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Spatiotemporal neural network 
with attention mechanism for El 
Niño forecasts
Jinah Kim1, Minho Kwon1, Sung‑Dae Kim1, Jong‑Seong Kug2, Joon‑Gyu Ryu3 & Jaeil Kim4*

To learn spatiotemporal representations and anomaly predictions from geophysical data, we 
propose STANet, a spatiotemporal neural network with a trainable attention mechanism, and 
apply it to El Niño predictions for long‑lead forecasts. The STANet makes two critical architectural 
improvements: it learns spatial features globally by expanding the network’s receptive field and 
encodes long‑term sequential features with visual attention using a stateful long‑short term memory 
network. The STANet conducts multitask learning of Nino3.4 index prediction and calendar month 
classification for predicted indices. In a comparison of the proposed STANet performance with 
the state‑of‑the‑art model, the accuracy of the 12‑month forecast lead correlation coefficient was 
improved by 5.8% and 13% for Nino3.4 index prediction and corresponding temporal classification, 
respectively. Furthermore, the spatially attentive regions for the strong El Niño events displayed 
spatial relationships consistent with the revealed precursor for El Niño occurrence, indicating that the 
proposed STANet provides good understanding of the spatiotemporal behavior of global sea surface 
temperature and oceanic heat content for El Niño evolution.

The El Niño Southern Oscillation (ENSO) is a cycle of warm and cold phases of sea surface temperature (SST) in 
the equatorial Pacific Ocean that influences extreme weather and ocean events with significant impacts, such as 
high temperatures, cold waves, heavy rain, and marine  heatwaves1–4. Meteorological and marine disasters cause 
serious damage and loss to society as a whole, including the environment and economy, so accurate and prompt 
forecasts of climate signals such as Nino, are necessary.

In general, dynamic numerical models are used to forecast ENSO, and statistical models are also used to 
predict ENSO by analyzing historical  data5–8. With the recent rise in the use of machine learning, particularly 
deep learning, various machine learning  techniques9,10 and deep neural  networks11–15 are used to predict El Niño, 
and they demonstrated good predictability, compared to conventional numerical and statistical methods.

Among deep learning-based approaches, a two-dimensional convolutional neural network, which trained 
using the Coupled Model Intercomparison Project Phase 5 (CMIP5) model simulation  data16 (denoted as 2D 
CNN hereafter), showed the best performance with a correlation skill of 0.5 or more for 14-month forecast lead 
with 3-month sequence’s two inputs of SST and oceanic heat content (HC)  anomalies12,15. However, the 2D CNN 
has limitations in learning the contextual changes of SST and HC anomalies over time as well as their spatial 
characteristics over a large area, because the 2D CNN only learns the relevant features of SST and HC anomalies 
at individual time-points separately for the ENSO prediction.

To be concerned with the sequential characteristic of El Niño  occurrence, a recurrent neural network (RNN)17 
with 2D convolutional layers has been introduced to learn temporal patterns from the high-level representations 
of SST  anomalies11. They obtained a correlation coefficient of approximately 0.85 for the 6-month forecast lead 
using sequential input of continuous 24-month SST anomaly time series. Convolutional long short-term memory 
(LSTM)  network18 has been employed to encode the long-term dependency of the temporal sequential features 
for El Niño  prediction13,14. However, the correlation coefficients for the 12-month forecast lead were approxi-
mately 0.38 and 0.60, showing lower performance than the 2D CNN using only local spatial features. Therefore, 
the 2D CNN  model12,15 showed superior performance to the dynamic model and various deep learning models 
with the best forecasting skills for the first 6 forecasting lead months. The correlation skill of the Nino3.4 index 
in the 2D CNN model is above 0.5 for a lead of up to 17 months, whereas it is 0.37 at a lead of 17 months in the 
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SINTEX-F5, a leading dynamic forecasting system. And the 2D CNN provides a skillful forecast of ENSO events 
up to 1.5 years in advance. Therefore, the unified 2D CNN  model15, which is the state-of-the-art (SOTA) method, 
is implemented as the baseline model and is compared with the results of the model proposed in our study.

Spatiotemporal forecasting using geophysical data has its own specificity, such as high-dimensional, often 
limited in scope, and temporally correlated, which should be considered in building deep neural networks. In 
this study, we propose STANet, a spatiotemporal neural network with a trainable attention mechanism that can 
learn the characteristics of spatiotemporal geophysical data over time and test its predictability by applying it to 
El Niño forecasts. In particular, through the effective receptive field and dilated  convolution19 as well as attention 
mechanism in recurrent neural  network20, it is possible to obtain greater understanding of the spatiotemporal 
relationship between global-scale SST and HC anomalies that affect the occurrence of El Niño. In contrast to the 
2D CNN, which does not consider any temporal order of given input, the proposed STANet employs the 3D recep-
tive field blocks with 2D + time convolution filters to learn spatiotemporal patterns from the short-term input 
(three months) and the stateful LSTM module with an attention mechanism to learn the temporal order of the 
long-term sequences. The receptive field block efficiently increases the receptive field using dilated convolution 
layers and residual skip-connection, and it allows the model to learn spatiotemporal features from larger regions. 
The stateful LSTM preserves long-term contextual information across sequential input data by keeping its hidden 
state and cell state even after mini-batch inference. In addition, the attention mechanism allows the proposed 
model to process the geophysical data and focus on more relevant regions at specific time steps precisely in the 
forecasting task. To examine the spatiotemporal feature representation capability according to the architectural 
characteristics of STANet, ablation experiments are performed through the combination of individual network 
modules of the proposed STANet for the El Niño prediction task. In addition, to evaluate how well the STANet 
understand the spatiotemporal behavior of SST and HC for El Niño prediction, we will look into whether the 
trained attention map and the precursor for El Niño occurrence are consistent.

Results
Overall predictability. Figures 1 and 2 show the time series of the correlation coefficient (CC), root-mean-
square-error (RMSE), and density scatter of the calendar month classification to evaluate the performance of the 
proposed STANet and the SOTA model (2D CNN) in El Niño prediction for the 23-month forecast lead time 
from 1980 to 2017. The red and black lines represent the STANet and 2D CNN model, respectively. The overall 
El Niño predictability of the proposed STANet was improved for the 12-month forecast lead time with the CC 
improving by 5.8% and the RMSE decreasing by 0.07 on average compared to the SOTA model. Classification 
accuracy was also improved by 13% during the entire test period (see Figs.  2, 7).

Spring predictability barrier. The spring predictability barrier, a unique feature of  ENSO21 means that 
ENSO forecasting accuracy decrease dramatically during boreal spring when an ENSO event begins to  grow8,22. 
To investigate the predictability for forecasts initiated in boreal spring, the forecasts with input anomalies dur-

Figure 1.  Time series of correlation coefficient (CC) and the root-mean-square-error (RMSE) for 23-month 
forecast lead time of the proposed STANet and the state-of-the-art 2D CNN model for the test period of 
1980–2017.
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ing the March–April–May (MAM) season were also performed using the proposed STANet and 2D CNN. The 
comparison results are shown in Fig 3. The red and blue lines represent the time series of CC and RMSE for 
the proposed STANet and SOTA 2D CNN model’s 23-month forecast lead, respectively. The CC of the Nino3.4 
index predicted up to 9 months of the forecast lead time was improved up to 10% and the RMSE decreased by 
approximately 0.1 or more. The experimental results show that the proposed STANet was trained to learn the 
temporal features of global SST and HC behavior for the occurrence of El Niño, specially the long-term temporal 
dependency from sequential data.

Time‑series prediction. To test the spatiotemporal feature representation capability of the STANet based 
on its architectural characteristics, ablation experiments were carried out using the proposed STANet’s network 
modules for the El Niño prediction task. In addition, to examine how well the STANet understands the spati-

Figure 2.  Density scatter of comparison between the ground-truth and the corresponding calendar month 
classification results from STANet (left panel) and the state-of-the-art 2D CNN model (right panel).

Figure 3.  Time series of of correlation coefficient (CC) and the root-mean-square-error (RMSE) for 23-month 
forecast lead time of the proposed STANet and the state-of-the-art 2D CNN model for forecasts employing input 
data from the March–April–May (MAM) season.
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otemporal behavior of SST and HC for El Niño prediction, we will look into the consistency of the trained atten-
tion map and precursor for El Niño occurrence.

The following Fig. 4 shows the Nino3.4 time series over the test period of 1996–2016 to examine how much 
the predictability of strong El Niño events was improved in terms of Nino3.4 indices. In addition, Fig. 5 shows 
the evolution of the Oceanic Nino Index during the two strong El Niño events of 1997/1998 and 2015/2016 
through the time series of the Nino3.4 index, respectively. In Figs. 4 and 5, the red line represents the predicted 
time series of the proposed STANet, and the black, blue, and turquoise lines represent OISST v.2 observations, 
GODAS test data, and the predicted time series of the SOTA 2D CNN model, respectively. From top to bottom, 
time series with forecast lead times of 1, 3, 6, and 12 months are shown. As the forecast lead time increases, the 
peak value is underestimated, and it is difficult to expect predictability concerning the 12 forecast lead month. 
When the peaks of the three main El Niño events for 1997/1998, 2009/2010, and 2015/2016 are plotted in time 
series for the 1- to 6-month forecast lead time, it is clear that the proposed STANet model matches the peak 
Nino3.4 index as well as the time phase better than the SOTA 2D CNN model.

Interpretation of the precursor of ENSO with attention maps. Furthermore, Fig. 6 visualizes the 
spatially attentive regions, referred to as a trained attention map for strong three El Niño events of 1997/1998, 
2009/2010, and 2015/2016 and three La Niña events of 1998/1999, 1999/2000, and 2010/201123. In Fig. 6 of 
trained attention maps that acted as precursors to strong ENSO events, shaded backgrounds and contours are 
spatial distributions for SST and HC anomalies several months prior to the event occurrence (see each figure 
title) used as inputs for El Niño and La Niña predictions, and the legends of SST and HC anomalies are displayed 
on the right and overlaid contours of individual figures, respectively. And the white and blue squares show the 
region of Nino3.4, and the red gradient on the right panels shows the region where the proposed STANet is most 
affected by the input data given for Nino3.4 prediction.

A spatial region of attention is selected from among the whole area of spatial data, and values in this region 
are further processed with a higher weight than the rest of the spatial data. As a result, the attention map in 
which a specific area is highlighted in red indicates the area that had the most influence on the ENSO event. 
The attention maps clearly show where the SST and oceanic HC are important for a future ENSO evolution. The 

Figure 4.  Time series of predicted Nino3.4 index from the proposed STANet with observation (OISST v2), 
GODAS, and SOTA 2D CNN result for test period of 1996–2016. From top to bottom, the time series with 
forecast lead time of 1-, 3-, 6-, and 12-month are shown, respectively.
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attention maps for the three El Niño years, for examples, consistently show that the central Pacific HC anomalies 
at the onset phase of the El Niño are a primary precursor for El Niño development, as suggested by the recharge 
oscillator  theory24,25.

In addition, the northern hemisphere off-equatorial SST is an important precursor of El Niño  development26, 
which seems to be captured in the attention map. Interestingly, the attention map for the 2009 El Niño is some-
what different from the other two events. That is, the attention map located to some extent in the central Pacific, 
and there is a clear signal in the northern tropical Atlantic Ocean, which may be related to the fact that the 2009 
El Niño is a central Pacific-type El Niño27.

The attention map for the La Niña events also tends to capture the equatorial Pacific signals according to the 
recharge  oscillator24,25. However, for the 2010 La Niña events, the eastern Pacific and Atlantic warm pools are 
attentive regions, which may be related to the connection with the Atlantic warm  pool28.

The trained attention in this way shows spatial relationships consistent with the revealed El Niño dynamics, 
indicating that the proposed STANet provides a good understanding of the spatiotemporal behavior of the global 
SST and oceanic HC for El Niño prediction. In other words, the proposed STANet can determine which area of 
the input SST and oceanic HC anomalies to focus on for El Niño forecasting.

Ablation experiments. Figures 7 and 8 show the comparative results of ENSO predictability based on the 
deep neural network’s architectural features (refer to the ablation experiments in Table 2). Each figure shows 
the time series of CC and RMSE on Nino3.4 index prediction for the 23-month forecast lead time and the hit 
accuracy of the calendar month classification for the test period of 1980–2017. In comparison to the proposed 
spatiotemporal neural network with attention, “STANet”, each result of blue, black, and green solid lines and bar 
graphs shows the cast-off using GRU instead of stateful LSTM, not using the attention mechanism, and not using 
RFB for encoding globally spatial information, respectively.

When the results of the ablation experiments were compared comprehensively using a combination of indi-
vidual network modules, spatiotemporal feature representation with extended receptive field (RFB) provided the 
greatest performance improvement on the El Niño forecasts. It means that the prediction of El Niño is affected 
by a larger area including its Nino3.4 region, and a long time of sequence signals. Although temporal feature 
learning with GRU and spatial feature learning with attention mechanisms both improve performance, it is clear 
that their effects are maximized when the area and sequence of spatiotemporal feature learning are expanded 
simultaneously.

Figure 5.  Evolution of the Nino3.4 index for two strong El Niño events of (a) 1997/1998 and (b) 2015/2016. 
From top to bottom, the time series with forecast lead time of 1-, 3-, 6-, and 12-month are shown, respectively.
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Figure 6.  Visualization of trained attention maps that acted as precursors to representative (a) three El Niño 
events of 1997/1998, 2009/2010, and 2015/2016 (top to bottom) and (b) three La Niña events of 1998/1999, 
1999/2000, and 2010/2011 (top to bottom). Shaded backgrounds and contours are spatial distributions for SST 
and HC anomalies several months prior to the event occurrence (see each figure title at the far left of the picture) 
used as inputs for El Niño and La Niña predictions in the left column of the figure. And the red gradient area in 
the right column of the figure shows the region where the proposed STANet is most affected by the input data 
given for Nino3.4 prediction. And the white and blue boxes show the region of Nino3.4. This figure is generated 
using Matlab R2018b (https:// kr. mathw orks. com/ produ cts/ matlab. html).

https://kr.mathworks.com/products/matlab.html
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Figure 7.  Time series of correlation coefficient (CC) and the root-mean-square-error (RMSE) for 23-month 
forecast lead time of the proposed STANet with 3 cases of ablation experiments for the test period of 1980–2017. 
“STANet” is the proposed architecture. “GRU” is an alternative model using GRU  module29 instead of the LSTM 
module. “no Attention” indicates the STANet without attention mechanism. “no RFB” indicates the STANet 
using 3D convolution layers instead of the receptive field blocks. Lower RMSE and higher CC indicate better 
performance in Nino3.4 index prediction.

Figure 8.  Hit accuracy for the calendar month classification for the proposed STANet with 3 cases of ablation 
experiments and the SOTA 2D CNN for the test period of 1980–2017. “STANet” is the proposed architecture. 
“GRU” is an alternative model using GRU  module29 instead of the LSTM module. “no Attention” indicates the 
STANet without attention mechanism. “no RFB” indicates the STANet using 3D convolution layers instead of the 
receptive field blocks.
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Discussion
The STANet, spatiotemporal neural network with attention, was proposed in this study for predicting extreme 
events by learning spatiotemporal feature representations from geophysical data, and its performance was evalu-
ated by applying it to El Niño forecasts. The architecture of the STANet has a wider receptive field with trainable 
attention for globally extended spatial feature encoding and more long-term memory for temporal sequential 
feature encoding.

When compared to the SOTA model, the proposed STANet for the multitasks of Nino3.4 index time series 
prediction on 12-month forecast lead time and the corresponding calendar month classification for El Niño 
forecasts in the test period of 1980–2017 improved the performance by 5.8% and 13%, respectively.

In addition, it showed a 10% improvement in performance for 9-month forecast lead forecasts compared to 
the SOTA model in the “spring predictability barrier” experiment. Furthermore, when the predicted time series 
of the Nino3.4 index for strong El Niño, an extreme event that occurred during the test period, was examined, 
it was confirmed that the peak value was predicted more accurately than the SOTA model.

Trained attention map allows interpreting the precursors for El Niño and La Niña occurrences for extreme 
ENSO events through the visualization of the trained attention map, which has the ability to figure out which 
of the spatial region to focus on. The attention map displays the representative El Niño precursor in the spring 
season, where the HC in the equatorial region and SST in the North Pacific are known as the Pacific Meridional 
Mode pattern. As a representative of the Central Pacific El Niño event in 2009, the attention map captures the 
precursor, North tropical Atlantic (NTA) SST signal. In general, La Niña has more diverse precursors than 
El Niño. La Niña could be linked to a wide range of developmental patterns. This may be related to a wide variety 
of La Niña developmental patterns. Overall, the result is also in good agreement with the climate dynamics for 
ENSO evolution.

In comparison to previous deep learning-based El Niño forecasting models that discovered patterns and 
trends buried within the data, it is believed that the proposed STANet understands the spatiotemporal behavior of 
global SST and HC as well as the nonlinear spatiotemporal relationship related to the mechanism of ENSO occur-
rence. There are also previous studies that showed good skills in the statistical model developed for medium- and 
long-range ENSO  prediction30,31 with a correlation coefficient of 0.5 or more in 12-month and 24-month ahead 
prediction, respectively. While the proposed STANet was trained with historical simulation data of CMIP5, the 
above two statistical models were fitted with the National Centers for Environmental Prediction/National Center 
40-year  Reanalysis32 data and OISST v2 observation data, respectively. Therefore, it is difficult to directly compare 
the prediction performance of each ENSO forecasting, but it seems that it will be necessary to make an effort to 
improve the long-range prediction accuracy of deep learning approaches as well.

In Fig. 5, both neural networks underestimate large changes in Nino3.4 after 12 months. The uncertainties 
of the climate parameters and the neural networks are a possible explanation on the difficulty of the longer 
lead-time prediction. The uncertainties increase in the variance of the  prediction33. Ensemble approaches using 
multiple models are promising in reducing the uncertainties for the Nino3.4  prediction12. Another reason for 
the limited performance is the lack of training data set enough for the neural networks. Due to the nature of 
the spatial-temporal climate data, conventional image augmentation methods, such as flipping, rotation, and 
translation, cannot be used for training the neural networks for the Nino3.4 index prediction. Generation of 
climate data using generative models, such as generative adversarial networks, is a possible option for the issue.

Time series extreme event forecasting in Earth science research is difficult task because it is rare or invisible 
in the training data gathered from historical observations and it is dependent on numerous external factors that 
can include complex weather-ocean interaction, not only in the top-down approach of the physics law-based 
numerical model, but also in the data-driven bottom-up approach, machine learning or deep learning method.

Deep learning, on the other hand, has the advantage of fast and cheap inference or prediction on new data 
after it has been trained. Speed and economy offer a distinct advantage over many physical models in Earth sci-
ence, which must be inversely solved and which require significant time and computational resources for each 
application. Furthermore, recent advances in deep learning techniques such as adversarial generative networks, 
parameterization of phenomena and emulation, and physics-aware machine learning, are yielding very promising 
results in estimating atmospheric convection, SST and vegetation dynamic  modeling34.

Therefore, as a future study, we intend to develop a network architecture allowing physical constraint based 
on physical laws and secure applicability to predict extreme weather, climate, and ocean phenomena. Above all, 
we are developing an explainable architecture that can quantitatively explain the rationale for the inference result 
to increase the trustworthiness of the deep learning method’s use.

Methods
The STANet performs two tasks simultaneously with multi-input and multi-output time series prediction for 
El Niño forecasts based on given 3-month sequences of SST and HC anomalies: (1) SST anomaly prediction over 
the Nino3.4 region (Nino3.4 index) for a 23-month forecast lead time and (2) calendar month classification for 
the given input and predicted output. The reason why SST and HC are used as inputs is that it is well known that 
ocean HC resides a memory for the future ENSO evolution. In addition, the SST pattern is important because 
it modulates equatorial wind variability, which is a key to the ENSO  evolution7,35,36.

For sequential SST anomaly prediction from t + 1 to t + 23 , the STANet has a novel architecture based on a 
stateful LSTM with a spatiotemporal attention mechanism. During the learning process for SST anomaly pre-
diction, the calendar month classification assists the STANet learning distinguishable features between seasonal 
inputs. For long-sequence Nino3.4 indices prediction, we also employed a correlation loss, smooth L1 loss, and 
cross-entropy loss in model training. In the sections that follow, we will first introduce the STANet architecture 
and will then go over the implementation details of its submodules for multitask learning.



9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:7204  | https://doi.org/10.1038/s41598-022-10839-z

www.nature.com/scientificreports/

Model architecture. The STANet consists of three modules for the multitask learning of SST anomaly pre-
diction and calendar month classification. Figure  9 presents the entire architecture of the STANet. The first 
module of the STANet is a spatiotemporal encoding module that uses three-dimensional (3D) convolution layers 
with varying filter sizes, dilation factors, and residual connections to capture relevant features of given inputs 
in spatial and temporal domains. The second module is a stateful LSTM with a spatial attention mechanism to 
predict the 23-month SST anomaly values for long input sequences from the latent features of the encoding 
module. The final module is a classification module with two fully connected layers that are followed by hyper-
bolic tangent and softmax activation functions.

The input of the STANet consists of a 3-month consecutive input sequence of global SST and HC anomaly 
maps that are concatenated along feature dimensions. As a result, the input is a T × Glon × Glat ×W × Finit ten-
sor where Glon denotes the size of the longitude grids and Glat denotes the size of the latitude grids. W is 3 as the 
observation window size of a given input. Finit is the number of features, which is 2 for the SST and HC anomaly 
maps. T indicates the length of training or prediction period. In our approach, we used the stateful LSTM to give 
the network sequential inputs for the entire prediction period at once to understand long-term dependencies 
along time steps. For training, T was 32 consecutive months, which was determined through a grid  search37. The 
STANet provides two outputs: consecutive 23 Nino3.4 indices for 23-month forecast lead time and a calendar 
month for given input sequences. Thus, the predicted Nino3.4 indices output is represented as a T × L matrix, 
where L is the total forecast lead time (23 months), and the classification output is a T × 12 matrix. The calendar 
month for each input is determined as the month of the maximum probability. Figure 9 shows the prediction 
process of the STANet for the prediction period.

Spatiotemporal encoding module with receptive field blocks. To extract the salient features of the 
given SST and HC anomaly maps for multitask learning, a 3D convolutional sub-network, named spatiotem-
poral encoding module, takes the first step of the STANet. In particular, rather than connecting several simple 
convolution layers as suggested  in12,15, a receptive field  block38 (RFB) is introduced into the module to learn 
spatial features globally by extending the receptive field of the network efficiently. Figure 10 shows the detailed 
structure of the spatiotemporal encoding module and RFB.

Figure 9.  Architecture of the proposed STANet. “FCs” means two sequential fully-connected layers with ReLU 
and softmax functions respectively for the calendar month classification. “RFB Block” is a receptive field block 
with 3D convolution layers. “LSTM” is the stateful long short-term memory module.
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As inspired by the receptive field of the human visual system, an individual RFB includes multi-branch convo-
lutional pooling with varying kernels corresponding to the receptive field of different sizes. Because the STANet 
receives inputs in 3D space (longitude, latitude, and time), we implement a 3D RFB with 3D convolutional layers. 
In the RFB, dilated convolutional layers with various dilatation rates from 1 to 7 are assigned to each branch. 
Because the observation window (W) is only 3, we consistently apply dilation rate 1 for the temporal dimension. 
The final representation of the latent features is then produced by concatenation following 1× 1× 1 convolution 
layers in all branch (see Fig. 10). All convolution layers in the RFB are followed by a ReLU activation function. 
Each RFB block is followed by max-pooling with a kernel size of 2× 2× 1 and strides (2, 2, 1) to downsample 
the feature maps. The STANet encodes the spatiotemporal features of SST and HC anomaly inputs, denoted as 
zt , by sequentially stacking three RFBs with max-pooling and applying a flatten operation for the spatial and 
temporal dimensions to be given to the stateful LSTM module and classification module. zt is represented in 
E × Fenc dimension, and for the entire prediction period, the STANet provides T spatiotemporal feature vectors. 
Here, Fenc indicates the number of spatiotemporal features.

Stateful LSTM module with attention mechanism. We implemented a stateful LSTM sub-network 
(stateful LSTM module) inspired by a video captioning LSTM network with visual  attention39 to predict the 
Nino3.4 indices of next L months for the prediction period (T) from the spatiotemporal features. At every time 
step during T, this module predicts L-dimensional vectors of Nino3.4 index predictions conditioned on a con-
text vector and the previous hidden state. The operations of the LSTM cell are defined as follows:

Figure 10.  Structure of the receptive field block (RFB). “Conv” denotes convolution layer followed by ReLU 
activation function. “Rate” is the dilation rate of defining a spacing between the values in 3D kernels. The RFB 
includes a residual skip-connection to train deeper networks.
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where it , ft , ct , ot , ht are the input, forget, memory, output, and hidden state at time step t, respectively. In each 
equation, W∗ and b∗ are affine transformations with learned parameters and biases. The sigmoid function and 
Hadamard operation are denoted by the symbols σ and ⊙ , respectively. The initial ht and ct (t = 0 ) are computed 
from two fully-connected layers ( fh and fc ) as follows:

where zt,i is a Fenc-dimension vector, i = 1, · · · ,E , of zt at different spatial locations and observation time 
( 1, · · · ,W).

In Eq.  (1), ẑt is the context vector which is the attentive context representation of zt by an attention 
 mechanism39,40. The attention mechanism, denoted as φ , computes ẑt as follows:

αt,i is weight for each zt,i , determined by an simple attention model ( fatt , see Fig. 11), which is a multi-layer 
perceptron conditioned on the previous hidden state ( ht−1).

Here, βt is a gating scalar which is obtained by a fully-connected layer with sigmoid function from the previous 
hidden state ( ht−1 ). This attention mechanism encourages the STANet to focus on a relevant spatial location and 
observation time for Nino3.4 index prediction while understanding the contextual changes as well as the input 
sequences for the prediction period. Figure 11 shows the entire structure of the attention mechanism.

In the practical implementation of the STANet, T consecutive input sequences are given to a network as a 
minibatch. To learn the characteristic patterns of consecutive inputs, the STANet processes them sequentially 
without random indexing separately and saves the LSTM network states.

Losses for STANet. The STANet is trained in end-to-end manner with three losses: (1) smooth L1 loss, (2) 
Pearson correlation loss, and (3) cross-entropy loss. The first two losses are employed for sequential SST anomaly 
prediction in the prediction period. The last loss is for calendar month classification. The smooth L1 loss assists 
the STANet minimizing the differences between the predicted Nino3.4 index and ground truth:

(1)

it = σ(Wzi ẑt +Whiht−1 +Wci ⊙ ct−1 + bi)

ft = σ(Wzf ẑt +Whf ht−1 +Wcf ⊙ ct−1 + bf )

ct = ft ⊙ ct−1 + it ⊙ tanh(Wzc ẑt +Whcht−1 + bc)

ot = σ(Wzoẑt +Whoht−1 +Wco ⊙ ct + bo)

ht = ot ⊙ tanh(ct)

(2)

h0 = fh(
1

E

E
∑

i=1

z0,i)

c0 = fc(
1

E

E
∑

i=1

z0,i)

(3)ẑt = φ({zt,i}, {αt,i})

(4)

st,i = fatt(zt,i , ht−1)

αt,i =
st,i

∑E
j=1 st,j

φ({zt,i}, {αt,i}) = βt

E
∑

i=1

αt,izt,i

Figure 11.  Structure of the trainable attention Module. “FC” and “Broadcasting” denote a fully-connected layer 
and implicit copying of vector, respectively.
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where yl,t is an observed SST anomaly at l-th month from the input month (t) and pl,t is the predicted SST 
anomaly of the corresponding month. The smooth L1 loss is less sensitive to outliers than the mean squared 
error loss, and it helps the network learn the dominant trends of SST anomaly along time. The Pearson correla-
tion loss is used to increase the correlation between Yt and Pt which are 23-dimension vector for observing and 
predicting SST anomalies, respectively. The correlation loss is defined as:

The cross-entropy loss is for the calendar month classification for each input:

where si,t is 1 for the corresponding calendar month of each input and 0 for others. ˆsi,t is the output of the softmax 
function. The STANet is trained using the weighted sum of all losses:

where α is 0.7, β is 0.2, and γ is 0.2 in this study.

Experiments
Data. Three kinds of datasets were used: historical simulation, reanalysis, and observation data as described 
in Table 1. The model was trained using historical simulation data generated by the 21 Coupled Model Inter-
comparison Project Phase 5 (CMIP5) model. Monthly mean SSTs from 1861 to 2004 with 5◦ × 5◦ for the global 
area ( 0◦–360◦ E and 55◦ S–60 ◦ N) were used as input data for model training. El Niño occurs when the 3-month 
running mean of SST anomaly over the Nino3.4 region (170◦–120◦ W and 5 ◦ S–5◦ N), also known as the Ocean 
Nino Index exceeds 0.5 for at least 5 consecutive months. Thus, the Nino3.4 index is the area-averaged SST 
anomaly over the Nino3.4 region and is used as labeling data for supervised learning. The Nino3.4 index is a 
common index of ENSO. Besides SST anomaly, HC anomalies are also used as input data to train the network, 
which is the energy absorbed by the ocean.

For model validation and testing, the monthly mean SST and HC produced from the reanalysis data of Sim-
ple Ocean Data Assimilation version 2.2.416 (SODA) for 1871–197041 and the Global Ocean Data Assimilation 
System (GODAS) for 1980–201742 are used.

Although the data periods are overlapped between SODA/GODAS and CMIP5, there is no dependency 
between the two datasets. In CMIP5 simulation, only long-term radiative forcing such as greenhouse gases and 
aerosols are prescribed, and it does not affect individual El Niño events, which have an interannual time scale. 
For example, the observed ENSO index and the simulated one show almost no correlation, suggesting they are 
completely independent. Furthermore, as the observation data for the Nino3.4 index, Optimum Interpolation 
SST version 2 (OISST v2) of the period 1982–2017 is used to compare the  predictions43.

Model implementation. Two input variables of SST and HC anomalies with a length of input sequence 
of 3 consecutive months were used to train a network to predict the Nino3.4 index of forecast lead time ranging 
from 1 to 23 months from 21 CMIP5 datasets. We used the SODA data as a tuning set to find optimal parameters 
using early stopping. Using the GODAS datasets from 1980 to 2017, the proposed network’s performance in 
Nino3.4 index prediction and calendar month classification was evaluated.

The parameters of the proposed network were randomly initialized using orthogonal  initialization44,45. The 
network is trained using the Adam optimizer with learning rate ( η ) 0.001, β1 0.9, and β2 0.999. For the data aug-
mentation, we added random Gaussian noise with γ 0.2 to the SST and HC anomaly input maps. Model training 
and all experiments were conducted on a workstation with NVidia TITAN XP (12 GB memory), Intel i9 CPU, 
and 48 GB main memory. The batch size was 32 for the training. The proposed network and algorithms were 
implemented using Python 3.6.9 and PyTorch 1.8.1.

(5)L1 =

{

1
TL

∑T
t=1

∑L
l=1 0.5(yl,t − pl,t)

2/β , if
∣

∣yl,t − pl,t
∣

∣ < β

[6pt] 1
TL

∑T
t=1

∑L
l=1

∣

∣yl,t − pl,t
∣

∣− 0.5 ∗ β , otherwise

(6)Lcorr = 1.0−
1

T

T
∑

t=1

∑L
l=1(yl,t − Ȳt)(pl,t − P̄t)

√

∑L
l=1(yl,t − Ȳt)

2

√

∑L
l=1(pl,t − P̄t)2

(7)Lent = −
1

T

T
∑

t=1

12
∑

i

si,t log( ˆsi,t)

(8)Lall = αL1 + βLcorr + γLent

Table 1.  Description of datasets.

Item Dataset Period

Training CMIP5 (historical simulation) 1861–2001

Validation SODA (reanalysis) 1871–1970

Test GODAS (reanalysis) 1980–2017

Comparison OI SST v.2 (observation) 1982–2017
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Experimental design. To validate the effectiveness of the proposed methods for SST anomaly prediction 
over the Nino3.4 region, we performed ablation studies using the GODAS dataset as described in Table 2. First, 
we constructed three models without the STANet’s key components: RFB blocks for expanding the receptive 
field, an attention mechanism for focusing on relevant spatiotemporal features, and an LSTM module for learn-
ing the temporal patterns of input sequences for the prediction period. For the first model, we only replaced the 
RFB blocks with simple 3D (longitude, latitude, and time) convolution layers with the same activation functions 
as the RFB blocks. The second model was implemented only by removing the attention module from the STANet. 
We built the last model by changing the LSTM module to a gated recurrent unit (GRU)29. The GRU has updated 
and reset gates to solve the vanilla recurrent neural network’s vanishing gradient problem. Because the GRU out-
performed the LSTM in learning long-term sequences on smaller and less frequent datasets, we chose it for the 
ablation study to validate the efficacy of the proposed method with the LSTM in learning long-term sequences.

For a comparison study with a state-of-the-art model, we built a 2D CNN  model15 using the authors’ Tensor-
Flow codes, available at https:// github. com/ jeong hwan7 23/A_ CNN. The 2D CNN consists of three 2D convolu-
tion layers, followed by hyperbolic tangent (tanh) activation function and max pooling layer, two fully-connected 
layers with tanh function, and two separate fully-connected layers for Nino3.4 index prediction and calendar 
month classification. For the calendar month classification, the 2D CNN uses softmax function. The 2D CNN 
was trained to reduce mean squared error loss and cross-entropy loss for the Nino3.4 index prediction and the 
calendar month classification, respectively. In this study, the 2D CNN was trained using the same data as the 
same conditions for comparative evaluation with the proposed STANet.
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