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ABSTRACT 

Biochemical phenotypes are major indexes for protein structure and function characterization. They are 

determined, at least in part, by the intrinsic physicochemical properties of amino acids and may be 

reflected in the protein three-dimensional structure. Modeling mutational effects on biochemical 

phenotypes is a critical step for understanding protein function and disease mechanism as well as 

enabling drug discovery. Deep Mutational Scanning (DMS) experiments have been performed on SARS-

CoV-2’s spike receptor binding domain and the human ACE2 zinc-binding peptidase domain – both 

central players in viral infection and evolution and antibody evasion - quantifying how mutations impact 

binding affinity and protein expression. Here, we modeled biochemical phenotypes from massively 

parallel assays, using convolutional neural networks trained on protein sequence mutations in the virus 

and human host. We found that neural networks are significantly predictive of binding affinity, protein 

expression, and antibody escape, learning complex interactions and higher-order features that are 

difficult to capture with conventional methods from structural biology. Integrating the intrinsic 

physicochemical properties of amino acids, including hydrophobicity, solvent-accessible surface area, 

and long-range non-bonded energy per atom, significantly improved prediction (empirical p<0.01) 

though there was such a strong dependence on the sequence data alone to yield reasonably good 

prediction. We observed concordance of the DMS data and our neural network predictions with an 

independent study on intermolecular interactions from molecular dynamics (multiple 500 ns or 1 μs all-

atom) simulations of the spike protein-ACE2 interface, with critical implications for the use of deep 

learning to dissect molecular mechanisms. The mutation- or genetically- determined component of a 

biochemical phenotype estimated from the neural networks has improved causal inference properties 

relative to the original phenotype and can facilitate crucial insights into disease pathophysiology and 

therapeutic design.       
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Introduction 

Since the initial outbreak, the SARS-CoV-2 virus has rapidly spread worldwide causing a global 

public health crisis, the coronavirus disease 2019 (COVID-19). In vitro and cryo-electron microscopy 

studies have established that the betacoronavirus uses the human cell-surface protein angiotensin 

converting enzyme 2 (ACE2) to gain entry into target cells1–3. Therefore, precise characterization of the 

interaction between the Receptor Binding Domain (RBD) of the viral spike glycoprotein and the ACE2 

complex is of critical importance in understanding COVID-19 pathophysiology3. Not surprisingly, several 

drug candidates that target either the virus or the receptor have been developed on the basis of the 

ACE2 binding. With improved understanding of this key molecular interaction, two major therapeutic 

strategies have been pursued, including 1) engineering high-affinity ACE2 decoy or developing antibody 

cocktail treatments  and 2) screening new or repurposing existing inhibitors targeting the binding 

interface4,5. Establishing the sequence-structure-phenotype relationship for the spike RBD and the ACE2 

receptor is essential for both strategies, in which the sequence mutational effect on receptor affinity 

and other biochemical phenotypes is the major component6–10.   

Comprehensive understanding of how variants, including single mutations, affect disease-

relevant biochemical phenotypes would go a long way towards clarifying molecular mechanisms of 

disease as well as downstream adverse complications and guiding pharmacological interventions. In 

addition, elucidating the mutational effect may shed light on selective pressures determining the 

evolutionary trajectory of the coronavirus as well as identify risk factors for viral infection and 

maladaptive host response to COVID-19 in human populations11. Deep Mutational Scanning (DMS) 

systematically evaluates the effect of mutant versions of the protein on measured biochemical 

phenotypes 12,13,6,14. High-throughput mutagenesis in DMS makes it possible to assess the phenotypic 

consequences of each possible amino acid mutation in a protein, generating large datasets that can 
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reveal the sequence-function landscape. The development of computational approaches to learn the 

complex and non-linear features of this map can enable high-throughput inference of basic protein 

properties. Statistical and machine learning methods, including deep learning, have attracted significant 

attention due to their predictive power15. A recently developed supervised learning framework tailored 

to DMS datasets, convolutional neural networks demonstrated spectacular performance, consistent 

with other recent studies of mutational effect16,17. 

DMS experiments on both the SARS-CoV-2 spike glycoprotein and the ACE2 receptor have been 

performed, providing an important basis for further investigations of mutational effects 4,7,18. In this 

work, we conducted systematic modeling of the mutational effects of the RBD in the viral spike protein 

and of the ACE2 receptor on biochemical phenotypes, extending a supervised learning framework16. 

Three classes of critical phenotypes -- binding affinity, protein expression, and antibody escape -- were 

systematically analyzed within the sequence-structure-function paradigm that informs much of 

proteomic and structural biology studies. Neural networks were also leveraged to learn (a) the complex 

functional landscape of the viral spike protein’s RBD and the host cell-surface receptor ACE2 and (b) the 

antibody-escape map of RBD mutations, including mutations that undergo selection during viral 

proliferation in the presence of antibodies and mutations that have been circulating in human 

populations19–21. Finally, the mutation- or genetically- determined phenotypes (i.e., the component of a 

phenotype defined by the sequence versus a technical confounder or the environmental component) 

estimated from the neural networks were exploited to extract key insights into the molecular 

mechanisms of COVID-19 infection and severity. 

Results 

Overview of framework 
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Briefly, we describe the framework (Figure 1A). Here we consider a set of N training samples 

consisting of (protein) sequences, x1, x2, …, xN ∈ X, with corresponding biochemical phenotype values, 

y1, y2, …, yN ∈ Y (where phenotype is fixed and chosen from binding affinity, protein expression, or an 

antibody-escape measure), where the pairs are sampled independently and identically distributed (i.i.d.) 

from a joint distribution  

(xi , yi) ~ Λ 

A supervised learning method seeks to find, from a pre-defined class of functions, a function g : X →Y, 

which maps the input sequence x to the phenotype value 𝑦 and minimizes the expected deviation  

E(L(y, g(x)))= ∫ L(y, g(x))Λ(x, y)dxdy 

from 𝑦 under a loss function L : Y x Y → R. Regularization (e.g., dropout) is also performed to prevent 

overfitting and enhance generalization error. The expected loss is generally approximated by the 

average of the L(y𝑖, g(x𝑖)) across the training samples, i.e., the empirical loss, given that the distribution 

Λ is typically not known. Neural networks constitute the class of functions defined by the composition of 

affine maps (Ψi) and activation functions (φ) (which are typically non-linear).  

g(x) =  ΨM(φ(ΨM-1φ(…  φ(Ψ1(x) … )     (1) 

(Note linear regression can be trivially included as a member of this class of functions.) The minimization 

problem, i.e., the search for an optimal function g, is framed as a search for a set of weights 𝐖(𝑘) and 

biases 𝑏(𝑘) (Methods).  

Application of deep learning framework to the spike RBD and the ACE2 PD complex 

The crystal structure of the spike RBD — ACE2 PD complex was retrieved from the Protein Data 

Bank (PDB; PDB ID: 6M0J)2. Our study investigated two biochemical phenotypes, binding affinity and 

protein expression – each critical to viral evolution, receptor recognition, and host-virus interaction –  
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and a set of antibody-escape phenotypes, which may provide critical insights into the antigenic 

consequences of mutations and effective vaccine design (Figure 1A). Specifically, we trained on single-

mutation functional score profiles, consisting of all possible amino acid mutations and the corresponding 

phenotypic measurements (quantified relative binding score for the ACE2 catalytic zinc-binding 

peptidase domain (PD), binding affinity and expression for the spike RBD, and the “escape fraction” from 

each of 10 human monoclonal antibodies) measured by DMS experiments. The protein sequences xi 

were encoded by one-hot encoding and an external curated featurization table, AAindex, which 

summarizes the intrinsic physicochemical properties of amino acids, e.g., hydrophobicity, solvent-

accessible surface area, and long-range non-bonded energy per atom (Figure 1B; Methods). 

Figure 1. Overview of the framework. A We evaluated three biochemical phenotypes generated from 
Deep Mutational Scanning (DMS) experiments: binding affinity, protein expression, and antibody 
escape. These biochemical phenotypes may determine the evolutionary trajectory of the coronavirus, 
viral infection, and maladaptive host response. B We quantified the extent to which state-of-the-art 
neural network methodologies can predict these phenotypes, using only sequence mutation data. The 
predicted biomedical phenotypes are mutation- or genetically- determined traits, which are therefore of 
intrinsic interest because they are determined solely by the (amino-acid) sequence data. We encoded 
the protein sequence input using AAindex, consisting of 566 intrinsic (data-independent) 
physicochemical properties of the amino acids, such as hydrophobicity and long-range non-bonded 
energy per atom, and one-hot encoding. We then trained neural networks on the mutation-phenotype 
data from the DMS experiments. C We trained sequence convolutional neural networks and graph 
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convolutional neural networks (along with [fully connected] multilayer perceptrons and linear 
regression) on the DMS data. Shown are the convoluted sequences and structural motifs for the two 
types of architecture, respectively, differentiated by color. 

 

We generated independent models, which allow prediction of mutational effects on binding 

affinity, expression, or antibody escape (for each of the 10 antibodies) of previously uncharacterized 

variants. We implemented linear regression and several neural network architectures: multilayer 

perceptron (fully connected), sequence convolutional neural network, and graph convolutional neural 

network. While linear regression considers only the additive contributions of sequence residues, 

multilayer perceptron can capture nonlinear relationships between sequence (input) and phenotype 

(output). Due to their distinctive architecture, convolutional neural networks are even more powerful to 

learn higher-level features. Filters for sequence convolutional neural networks slide along the one-

dimensional input of protein sequence and learn from sequence fragments while graph convolutional 

neural networks act on the structural coordinates of proteins (Figure 1C). In the graph structure 

representation G = (V, E) of the spatial structure of the protein, the sequence residues are represented 

as nodes 𝑉 while the interactions for pairs of residues (determined by a distance threshold) are 

represented as edges 𝐸. Graph convolutional neural networks learn segments of protein structures, i.e., 

motifs, with the convolutional kernels capturing translational invariance. 

Evaluating models learned from Deep Mutational Scanning data 
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Figure 2. Predictive performance of neural networks on binding affinity. A Distribution of ACE2 binding 
affinity, in the test set, from single mutations in the spike glycoprotein RBD, as measured by DMS. The 
predicted biochemical phenotype from B neural networks, e.g., CNN, was much closer in distribution to 
the original phenotype than that from C linear regression. Notably, D-F the 3 neural network models 
trained here showed significant Spearman correlation (p < 2.2x10-16) between the observed (x-axis) 
and predicted (y-axis) phenotype in the (independent) test set. Red line is the diagonal (𝑦 = 𝑥) line. 
CNN: convolutional neural network (Table S1, Network 2); LR: linear regression; MLP: multilayer 
perceptron; GCN: graph convolutional network (Table S1, Network 8). 

 

We performed the supervised learning methods on the various spike RBD and ACE2 PD datasets, 

comprising mutant-score profiles of binding affinity, expression, and antibody escape. For each model 

(defined by a phenotype from a DMS dataset), the dataset was randomly split into 60% training, 20% 

tuning, and 20% testing subsets. Trained models were evaluated by predictive performance on the test 

subset (e.g., Figure 2A). The supervised learning methods demonstrated varied predictive performance 

in the case of the spike RBD, where the Spearman correlation coefficient between the observed and 

predicted phenotype ranged from 0.49 (for linear regression) to 0.78 (for convolutional neural network) 

for ACE2 binding affinity (Table S1). Neural networks provided much better predictive performance than 

linear regression, indicating that binding affinity is characterized by interactions (non-additive effects) 

among residues and a non-linear mapping of sequence to function. Relative to the distribution of 

binding affinity (Figure 2A) from the RBD mutations, the predicted phenotypes from the neural networks 
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had greater fidelity to the original than linear regression (Figure 2B and 2C). Notably, the amino acid 

sequence mutational data alone could significantly predict binding affinity (p < 2.2x10-16), using 

multilayer perceptron (Spearman correlation 𝜌 = 0.52), sequence convolutional neural network (𝜌 =

0.69), and graph convolutional neural network (𝜌 = 0.70) (Figure 2D, 2E, and 2F, Table S1).  

For the spike glycoprotein expression, the prediction performance (Spearman correlation in the 

test set) ranged from 0.44 (for linear regression) to 0.84 (for graph convolutional network). Binding 

affinity to ACE2 and spike glycoprotein expression were significantly correlated (𝜌 = 0.65) in the 

training set, but the relationship was found to be highly nonlinear (Figure 3A). Though both phenotypes 

reflect protein stability under a wide range of biochemical contexts, binding affinity is more determined 

by the surface residues on or near the binding sites as well as by allosteric effects induced by inner or 

remote residues. As in the case of binding affinity, the neural network models significantly predicted 

RBD expression (p < 2.2x10-16), using multilayer perceptron (Spearman correlation 𝜌 = 0.50), 

sequence convolutional neural network (𝜌 = 0.682), and graph convolutional neural network (𝜌 =

0.679) (Figure 3B, 3C, and 3D, Table S1). Despite the range in prediction performance of the models, the 

estimates of the mutation-mediated component of RBD expression derived from them were highly 

correlated (Figure 3E).  

Previous studies  have shown that mechanistic insight of protein mutational effects is not easily 

transferable to studying the effects of variants in other proteins14. We hypothesized that models trained 

on one species-phenotype are not suitable for predicting another species-phenotype. To evaluate this 

hypothesis, we trained a model using the avGFP DMS dataset22, in which the score of the green 

fluorescent protein from Aequorea victoria, avGFP, is fluorescence.  The avGFP sequence was slightly 

modified to match the input dimension of the spike RBD (Methods). Therefore, the expression-based 

score profile of the spike RBD could be used as an external test set, with its combination of amino-acid 

sequence unseen during the training and an unrelated phenotype. As hypothesized, the sequence 
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convolutional model from avGFP failed to predict the expression of mutated sequences (Spearman 

correlation 𝜌 = −0.0346). This finding implies that the biochemical phenotypes differed in their 

dependence on protein amino-acid sequence length, type, or composition, with interaction from non-

sequence physicochemical environments (for example, pH condition and ionic density) potentially 

accounting for the difference. 

 

 
Figure 3. Predictive performance of neural networks on protein expression. A Binding affinity to ACE2 
and spike glycoprotein expression, both induced by a protein sequence mutation on the RBD, were 
significantly correlated (Spearman correlation 𝜌 = 0.65), but the relationship between the two 
phenotypes was highly nonlinear. We fit a curve through the points, using Locally Estimated Scatterplot 
Smoothing (LOESS), a method for local polynomial regression. B-D We trained three neural network 
models, which could significantly predict (Spearman correlation p < 2.2x10-16) protein expression in the 
(independent) test set. Red line is the diagonal (𝑦 = 𝑥) line. E Pairwise correlation between the neural 
network models. MLP: multilayer perceptron; CNN: convolutional neural network (Table S1, Network 2); 
GCN: graph convolutional network (Table S1, Network 8). 

 

Influence of network architectures on biochemical phenotype prediction  

All mutational sequences were encoded by the externally defined AAindex, a set of 566 

quantitative indices of physicochemical properties of amino acids, which were used to train the 

empirical mutational scores on the DMS data23.  Thus, we examined the impact of the quality of the 

AAindex on prediction performance. We shuffled the entire AAindex so that the intrinsic information for 
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each amino acid would be completely lost and replaced with random noise (Methods). We generated 

100 pseudo AAindex tables, on which sequence neural networks were trained, using a given choice of 

configurations, i.e., number of layers and filter dimensions (Figure 4A). For each choice of network 

configurations, the distribution followed a bell-shaped curve, with the prediction performance from the 

actual AAindex located at the far-right and outperforming any of the shuffled tables. In other words, 

integrating the AAindex information significantly improved (empirical p<0.01) the overall performance 

of the neural networks.  

The prediction substantially improved with a larger filter dimension on a single hidden layer 

sequence convolutional network. This observation implies that the neural networks were able to learn 

more information from longer sequence fragments, which is consistent with the expression of the spike 

RBD reflecting complex non-linear relationships of the sequence (Network 1, 2 Figure 4A). Even with a 

shuffled AAindex table, i.e., in which the intrinsic properties of the amino acids were essentially lost, a 

larger filter dimension led to enhanced learning from the expression phenotype, with increased mean 

and reduced standard deviation for the empirical performance distribution, indicating highly strong 

dependence of expression on the sequence data. Deeper neural networks with a fixed filter dimension 

also showed improved prediction on expression (Network 2-4, Figure 4A). Integration of an accurate 

AAindex as input of a deeper neural network resulted in further performance gain relative to a shuffled 

AAindex, confirming that the neural network was leveraging the externally-defined intrinsic properties. 

To further reveal the information learned from neural networks by increasing the number of hidden 

layers, we applied Uniform Manifold Approximation and Projection (UMAP) to visualize the latent space 

in the last layer16,24. Notably, a deeper network could better differentiate high- and low- scoring 

sequence mutants as distinct clusters (Network 1-4, Figure 4B). 
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Figure 4. Effect of neural network architectures on predicting biochemical phenotypes. A Distribution 
of predictive performance (Spearman correlation in the test set) of sequence convolutional neural 
networks with a shuffled AAindex (shown as a histogram) and the actual AAindex (shown as a red dot), 
training on the spike RBD expression dataset. Each plot corresponds to a specific choice of architecture, 
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including the number of layers and the filter dimension. Increasing the filter dimension or the number of 
layers improved the prediction performance. Furthermore, encoding the input data with the actual 
AAIndex, which summarizes the externally-defined intrinsic physicochemical properties of the amino 
acids, consistently led to performance gain. Nevertheless, we observed a strong dependence, on the 
input sequence data alone (i.e., without the intrinsic amino acid attributes), of the original biochemical 
phenotype, with reasonable performance across all choices of network configurations. B Uniform 
Manifold Approximation and Projection (UMAP) projection of the latent space of the sequence 
convolutional networks on the last internal layer of the network. Mutants are colored according to the 
actual phenotype score, with green and red representing high-scoring and low-scoring variants, 
respectively.  

Mutational effects on biochemical phenotypes  

SARS-CoV-2 infection leads to complex pathophysiological consequences which are far from 

being fully understood. Elucidating mutational effects on biochemical phenotypes for the spike RBD and 

the ACE2 PD is critical in improving our understanding of the virus-host interactions as well as host 

immune response. Furthermore, with the spike glycoprotein as the primary target due to its role in 

mediating coronavirus entry into host cells, neutralizing Antibodies (Abs) may provide protection from 

SARS-CoV-2 in humans25. Here, we highlight the results from sequence convolutional neural networks 

that showed the optimal performance among all tested models and further interpret them in 

connection with existing experimental characterizations, molecular modeling, and host genetic 

inferences. In addition, we leveraged the neural network derived phenotypes to evaluate their utility in 

downstream analyses because, as inferred phenotypes, they are solely determined by the sequence 

mutation data and are thus less biased by possible confounding artifacts26,27, including batch effects, 

environmental (non-sequence physicochemical) determinants, and other (hidden) technical sources of 

heterogeneity.   

Key mutations on spike RBD. SARS-CoV-2 evolution promotes virulence and enhances escape 

from neutralizing Abs. Interface mutations (Figure 5A and 5D), specifically those at contact sites, are 

more likely to have direct impact on infectivity. The mutational effects of these “key binding residues” of 

the spike RBD, i.e., residues that are essential for ACE2 binding based on structural characterization2, 

were systematically evaluated by our neural networks (Figure 5B and 5E). Predicted phenotypic effects 
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were consistent with DMS measurements7; for example, mutations at G502 showed the most extreme 

impact on receptor binding affinity (see Figure 5B). The neural network estimate of mutation-mediated 

binding affinity with the ACE2 receptor significantly differed (Mann-Whitney U test p=5.19x10-18) 

between the set of key binding residues and the remaining residues in the spike RBD, thus inducing 

clustering. Notably, the difference between the two residue classes was more significant (p=6.9x10-14) 

for the neural network derived phenotype than for the original phenotype, i.e., the measurement 

unadjusted for non-mutational effects and (hidden or unmeasured) technical confounders. Interestingly, 

across the key binding residues in the RBD, a mutation to a Tyrosine (Y) showed higher neural network 

derived receptor binding affinity and lower variability compared with a mutation to another amino acid 

(Figure 5F). The outlier Tyrosine mutational effect on the level of receptor affinity was not detectable 

with the original (unadjusted) phenotype. In general, there was much higher variability across the key 

binding residues in the original phenotype than in the neural network estimate of the mutation-

mediated phenotype (Figure 5F). In addition, the key spike RBD binding residues were consistent with 

results of interfacial interactions of the spike RBD bound to ACE2 from molecular dynamics simulations28 

(performed for 500 nanoseconds in triplicates or 1 μs all-atom, using Desmond). Intermolecular 

interactions, including hydrophobic interactions, hydrogen bonds, π- π, and cation-π, were dynamically 

observed in formation and breakage in the simulations. Notably, the key binding residues of the spike 

RBD formed consistent polar interactions with the corresponding residues of ACE2 during the molecular 

dynamics simulation trajectories (Figure 5C). 

Neutralizing Abs secreted from immune cells may also be found to be in complex with the spike 

RBD. Consistent with the experimental characterizations19, the neural network derived antibody-escape 

phenotypes for the 10 human monoclonal Abs have differentiated target “hotspots” on the surface of 

the spike RBD, pointing to different sets of escape mutations (Figure 6A). The neural network prediction 

performance on antibody escape of the spike RBD varied between the Abs (Spearman correlation 
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coefficient in the test set between 0.09 and 0.32) (Figure 6B). The variability in performance might be 

due, at least in part, to the unique physicochemical properties of the 10 monoclonal antibodies as well 

as their specific relative dependence on sequence mutation and other (non-sequence) determinants.  

As receptor recognition and antibody escape are closely related viral activities, we implemented 

Random Forest to calculate the feature importance of the 10 convolutional neural network derived 

mutation-mediated antibody-escape phenotypes as predictors of binding affinity towards the ACE2 

receptor. We hypothesized that those Abs that shield the receptor by pre-occupying the spike RBD – 

ACE2 PD binding interface would weigh more in their contributions to the prediction. Notably, we found 

that the top 3 Abs (COV2-2499, COV2-2832, and COV2-2050), all entirely targeting the interface based 

on experimental characterizations19, among the neural network derived antibody-escape predictors 

accounted for nearly 60% of the feature importance score (Figure 6C). Key residues on the spike RBD 

that are critical binding sites with ACE2 PD include G446, Y449, G496, Q498, and T500 for escape 

mutations of the top-ranked COV2-2499. Both receptor affinity and the amount of available protein 

determine the infectivity of SARS-CoV-2 and downstream complications of COVID-19. Notably, among 

the key binding residues on the spike RBD, these sites of escape mutations for COV2-2499 differed 

significantly (Mann-Whitney U p=3.2x10-4) in their neural network derived binding affinity from the 

complement set of residues and, even more significantly (p=1.03x10-19), in their neural network 

derived protein expression profile. Thus, the antibody-escape mutations belonged to a sub-cluster 

within the key binding residue cluster (described above). In addition, we found these residues to be the 

sites of the peaks for the neural network derived antibody-escape phenotype for COV2-2499, i.e., the 

predicted escape mutations (Figure 6A). The importance of these residues for viral binding to the host 

receptor was also supported by results on intermolecular interactions from the molecular dynamics 

simulations (Figure 5C). 
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Figure 5. Mutational effects at key interface residues on the spike RBD and ACE2 PD. A Human ACE2-

interacting residues (magenta) of the spike RBD interface (yellow) with B their predicted mutational 

effects on receptor affinity from a convolutional neural network with optimal performance (Network 3, 

Table S1). These key binding residues significantly differed (Mann-Whitney U test p=5.19x10-18) in the 

neural network derived ACE2 binding affinity from the complement set of residues in the spike RBD, 

with the difference between the two residue classes more significant (p=6.9x10-14) for this refined 

phenotype than for the original phenotype, i.e., the measurement unadjusted for non-mutational 

effects and technical confounders. Note the residues with outlier predicted mutational effects on 

binding affinity. C Paired residues between the spike RBD and the ACE2 PD that retained polar 

interactions and the interaction duration percentage from molecular dynamics simulation trajectories. 

Briefly, 500 nanosecond molecular dynamics simulations had been performed in triplicates using 

Desmond (ref 28), with the structure of the spike RBD bound to ACE2 solvated with single point charge 

water molecules and with use of the OPLS forcefield. Intermolecular interactions (e.g., hydrophobic 

interactions, hydrogen bonds, π- π, cation-π) were dynamically observed in formation and breakage. We 

leveraged the residues of the spike RBD forming consistent polar interactions with the corresponding 

residues of ACE2 to evaluate concordance with the DMS measurements and our neural network 

predictions. Each paired residues included here were in polar interaction for at least 40% of the 

simulation duration in at least one replicate. D Human polymorphisms (shown in green stick 

representation), based on the gnomAD resource (v2) from large-scale sequencing projects, of the ACE2 

PD interface with E the corresponding residues’ predicted mutational effects on binding affinity from a 

convolutional neural network with optimal performance (Network 5, Table S2). Note the residues with 

outlier predicted mutational effects on relative binding score. F Among the key binding residues, a 

mutation to a Tyrosine (red) showed higher neural network  derived ACE2 receptor binding affinity and 

lower variability compared with a mutation to another amino acid. For comparison, a similar plot for the 

original phenotype, unadjusted for non-mutational effects and technical confounders, is shown in the 

bottom panel. The outlier Tyrosine mutational effect was not detectable with the original phenotype. 

Furthermore, we observed, in general, higher variability across the key binding residues in the original 

phenotype than in the neural network estimate of the mutation-mediated phenotype. 

 

Key mutations on ACE2 PD.  We comprehensively evaluated mutational effects on the relative 

binding of ACE2 PD. The corresponding key binding residues in the human ACE2 receptor paired with 

those of the spike RBD (Figure 5C) differed significantly (Mann-Whitney U p=2.39x10-7) in the neural 

network derived (i.e., estimated, mutation-mediated) relative binding score from the remaining 

residues, with the key binding residues showing substantially lower variance (i.e., 40% of the variance of 

the complement set of residues). In addition, we investigated the subset of polymorphic sites in human 

populations and, using the neural network derived phenotype, identified residues of outlier mutational 

effects on relative binding score (Figure 5D and 5E). While linear regression (Spearman correlation 𝜌 =
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−0.014) and the multilayer perceptron (Spearman correlation 𝜌 = −0.044) failed to make accurate 

predictions, the best performance achieved from sequence convolutional neural networks was 0.37 

(Table S2). The lower phenotypic variance explained by the neural network models on ACE2 PD binding 

implies a complex sequence-function relationship, with possible contributions from sequence mutations 

and other (environmental) determinants. Notably, the empirical distribution of the score of the spike 

RBD and the ACE2 PD (Figure S1) is consistent with the spike RBD displaying more non-conserved 

mutations than the ACE2 PD, which fits our intuitive understanding of the properties of the virus (which 

must undergo adaptation to transmission and replication in the host) and the membrane receptor (with 

its conserved function).  

Independent confirmation of neural network findings  

 We performed further confirmation of specific neural network predictions and our overall 

methodology by analyzing an external dataset on an anti-SARS-CoV-2 spike monoclonal antibody 

REGN10933, which targets the spike-loop region near the edge of the ACE2 interface29. We trained 

neural networks in DMS antibody-escape data30 on REGN10933.  A map of the neural network derived 

antibody-escape phenotype for REGN10933 identified several peaks, i.e., escape mutations, at K417, 

Y453, L455, F486, and Q493 among others. Notably, we found substantial confirmation of the escape 

mutations at these specific residues in an independent experimental study which had searched for 

escape mutations through deep sequencing of the passaged virus31 (Figure 6D). The replicated 

mutations at the residues Y453 and F486 were also the top escape mutation predictions. 
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Figure 6. Neural network derived antibody-escape phenotypes, performance prediction, and feature 
importance. A Maps of the convolutional neural network derived (i.e., estimated, mutation-mediated) 
escape fraction phenotype on the spike RBD for the different Abs (shown as different colors). Shifting 
peaks in different colors indicate differentiated binding sites and highlight different sets of escape 
mutations for the Abs on the spike RBD surface. Key residues on the spike RBD that are critical binding 
sites with ACE2 PD include G446, Y449, G496, Q498, and T500 for escape mutations of COV2-2499. Note 
these residues are the sites of the peaks of the neural network derived antibody-escape phenotype for 
COV2-2499, i.e., the predicted escape mutations. The importance of these residues for viral binding to 
the host receptor is also supported by results on intermolecular interactions from the molecular 
dynamics simulations (Figure 5C). B Predictive performance (Spearman correlation in the test set 
between the observed and predicted antibody-escape fraction) of our neural network model on each of 
the 10 Abs (Table S3). For each antibody, the standard error is shown, as generated from application of 
bootstrap (n=100). C Feature importance of the convolutional neural network derived (i.e., estimated, 
mutation-mediated) antibody-escape phenotype for each of the 10 Abs as derived from a joint Random 
Forest regression model in predicting binding affinity towards the ACE2 receptor. The Abs that shield the 
receptor by entirely targeting the binding interface ranked in the top 3 neural network derived antibody-
escape predictors. D Map of neural network derived (i.e., estimated, mutation-mediated) antibody-
escape phenotype for the monoclonal antibody REGN10933. Here, we show the convolutional neural 
network model (Network 6) with optimal performance. Note the several peaks, i.e., escape mutations, 
at the residues K417, Y453, L455, F486, and Q493 among others. Orange residue index indicates the 
subset of mutations with additional support as escape mutations from an independent (external) study. 
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The replicated mutations at the residues Y453 and F486 were also the top neural network predictions of 
escape mutations. 

 

Discussion 

In this work, we leveraged neural networks to model the biochemical phenotypes of the spike 

RBD and the ACE2 PD. Mutations can directly influence protein conformational dynamics, stability, and 

associations/dissociations, i.e., the sequence-structure-phenotype relationship28. We examined the 

prediction performance of several neural network architectures designed to learn the features of the 

sequence-function landscape. Convolutional neural networks demonstrated superior performance over 

linear regression or multilayer perceptron in “decoding” the mutational information from sequence to 

phenotype. Furthermore, the sequence convolutional neural network, in general, outperformed the 

graph convolutional neural network (Tables S1 and S2). The performance of the graph convolutional 

neural network might be related to the graph model architecture as well as the physicochemical nature 

of the predicted phenotype, i.e., the node average model does not sufficiently capture relevant features 

from a structural perspective for binding affinity. Capturing non-local motifs or long-range dependencies 

such as allosteric effects in the structural information warrants further study. 

Our deep learning experiments confirmed the quality of the AAindex, which captures the 

intrinsic properties of each amino aside that are independent of the particular sequence, structure, or 

DMS effect scores. Our shuffling experiments showed that the AAindex significantly improved the 

prediction. Alternatively put, the use of a randomly generated AAindex was found to be sub-optimal, 

with the physicochemical properties encoded in the actual AAindex having a significantly greater impact 

on phenotype prediction. Nevertheless, we observed strong dependence of the biochemical phenotypes 

on the input sequence data alone, from which the convolutional neural networks could extract features 

and perform phenotype prediction reasonably well. 
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Investigating mutational effects is essential for deriving mechanistic insights and elucidating 

disease pathways. Molecular modeling tools such as molecular dynamics simulations and docking are 

frequently used towards these ends, with the clear benefit of obtaining atomic-detail understandings of 

biomolecular systems9,28. However, these tools are typically impeded by system complexity and 

computational demand, so that only a partial structure could be simulated for a limited number of 

mutational systems. As structural interactions comprise the central elements of molecular modeling, 

residues on the binding interface with high binding frequency or affinity are likely to be the focus, while 

dissociation effects like antibody escape are challenging to model. In fact, it has been reported that the 

rapid spread of COVID-19 has more to do with asymptomatic and pre-symptomatic transmission than 

enhanced receptor binding6. In addition, allosteric effects are difficult to capture in molecular modeling 

yet critical to viral infection and evolution. It has been reported that the D614G variant that is located 

far from the RBD of the spike glycoprotein can facilitate ACE2 infection32. Similarly, mutations near the 

ACE2’s chloride-binding sites, which are located far from the spike interface, may also alter the spike 

RBD binding18. Some mutations could become prevalent as selection facilitates receptor binding. For 

instance, the N501Y mutation has been reported to be responsible for the rapid spread of the virus in 

southeastern England (which is noteworthy given the result on Tyrosine mutational effect on receptor 

affinity; Figure 5F), threatening the efficacies of the existing vaccines33,34. Deep learning on DMS, as 

presented here, is a time-efficient and economical way to model high-dimensional mutational data to 

gain insights into antibody evasion and therapeutic design (Figure 6).  

It is worth noting that the tested neural networks achieved much better prediction performance 

on the spike RBD than on the ACE2 PD. The difference in prediction performance on the two interacting 

components of the protein complex could result from difference in the data quality, i.e., the DMS 

experiments had been performed in two separate studies. However, the difference may also be due to a 

difference in the intrinsic properties of the virus and the receptor. Specifically, the human ACE2 
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phenotype may be less dependent on (or determined by) sequence mutation data. This finding was also 

supported by the fact that linear regression or fully connected networks failed to make good prediction 

for the ACE2 PD. 

Methods 

Datasets 

We performed our deep learning experiments on publicly available spike RBD and ACE2 PD DMS 

datasets7,18,19. Binding affinity and protein expression of the spike RBD as well as the relative binding of 

ACE2 PD dataset were considered. We also leveraged a deep mutational scan of the RBD to determine 

how variants from spike RBD responded to antibody binding from 10 human monoclonal antibodies, of 

which nine target SARS-CoV-2 and one targets SARS-CoV. The original mutational effect scores - “escape 

fraction” - have been normalized via Box Cox transformation.  

Models on the avGFP protein (an independent DMS dataset) were also retrained and tested in 

the RBD expression dataset16,22. For this purpose, the wild-type sequence for avGFP was reduced so that 

the overall sequence length matched that of the spike RBD. Accordingly, the original DMS dataset for 

avGFP was modified to only include the variant-score profile of the sliced sequence. 

Protein sequence encoding and structural description   

AAindex is a resource of 566 physicochemical properties (e.g., polarizability parameter, residue 

volume, solvation free energy, and other attributes) for each of the 20 amino acids35. The AAindex 

applied in this work underwent dimensionality reduction (from 566 properties to 19 Principal 

Components)16. The wild-type and mutated protein sequence were encoded using one-hot encoding and 

the AAindex. 

Network architectures and model training 
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Here, we extend a supervised learning framework for application to interrogating the 

biochemical phenotypes relevant to the virulence of SARS-CoV-216. We utilized different neural network 

architectures including linear regression, multilayer perceptron (fully connected), sequence 

convolutional neural network, and graph convolutional neural network. These architectures can be 

viewed as directed computational graphs organized as nodes in a series of hidden layers ℎ(𝑘) 

ℎ(𝑘) = φ(𝐖(𝑘)ℎ(𝑘−1) + 𝑏(𝑘)) 

with a matrix of weights 𝐖(𝑘) and biases 𝑏(𝑘). The network architectures are implemented as 

compositions of functions (equation 1), reflecting the universal approximation properties of the 

architectures with respect to the compact convergence (compact-open) topology36.  

 Convolutional neural networks perform convolution, activation, pooling, and flattening to learn 

features from input data. Briefly, convolution is a mathematical operation involving a convolution 

operator 𝑚 and input 𝑠: 

(𝑚 ∗ 𝑠)(𝑡) = ∫ 𝑚(𝑥). 𝑠(𝑡 − 𝑥)𝑑𝑥
∞

−∞

 

This one-dimensional definition can be extended to arbitrary dimensions. This formulation has a discrete 

version:  

(𝑚 ∗ 𝑠)(𝑡) = ∑ 𝑚[𝑥] . 𝑠[𝑡 + 𝑥 − 1]

𝑁

𝑥=1

 

The convolution operation can be viewed as a weight assignment scheme. Different operators or filters 

can be applied to the input data to derive an optimally predictive set of features. Activation introduces 

non-linearity and pooling helps to reduce overfitting. A fully-connected neural network is then applied 

to the resulting feature vector (after flattening) to obtain the final prediction.  
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Minimization of the empirical loss across the training samples 

𝑔 = argmin
𝑔

1

𝑁
∑ L(y𝑖, g(x𝑖))

𝑁

𝑖=1

 

yields an estimate of the mutation- or genetically- determined 𝑔(𝑥), whose properties can be explored 

(and compared with the original g) and which may enable causal inference on a biochemical phenotype. 

We trained the models using mean squared error loss and the Adam optimizer with dropout as the 

regularization method (in particular, dropout rate of 20%). For activation function φ (equation 1), a 

leaky ReLU was applied, which permits a small, positive gradient for a non-active unit 

φ(x) = {
x               if x>0

0.01x            otherwise
  

Neural networks were implemented using TensorFlow. We set the maximum possible number of epochs 

to 400 with early stopping.  

The uncertainty associated with the neural network model can be quantified. Let 𝜔 be the set of 

all model parameters, i.e., the weights 𝐖(𝑘) and biases 𝑏(𝑘). Then the posterior probability 

𝑃(𝜔 | 𝑋train, 𝑌train) of the set of parameters conditional on the training sequence data 𝑋train and the 

training output data 𝑌train is, according to Bayes’ rule, given by  

𝑃(𝜔 | 𝑋train, 𝑌train) =
𝑃(𝑌train | 𝑋train, 𝜔)𝑃(𝜔)

∫ 𝑃(𝑌train | 𝑋train, 𝜔′)𝑃(𝜔′)𝑑𝜔′
⁄  

Here, 𝑃(𝜔) is the prior distribution of the set of parameters and 𝑃(𝑌train | 𝑋train, 𝜔) may be assumed to 

follow  

P(Y | X, ω) = {
N(ĝ(x), V),  for continous Y

exp (gâ(x))
∑ exp (ga'̂(x))a'

⁄ , Y = a
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That is, in the continuous case, the likelihood is Gaussian with mean 𝑔(𝑥) and covariance matrix 𝑉 

whereas for classification, the conditional probability is a softmax likelihood (assuming the output layer 

is a softmax layer and the cross-entropy is the loss function). The posterior probability 

𝑃(𝜔 | 𝑋train, 𝑌train) can be calculated using Markov Chain Monte Carlo (MCMC), as the integral (i.e., the 

so-called model evidence 𝑃(𝑌train | 𝑋train)) is known to be typically intractable and have no analytical 

formulation. Prediction of the phenotype 𝑦 for any given input 𝑥 can then be quantified through the 

following inference 

𝑃(𝑦 | 𝑥, 𝑋train, 𝑌train) = ∫ 𝑃(𝑦 | 𝑥,  𝜔′)𝑃(𝜔′ | 𝑋train, 𝑌train)𝑑𝜔′  

Note the left hand side of this equation can also be sampled using the neural network. 

Joint model consisting of the neural network derived antibody-escape phenotypes 

The spike RBD binding affinity was jointly modeled using the convolutional neural network 

derived (i.e., estimated, mutation-mediated) antibody-escape phenotypes for the ten Abs.  The ten 

“escape fraction” features were scaled and randomly split into 80% training and 20% testing subsets for 

the Random Forest regressor implemented using sckit-learn37. We applied hyper parameter tuning to 

ensure the best performance. 

AAindex shuffling experiment 

We performed a shuffling experiment on the AAindex to assess the extent to which the selected 

amino acid physicochemical properties impact the performance of the neural network architectures.  All 

elements of the AAindex matrix were re-sampled in-place so that the original covariances among rows 

or columns were broken.  As a result, we generated 100 new (pseudo) AAindex tables. The p-value, i.e., 

the probability, if the null hypothesis H0 (of no gain) is true, that the prediction performance 𝜌 (in the 

test set) is at least as great as the value 𝜌actual from the actual AAindex is calculated as follows 
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𝑝 ∶= 𝑃(𝜌 ≥ 𝜌actual | H0) ≈ (|𝜌sim ≥ 𝜌actual| + 1)/(𝑛sims + 1) 

where 𝜌sim is the Spearman correlation from a shuffled dataset, 𝑛sims is the total number of shuffled 

datasets, and | | is the count operator. 
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