminant remedia-

tion, metal remediation, and energy processing (Table S4). The

average number of gene probes detected was 43,427.3 for SEC

Table 2. Numbers of soil microbial OTUs and composition in two forest types.

Domain and phylum Totala (%) Averageb
P (unpaired t test)

MAT SEC

Archaea

Crenarchaeota 19 (0.19) 4.5060.96 10.0060.82 0.005

Bacteria

Acidobacteria 1787 (17.59) 777.75622.21 685.50614.06 0.017

Actinobacteria 1019 (10.03) 362.25619.69 443.75617.09 0.021

Armatimonadetes 22 (0.22) 5.2560.63 8.5061.19 0.065

Bacteroidetes 621 (6.11) 91.5065.87 379.50610.81 0.000

BRC1 3 (0.03) 0.00 2.2560.25 0.000

Chlamydiae 17 (0.17) 8.0061.47 1.5060.28 0.019

Chloroflexi 109 (1.07) 26.2562.32 42.2563.71 0.014

Cyanobacteria 3 (0.03) 1.0060.00 2.5060.29 0.014

Firmicutes 129 (1.27) 45.5064.17 60.7565.07 0.061

Gemmatimonadetes 97 (0.95) 23.0061.08 53.5065.74 0.011

Nitrospirae 7 (0.07) 1.0060.41 4.5060.29 0.001

Planctomycetes 657 (6.47) 288.5069.91 173.7569.29 0.000

Proteobacteria 4048 (39.84) 1409.00631.39 1826.25652.01 0.001

Verrucomicrobia 896 (8.82) 459.00641.12 349.7563.07 0.076

WS3 12 (0.12) 0.5060.28 6.5060.87 0.004

Unclassified 714 (7.03) 212.2565.96 326.75611.06 0.000

Total 10160 3623.00±77.66 4469.75±53.03 0.000

aData represent total numbers of OTUs detected by sequencing across all 8 samples.
bData represent the mean value and standard error of OTUs detected using 4 samples in different forest types.
doi:10.1371/journal.pone.0093773.t002

Figure 1. Detrended correspondence analysis (DCA) of soil microbial community structure. The DCA was analyzed based on the relative
abundances of OTUs (A) and functional genes based on GeoChip 4.0 (B).
doi:10.1371/journal.pone.0093773.g001
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samples and 33,982.8 for MAT samples. The Shannon index for

detected functional microbial gene probes were significantly

higher (P,0.05) at SEC sites (10.67) than at MAT sites (10.43)

(Table S3). DCA showed that MAT samples were well separated

from SEC samples (Figure 1B). The regression analysis showed

that a strong positive (P,0.05) correlation was existed between the

soil microbial functional gene diversity and phylogenetic diversity

(Fig. 2).

Microbial functional genes and metabolic potential
related to carbon cycling

To gain insight into the soil microbial metabolic potential

related to carbon cycle, GeoChip 4.0 data for genes related to

carbon cycling was analyzed further. Among the 5,792 gene

probes related to carbon degradation, 4,276 (74%) were common

between the two forest types, while 59 (1%) were presented only in

MAT samples and 1,457 (25%) were presented only in SEC

samples. The relative signal intensities of the different gene

categories related to degradation of relatively active carbon (e.g.

starch, hemicelluloses, pectin, and cellulose) and recalcitrant

carbon (e.g. chitin and lignin) were significantly (P,0.05) higher

in SEC than in MAT samples (Figure 1). This included genes

encoding amylase and pullulanase (related to starch degradation),

arabinofuranosidase and xylanase (related to hemicellulose degra-

dation), cellobiase and exoglucanase (related to cellulose degrada-

tion), pectinase (related to pectin degradation), endochitinase and

exochitinase (related to chitin degradation), and glyoxal oxidase

and phenol oxidase (related to lignin degradation). These results

indicated that the soil microbial metabolic capacity involved in

carbon degradation were significantly different between the two

different forest types.

Among the 1,085 genes involved in carbon fixation, the relative

abundance of three important functional genes, ribulose-1,5-

bisphosphate carboxylase/oxygenase (Rubisco), carbon monoxide

dehydrogenase (CODH), and propionyl-coA (Pcc), was substan-

tially different. A total of 306, 650 and 230 gene probes were

detected for the Rubisco, Pcc, and CODH pathways, respectively.

These genes had significantly higher signal intensity in SEC soils

than in MAT soils (Figure S1). Geochip 4.0 also detected three

enzymes involved in methane metabolism, namely the alpha-

subunit of methyl coenzyme M reductase (mcrA), for methane

production, and particulate methane monooxygenase (pmoA) and

methane monooxygenase (mmoX) for methane consumption.

Over 80% of the gene probes were associated with uncultured

bacteria and archaea. The signal intensity of all the genes involved

in methane metabolism was higher in SEC samples than in MAT

samples (Figure 3). These results indicated that the microbial

functional capacity related to carbon fixation and methane

metabolism may be significantly affected by forest types. The

relationships between soil microbial metabolic capacity related to

carbon cycling and soil carbon components or enzyme activities

were analyzed using the Mantel test (Table 3). The results showed

that soil organic carbon and soil microbial biomass carbon were

significantly linked (P,0.05) to the relative abundance of genes

related to carbon cycling. Oxidizable organic carbon was

significantly linked (P,0.05) to the relative abundance of genes

involved in active organic carbon degradation (cellulase, hemi-

cellulase, and starch). As expected, cellulase, glucanase, and

amylase activities were significantly linked (P,0.05) to the relative

abundance of genes encoding cellulase, endoglucanase and

exoglucanase, and amylase, respectively.

Microbial functional genes and metabolic potential
related to nitrogen cycling

Among the gene probes detected in the forest soil samples,

4,238 were involved in nitrogen cycling, including 767 related to

nitrogen fixation, 513 related to ammonification (including 250

gene probes related to assimilatory N reduction), 1,734 related to

denitrification, 351 related to dissimilatory N reduction, and 621

related to nitrification. These key functional gene categories were

associated with different phylogenetic groups, for example, almost

all gene probes related to the ammonification were derived from

Figure 2. Relationship between soil microbial phylogenetic diversity index and functional gene diversity index.
doi:10.1371/journal.pone.0093773.g002
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cultured bacteria, including Rhodococcus erythropolis, Pseudomonas

entomophila, and Acinetobacter baumannii. A total of 1,533 (88%) gene

probes related to the denitrification were linked to unclassified

bacteria, and 137 (22%) gene probes related to the nitrification

were derived from archaea, which suggests that archaea maybe

play an important role in nitrification process.

The abundance of several genes involved in nitrogen cycling

were significantly (P,0.05) higher in SEC samples than in MAT

samples (Figure 4), including nifH (related to nitrogen fixation),

amoA (related to nitrification), narG, nirS, nirK, and nosZ, (related to

denitrification), napA and nrfA (related to dissimilatory N reduction

to ammonium), gdh and ureC (related to ammonification), and niR

and nirB (related to assimilatory N reduction). The relationships

between microbial functional genes and soil nitrogen components

were analyzed using the Mantel test (Table 4). The results showed

that soil total nitrogen was significantly linked (P,0.05) to the

relative signal intensity of nitrogen cycling genes. The NH4
+-N

and NO3-N concentrations were linked (P,0.1) to the signal

Figure 3. The normalized gene relative signal intensity of the detected key gene categories involved in carbon degradation. The
signal intensities were the sum of detected individual gene for each functional gene, averaged among 4 soil samples. The complexity of carbon is
presented in order from active to recalcitrant. All data are presented as mean 6 standard error. Significant differences between two forest types are
indicated above the bars. *, P,0.05, **, P,0.01.
doi:10.1371/journal.pone.0093773.g003

Table 3. The relationships between relative abundances of microbial functional genes involved in carbon and nitrogen cycling
and soil carbon or nitrogen components and enzyme activity by Mantel-test.

Soil carbon parameters Microbial relative abundance R value P

Soil organic carbon Carbon cycling genes 0.389 0.039

Oxidizable organic carbon Oxidizable organic carbon degradation genes(Cellulose, Hemicellulose, Starch) 0.403 0.046

Water dissolved organic carbon Carbon cycling genes 0.114 0.216

Soil microbial biomass carbon Carbon cycling genes 0.500 0.020

Total soil nitrogen Nitrogen cycling genes 0.382 0.050

NH4
+-N Ammonification genes 0.296 0.089

No3
–N Nitrification genes 0.302 0.079

Cellulase activity Cellulase genes 0.342 0.046

Glucanase activity Endo- and exoglucanase genes 0.351 0.022

Polyphenol oxidase activity Polyphenol oxidase genes 0.046 0.626

Amylase activity Amylase genes 0.358 0.027

doi:10.1371/journal.pone.0093773.t003
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intensity of genes involved in the ammonification and nitrification

processes, respectively.

Linking microbial community structure and
environmental factors

Mantel tests and CCA were performed to analyze the major

environmental factors responsible for shaping the microbial

community structure and functional diversity. The Mantel test

showed that microbial community structure and functional gene

diversity were significantly (P,0.05) linked to soil and plant factors

(Table 4). CCA was used to identify the major environmental

variables controlling the soil microbial community structure,

resulting in a model significant at a confidence level of P = 0.048.

The plant Shannon index and tree DBH appeared to be important

environmental factors controlling the microbial community

structure, as they had a long projection on Axis 1 (P,0.01),

which represented the major variation among microbial commu-

nities (Figure 5A). Similarly, soil temperature and soil organic

carbon were critical for shaping microbial communities.

Variance partitioning analysis was used to quantify the

contributions of soil chemical factors (Soil), soil temperature

(Temp), and plant diversity (Plant) to the variation in the microbial

community. A total of 81.58% of the variation was significantly

explained by these three environmental variables (Figure 5B). Soil,

Temp, and Plant explained 26.02%, 8.58%, and 19.35% of

variation, respectively, verifying that they were major factors in

shaping the microbial community structure.

Discussion

The development and increasing availably of high-throughput

molecular techniques has helped improve our understanding of

microbial composition, especially through the use of direct

sequencing of metagenomic DNA. Fierer et al. indicated that all

biomes were dominated by Acidobacteria, Actinobacteria, Proteobacteria

and Bacteroidetes, and the bacterial community composition does

not vary significantly across different biomes [1].Our results

showed that microbial diversity at the phylum level differed

between the two forest types, and Acidobacteria, Protecobacteria, and

Actinobacteria were three of most abundant soil bacterial phyla.

Acidobacteria is known to be dominant in other soil types, although

they are often difficult to cultivate [8,28]. The relative abundance

of Acidobacteria was also shown to be higher in forest, desert, and

prairie soils compared with agricultural soils [28]. Recent studies

Figure 4. The normalized average signal intensity of detected key gene categories involved in the N cycling between SEC and MAT.
The signal intensities were the sum of all detected individual gene for each gene category, and then averaged among 4 samples. (A). N2 fixation,
including nifH encoding nitrogenase; (B). Nitrification, including amoA encoding ammonia monooxygenase, hao for hydroxylamine oxidoreductase;
(C). Denitrification, including narG for nitrate reductase, nirS for nitrite reductase, norB for nitric oxide reductase, and nosZ for nitrate reductase; (D).
Dissimilatory N reduction to ammonium, including napA for nitrate reductase, and nrfA for c-type cytochrome nitrite reductase; (E). Ammonification,
including gdh for glutamate dehydrogenase and ureC encoding urease; (F). Assimilatory N reduction, including nasA encoding nitrate reductase, niR,
nirA and nirB encoding dissimilatory nitrite reductase. All data are presented as the mean6SE (error bars). **, P,0.01, *, P,0.05.
doi:10.1371/journal.pone.0093773.g004

Table 4. Mantel test and partial Mantel test between 16S
rRNA OTUs and Geochip data with environmental properties.

Environmental variable 16S OTUs GeoChip 4.0

r value P value r value P value

Whole variable 0.868 0.005 0.412 0.008

Soil organic carbon 0.770 0.003 0.392 0.013

Total nitrogen 0.832 0.003 0.402 0.019

pH 0.622 0.006 0.322 0.043

Temperature at the 10 cm depth 0.463 0.002 0.085 0.272

Shannon Index for trees and shrubs 0.779 0.006 0.337 0.028

Diameter at breast height of trees 0.532 0.008 0.125 0.158

The Mantel test was only performed for whole variable, which included all
variables presented in this table.
doi:10.1371/journal.pone.0093773.t004
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showed that Acidobacteria is in general oligotrophic, consistent with

results showing that the proportion of Acidobacteria was significantly

lower in nutrient-rich rhizosphere and agricultural soils than in

bulk soil [4,29]. Some studies also found that the relative

abundance of Acidobacteria was negatively linked to the level of

nitrogen input [30]. In this study, the relative abundance of

Acidobacteria was high in the natural forest, which had low soil

organic carbon and nitrogen contents.

Due to microbial highly diversity and natural ecosystem

complexity, it is a great challenging to set up the link of soil

microbial structure and composition to functional activity related

to ecosystem functioning in microbial ecology. Many studies have

described microbial community structure in a range of different

environments, but have not identified critical groups related to

detailed functional processes [4–8,31]. Therefore, it remains

unclear the relationship between microbial community structure

and microbial functional gene diversity [32–34]. Functional

redundancy is considerable debate in ecology as to how the

relationship between the taxonomic diversity and observed

functional diversity [35]. This study combines high-throughput

sequencing to study the microbial community structure at the

phylogenetic level and GeoChip to microbial potential metabolic

activities at functional gene level. 16S rRNA gene-based high-

throughput sequencing data provide information on microbial

phylogenetic structure and composition, and GeoChip-based data

provide quantitative information on various microbial functional

groups [23]. These integrated technologies provide a reliable

method for detection soil microbial structure, composition and

potential functional activity [23]. In this study, a strong positive

correlation were found between the soil microbial functional and

phylogenetic diversity among sampling sites, which suggesting

microbial phylogenetic and functional diversity aligned well and a

low degree of functional redundancy were existed. Our result was

consistent with a recent work on reconstructing the microbial

diversity and function of pre-agricultural tallgrass prairie soils in

the United States [36]. Furthermore, the higher phylogenetic

diversity detected in SEC was consistent with the higher number

of functional genes involved in the carbon and nitrogen cycles,

unveiling the larger functional potential and capacity of the

secondary forest soil.

Soil microbial metabolic potential and ecosystem function have

received little attention owing to difficulties in methodology. As we

all known, most of the biogeochemical processes were controlled

and related to diverse and various functional genes, therefore, the

conjunction between microbial community identified by using

normal molecular methods (i.e. DGGE, T-RFLP) with soil enzyme

activities or components is difficult. GeoChip-based data provides

large-scale quantitative information on various biogeochemical

functional groups, thus making it possible to link the functional

structure of microbial communities with ecosystem processes [23].

Previous studies showed that change observed in the microbial

community structure and functional groups has significant effects

on soil enzyme activities or components related to carbon and

nitrogen cycles. Yergeau et al. [37] and Reeve et al. [34] showed a

significant correlation between cellulase enzyme activity and

cellulose gene variants, detected using GeoChip, as well as

significant correlations between dehydrogenase genes and enzyme

activity, urease genes and soil ammonium, and sulfite reduction

genes and soil sulfur level [34]. In this study, we also found the

linked of soil microbial functional gene diversity to soil enzyme

activities and components, such as the soil organic carbon and soil

microbial biomass carbon were significantly linked (P,0.05) to the

relative abundance of genes related to carbon cycling, oxidizable

organic carbon was significantly linked (P,0.05) to the relative

abundance of genes involved in active organic carbon degradation

(cellulase, hemicellulase, and starch), respectively. Although the

GeoChip data can’t directly reflect the actual microbial popula-

tions and functional activities, it implied that the microbial

populations carrying those genes could exist and have the

functional capacity. Our GeoChip data showed that metabolic

genes involved in the degradation of starch, cellulose, hemicellu-

lose, chitin, lignin, and pectin, as well as those involved in nitrogen

Figure 5. The Canonical correspondence analysis (CCA) and Variation partitioning analysis (VPA) between OTUs data and soil
environmental variables. The left was CCA between microbial OTUs data and soil environmental factors, and the right was the VPA. DBH,
diameter at breast height of tree. Soil, including soil organic carbon, total nitrogen and pH, soil temperature (Temp) and plant diversity (Plant,
including the Shannon index of trees and shrubs, diameter at breast height of trees), and their relationships. Each diagram represents the biological
variation partitioned into the relative effects of each factor or a combination of factors, in which geometric areas were proportional to the
percentages of explained variation.
doi:10.1371/journal.pone.0093773.g005
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cycling, were significantly higher (P,0.05) in SEC than in MAT

soils. Therefore, SEC soil had high microbial gene diversity and

microbial metabolic potential. The use of GeoChip 4.0 may allow

us to rapidly obtain community-wide information and observe

differences functional capacity in different environments.

Only about 1% of the microorganisms in soil can be cultured,

and researchers have increased our understanding of microbes in

the natural environments by use of PCR amplification methods

which reduce our dependence on the presence of culturable

microbes. In our study, the majority of the genes related to carbon

and nitrogen cycles were derived from the uncultured bacteria,

suggesting that they are unique and may represent novel genes in

the study area. For example, 88% gene probes related to the

denitrification process were linked to unclassified bacteria. In

previous studies, researchers received the same results, for

example, Xie et al found 64.28% sequences were from unculti-

vated bacteria in the acid mine drainage [38], Zhang et al found

the 320/372 genes were derived from the unidentified or

uncultured organisms in the alpine meadows soils in the

Qinghai-Tibetan plateau [39]. Therefore, a lot of the microbial

functional gene resources were existed in natural environments.

Much recent work in soil microbial ecology has showed that soil

microbial community structures are affected by specific environ-

mental changes or disturbances [11,25]. Soil properties and plant

diversity are key factors in shaping the microbial community

composition and structure [40,41]. Organic carbon availability

limited microbial communities in most soils [37], and addition of

labile organic material rapidly alters microbial communities by

selecting for populations that are most competitive in terms of

growth rates and ability to absorb nutrients [41]. Thus, it was not

considered to be the limiting factor for the microbial communities.

Our data showed that plant diversity also significantly influenced

the microbial community structure at the phylum level. Plant

communities can influence the associated soil microbial commu-

nities through the types and amounts of organic carbon and

nutrient inputs, and by altering the temperature and water content

of the soil [42,43]. Therefore, changes in plant diversity,

composition, and production affect the composition and diversity

of soil microbial communities [9]. However, our understanding of

differences in soil microbial diversity depending on various

vegetation types is still poor.

In summary, this work studied the microbial community

structure and metabolic potential by combining high-throughput

sequencing and GeoChip technologies, and showed the soil

microbial community structure and functional metabolic potential

had a positive correlation. Although the microbial populations and

metabolic activities could not be characterized comprehensively,

the detected functional gene groups may represent the in situ

microbial metabolic potential at the functional cluster level to

some degree. Further analysis of the functional activity with

different approaches such as mRNA-based analysis is needed to

understand the biogeochemical processes related to microbial

community.
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