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Abstract

Transcriptomic resources for coral species can provide insight into coral evolutionary history and stress-response
physiology. Goniopora columna, Galaxea astreata, and Galaxea acrhelia are scleractinian corals of the Indo-Pacific, representing
a diversity of morphologies and life-history traits. G. columna and G. astreata are common and cosmopolitan, while
G. acrhelia is largely restricted to the coral triangle and Great Barrier Reef. Reference transcriptomes for these species
were assembled from replicate colony fragments exposed to elevated (31◦C) and ambient (27◦C) temperatures. Trinity was
used to create de novo assemblies for each species from 92–102 million raw Illumina Hiseq 2 × 150 bp reads. Host-specific
assemblies contained 65 460–72 405 contigs, representing 26 693–37 894 isogroups (∼genes) with an average N50 of 2254.
Gene name and/or gene ontology annotations were possible for 58% of isogroups on average. Transcriptomes contained
93.1–94.3% of EuKaryotic Orthologous Groups comprising the core eukaryotic gene set, and 89.98–91.92% of the single-copy
metazoan core gene set orthologs were complete, indicating fairly comprehensive assemblies. This work expands the
complement of transcriptomic resources available for scleractinian coral species, including the first reference for a
representative of Goniopora spp. as well as species with novel morphology.
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Data Description
Background

A growing body of genomic information for reef-building
corals has resolved phylogenetic relationships and helped re-
veal how this unique taxonomic group calcifies and responds
to thermal stress [1–4]. Such information is critical for un-
derstanding the adaptive capacity of these ecologically im-
portant organisms, particularly in an era of global climate
change [5]. Transcriptomic and/or genomic resources are cur-

rently available for 23 scleractinian species representing 14
genera and 11 families [1, 4, 6–16]. We assembled the tran-
scriptomes of 3 scleractinian coral species: the congeners
Galaxea astreata, G. acrhelia, and Goniopora columna. This is
the first sequence resource for Goniopora spp. and extends
the phenotypic diversity represented by coral transcriptomic
resources to include submassive (G. astreata) and columnar
(G. columna) morphologies [17], which should facilitate addi-
tional insight into the evolutionary history of this taxonomic
order.
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Samples and sequencing

Samples of Galaxea astreata and Galaxea acrhelia were collected
from Davies Reef (18◦49.816’S, 147◦37.888’E) on 8–11 April 2015,
and samples of Goniopora columna were collected from Pandora
Reef (18◦48.778’S, 146◦25.593’E) on 20–22 April 2015 under Great
Barrier Reef Marine Park Authority permit G12/35 236.1 and
G14/37 318.1.

To generate more comprehensive reference transcriptomes,
4–5 replicate cores of a single colony were subjected to a 2-week
temperature stress experiment as described in Kenkel and Bay
(2017) [18], and paired samples from control (27◦C) and heat
(31◦C) treatments were snap-frozen in liquid nitrogen on day
2, day 4, and day 17 (Table 1; note for G. acrhelia, heat-treated
fragments were only included for day 4 and day 17). Samples
were crushed in liquid nitrogen, and total RNAwas extracted us-
ing an Aurum Total RNAmini kit (Bio-Rad, Irvine, CA, USA). RNA
quality and quantity were assessed using the NanoDrop ND-200
UV-Vis Spectrophotometer (Thermo Scientific, Waltham, MA,
USA) and gel electrophoresis.

For transcriptome sequencing, RNA samples from replicate
fragments were pooled in equal proportions, and ∼1 μg was
shipped on dry ice to the Oklahoma Medical Research Foun-
dation NGS Core, where Illumina TruSeq Stranded libraries
were prepared and sequenced on 1 lane of the Illumina Hiseq
3000/4000 to generate 2 × 150 PE reads.

Transcriptome assembly and annotation

Sequencing yielded 92–102 million raw PE reads (Table 1). The
fastx toolkit [19] was used to discard reads <50 bp or having a
homopolymer run of “A” ≥9 bases, retain reads with a PHRED
quality of at least 20 over 80% of the read, and to trim TruSeq se-
quencing adaptors. Polymerase chain reaction duplicates were
then removed using a custom perl script [20]. Remaining high-
quality filtered reads (26–35million paired reads, 4–6million un-
paired reads) (Table 1) were assembled using Trinity v. 2.0.6 (Trin-
ity, RRID:SCR 013048) [21] using the default parameters and an in
silico read normalization step at the Texas Advanced Computing
Center at the University of Texas at Austin.

Since corals are “holobionts” comprised of host, Symbio-
dinium, and other microbial components, resulting assemblies
were filtered to identify the host component following the pro-
tocol described in Kitchen et al. (2015) [4], with onemodification.
Briefly, small clusters (= contigs, <400bp) were removed, and a
hierarchical series of blast searches against potential contam-
inants was conducted. First, assemblies were compared to the
most complete Cnidarian rRNA database (SILVA: ABAV01023297,
ABAV01023333) [22] using BLASTn [23], and good matches (bit-
score >45) were removed. Next, transcriptomes were compared
to a Cnidarian mitochondrial genome using BLASTn (Acrop-
ora tenuis, NCBI: NC 0 03522.1) [24], again discarding contigs
with match bit-scores >45. The taxonomic origin of remain-
ing contigs was identified using a series of BLASTx searches
against the most complete coral and Symbiodinium gene mod-
els (coral: Acropora digitifera, adi v1.01 prot, [14]; Symbiodinium:
S. kawagutii, Symbiodinium kawagutii.0819.final.gene.pep, [25])
and NCBI’s nonredundant (nr) protein database (downloaded 25
July 2016) [23]. For a contig to remain in the host-specific assem-
bly, it had to both match (E value ≤ 10−5) a gene in the coral pro-
teomemore closely than the Symbiodinium proteome and match
a metazoan sequence or have no match in the nr database. In
addition, contigs with no match to either proteome were also
retained if they exhibited a best match to a Cnidarian in the nr
database search, a slightly less stringent criterion than that used
by Kitchen et al. (2015) [4]. Annotation of host transcriptomes
was performed following the protocols and scripts described
in [26]. Host contigs were assigned putative gene names and
gene ontologies using a BLASTx search (E value ≤ 10−4) against
the UniProt Knowledgebase Swiss-Prot database [27]. EuKary-
otic Orthologous Groups (KOG) annotations were assigned using
a BLAST search against the core eukaryotic gene set from the
CEGMA pipeline (CEGMA, RRID:SCR 015055) [28] and the Web-
MGA server (WebMGA, RRID:SCR 011951; [29]) [30] and Kyoto En-
cyclopedia of Genes and Genomes (KEGG) IDs using the KAAS
server [31, 32]. The stats.sh command of the BBMap package
[33] was used to calculate GC content of host transcriptomes.
Transcriptome completeness was evaluated through compar-
ison to the Benchmarking Universal Single-Copy Ortholog v.
2 (BUSCO, RRID:SCR 015008) [34] set for metazoans using the
gVolante server [35, 36].

Table 1: Assembly statistics for de novo transcriptomes by coral species

Galaxea astreata Galaxea acrhelia Goniopora columna

N heat 3 2 3
N ctrl 2 2 2
N raw reads (×106) 92.8 96.0 102.8
N qual filtered: PE, SE (×106) 35.0, 5.8 33.3, 6.0 26.9, 4.7
N contigs holobiont 173 883 164 996 185 625
N contigs host only 65 460 67 127 72 405
Mean GC content host only 42.3% 42.1% 42.2%
N isogroups 29 145 26 693 37 894
Mean contig length (bp) 1754 1894 1492
N50 (bp) 2300 2480 1984
Contiguity at 0.75 0.40 0.41 0.37
% annotated 62.4 60.7 50.1
% core KOGs 94.3 94.0 93.1

BUSCOs
N complete (%) 880 (89.98%) 899 (91.92%) 881 (90.08%)
N partial (%) 36 (3.68%) 30 (3.07%) 31 (3.17%)
N missing (%) 62 (6.34%) 49 (5.01%) 66 (6.75%)

https://scicrunch.org/resolver/RRID:SCR_013048
https://scicrunch.org/resolver/RRID:SCR_015055
https://scicrunch.org/resolver/RRID:SCR_011951
https://scicrunch.org/resolver/RRID:SCR_015008
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Evaluation of assemblies

The initial holobiont assemblies contained 164 996–185 625 con-
tigs over 400 bp in length (N50 = 1543–1848). Of these, 34–94 were
discarded asmatching non-mRNAs (9–10 rRNA, 25–74mitochon-
drial). Following screening for biological contamination, 64 249–
68 968 contigs had a best match to the Acropora digitifera pro-
teome, and of these, 59 875–65 367 matched either a metazoan
or had no match in NCBI’s nr database. An additional 5585–7038
contigs matched neither proteome but exhibited a best hit to
a Cnidarian in the nr database and were also retained. These
host-specific assemblies represented 26 693–37 894 isogroups
(∼genes) with an average length of 1492–1894 bp and an N50
of 1984–2480 (Table 1). Mean GC content of host-specific as-
semblies was 42% (Table 1), which is consistent with other an-
thozoan transcriptomes where Symbiodinium reads have been
effectively filtered [16]. Protein coverage exceeded 0.75 for 37–
41% of contigs (Table 1). Gene name and/or gene ontology an-
notations were possible for 16 196–19 306 (50.1–62.4%) of these
isogroups based on sequence homology comparisons to the
Swiss-Prot database (Table 1) [27]. KEGG pathway annotation [32]
resulted in 4488–4728 unique matches for 7105–8712 isogroups.
Comparison of these assemblies to the core eukaryotic 248-gene
set [28] revealed that 93.1–94.3% of KOGs were represented, and
annotation of isogroups resulted in 23–24 unique KOG matches
for 8700–10 025 isogroups (Table 1). Of the 978 core BUSCO gene
sets formetazoans [34], 89.98–91.92%were found to be complete,
while an additional 3.07–3.68% were partially assembled, indi-
cating that assemblies are fairly comprehensive (Table 1).

Re-use potential

These coral host-specific assemblies are sufficient for use as
transcriptome references for Tag-based RNAseq (TagSeq) [37],
a cost-effective method that was recently shown to be more
accurate at quantifying gene expression levels than traditional
RNAseq [38]. The fasta files and associated annotation files have
been formatted for direct use in the TagSeq read mapping [39]
and GO-MWU analysis pipelines [40].

Data accessibility

Raw reads are archived at NCBI’s SRA under project numbers
PRJNA350363: Goniopora columna; PRJNA352640: Galaxea archelia;
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and other supporting data are available via theGigascience repos-
itory, GigaDB [41]. The assembled transcriptomes and associated
annotation files can also be obtained from http://dornsife.
usc.edu/labs/carlslab/data/ or from the Australian Institute
of Marine Science Data Centre at http://data.aims.gov.au/
metadataviewer/faces/view.xhtml?uuid=3c2d31c9-b921–491c-
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