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Cancer cells experience unique and dynamic shifts in their metabolic function in
order to survive, proliferate, and evade growth inhibition in the resource-scarce tumor
microenvironment. Therefore, identification of pharmacological agents with potential to
reprogram cancer cell metabolism may improve clinical outcomes in cancer therapy.
Cancer cells also often exhibit an increased dependence on the process known
as autophagy, both for baseline survival and as a response to stressors such as
chemotherapy or a decline in nutrient availability. There is evidence to suggest that this
increased dependence on autophagy in cancer cells may be exploitable clinically by
combining autophagy modulators with existing chemotherapies. In light of the increased
metabolic rate in cancer cells, interest is growing in approaches aimed at “starving”
cancer through dietary and pharmacologic interventions that reduce availability of
nutrients and pro-growth hormonal signals known to promote cancer progression.
Several dietary approaches, including chronic calorie restriction and multiple forms of
fasting, have been investigated for their potential anti-cancer benefits, yielding promising
results in animal models. Induction of autophagy in response to dietary energy restriction
may underlie some of the observed benefit. However, while interventions based on
dietary energy restriction have demonstrated safety in clinical trials, uncertainty remains
regarding translation to humans as well as feasibility of achieving compliance due to
the potential discomfort and weight loss that accompanies dietary restriction. Further
induction of autophagy through dietary or pharmacologic metabolic reprogramming
interventions may enhance the efficacy of autophagy inhibition in the context of adjuvant
or neo-adjuvant chemotherapy. Nonetheless, it remains unclear whether therapeutic
agents aimed at autophagy induction, autophagy inhibition, or both are a viable
therapeutic strategy for improving cancer outcomes. This review discusses the literature
available for the therapeutic potential of these approaches.
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INTRODUCTION

The overarching term autophagy is generally recognized
to encompass three distinct processes: macroautophagy,
microautophagy, and chaperone-mediated autophagy.
Macroautophagy utilizes an isolation membrane called
an autophagosome to sequester and transport protein
aggregates or organelles to lysosomes for degradation
(Mizushima et al., 2004; Kuma and Mizushima, 2010).
In contrast, microautophagy involves direct engulfment
of cytoplasmic components through invagination of the
lysosomal membrane, while chaperone-mediated autophagy
targets select cytosolic proteins and translocates them to the
lysosome in a chaperone-dependent manner (Mizushima
and Komatsu, 2011; Shaid et al., 2013). In this review,
we will focus on pharmacologic and dietary approaches
that have been examined for their potential to modulate
dependence of cancer cells macroautophagy, referred to hereafter
simply as autophagy.

In a growing tumor, cancer cells are faced with increased
metabolic demands in a microenvironment characterized by
dysfunctional vascularization, hypoxia, and fierce competition
for a limited supply of nutrients (Dewhirst et al., 2008;
Zhang et al., 2008). Under the harsh conditions of the tumor
microenvironment, the highly conserved catabolic process
of autophagy can support cancer cell metabolism through
supply of critical metabolites via degradation and recycling
of precise cargo such as misfolded proteins, dysfunctional
mitochondria, and pathogens, as well as non-selective
engulfment of bulk cytoplasmic components (Nakatogawa
et al., 2009; Kuma and Mizushima, 2010; Boya et al., 2013;
Shaid et al., 2013). Early studies investigating the effects of
autophagy inhibition have utilized genetic silencing of key
autophagy genes, effectively disrupting the autophagy cascade
and providing more insight into the roles of autophagy
in cancer initiation and aggressive features in cancer cells
(Cufi et al., 2012).

Dietary interventions that restrict caloric intake may
induce autophagy in normal and/or cancerous cells, and
there is increasing interest in using these interventions
clinically with the ultimate goal of manipulating systemic
fuel availability to “starve” a developing tumor. Herein
we discuss the roles of autophagy in cancer initiation,
tumor progression, and therapeutic response. In addition,
we provide: (i) an overview of the underlying molecular
biology following restriction of dietary energy intake
through approaches such as caloric restriction and various
forms of fasting; (ii) we summarize the limited evidence
from associated clinical trials that have utilized these
interventions as an approach to improving treatment
outcomes or reducing the toxic side effects of chemotherapy
(Raffaghello et al., 2008; Lee et al., 2010); (iii) we address
some of the currently available pharmacological approaches
for both induction and inhibition of autophagy; and
(iv) we briefly discuss the potential for synergy between
dietary or pharmacologic energy manipulation and
autophagy inhibition.

METABOLIC AND HORMONAL
REGULATION OF AUTOPHAGY

Basal autophagy occurs constitutively through the signaling of
hormones and growth factors (Rabinowitz and White, 2010),
facilitating the maintenance of cellular homeostasis by removing
redundant or damaged organelles and generating metabolites
used to provide energy to the cell or create new macromolecules
(Boya et al., 2013). In contrast, autophagy is induced above
basal levels under conditions associated with cellular stress or
low energy status, including a high AMP/ATP ratio, nutrient
deprivation, and/or reduced growth factor signaling (Saha et al.,
2018). The principal cellular regulators of autophagic flux are
AMP-activated protein kinase (AMPK) and mechanistic target of
rapamycin (mTOR), both of which function to integrate nutrient
and energy signaling with cellular metabolism and various forms
of fasting (Meijer and Codogno, 2011; Mihaylova and Shaw, 2011;
Kim and Guan, 2015).

AMPK is an evolutionarily conserved serine/threonine
protein kinase that acts as a key sensor of cellular energy status.
Upon activation, AMPK works to restore energy homeostasis by
activating an array of catabolic pathways including autophagy, as
well as phosphorylating and inactivating mTOR (Hardie et al.,
2016). High AMP/ATP ratios and glucose deprivation are the
primary signals for AMPK activation (Gowans et al., 2013;
Zhang et al., 2017).

mTOR, also a serine/threonine kinase, is a master regulator
of cellular growth and proliferation in response to nutrient
and hormone signaling; namely, amino acid concentrations and
insulin-like growth factor 1 (IGF1) and/or insulin levels (Avruch
et al., 2006). In order to activate downstream anabolic pathways,
mTOR complex 1 (mTORC1) must be recruited to the lysosome
(Lawrence and Zoncu, 2019). The protein complex GATOR1
functions to inhibit mTOR activation via GTP hydrolysis of the
heterodimeric Rag GTPases responsible for recruiting mTOR
to the lysosomal surface (see Figure 1; Bar-Peled et al., 2013;
Panchaud et al., 2013). The activity of GATOR1 is regulated
by amino acid concentrations—specifically levels of leucine,
arginine, and methionine. Leucine and arginine, functioning
through SESTRIN and CASTOR respectively, interact with
GATOR2 to inhibit mTOR upon amino acid deprivation (Kim
J. S. et al., 2015; Saxton et al., 2016; Wolfson et al., 2016). Leucyl-
tRNA synthetase (LRS) functions as another leucine sensor and
positive regulator for mTORC1 as a GTPase-activating protein
(GAP) for RagD (Lee et al., 2018). SAMTOR, an inhibitor of
mTOR and sensor for S-adenosylmethionine, is responsible for
mTOR inactivation in the context of methionine deprivation
(Figure 1), which improves insulin sensitivity and extend lifespan
in rodents (Orentreich et al., 1993; Gu et al., 2017).

Growth factor signaling involving insulin and IGF1 is
another well-established upstream regulator of mTOR that
further integrates host nutrient status with cellular metabolism.
Both insulin and IGF1 activate the PI3K/AKT signaling axis
upon binding to their tyrosine kinase receptor, resulting in
increased activation of mTORC1 at the lysosomal surface
(Saxton and Sabatini, 2017). Insulin, a peptide hormone
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FIGURE 1 | Overview of autophagy and its regulation. Nutrient sensing in autophagy induction is multifaceted. Activation of the ULK serine threonine kinase complex
induces autophagy by promoting release of BECN1 from BCL2 inhibitory heterotetramers, and promoting the association of BECN1 with ATG14, VSP15, and
VSP34 in Class III PI3K complex I. This complex is responsible for initiating isolation membrane formation. AMPK activation in response to cellular energy status
activates ULK complex by phosphorylation of ULK1 and ATG13. Activation of autophagy is antagonized by mTOR inhibition of AMPK, ULK complex, and Class III
PI3K complex I and II. mTOR activity is maintained by intracellular leucine, arginine, and methionine levels. Leucine and arginine inhibit SESTRIN and CASTOR,
respectively, to promote GATOR2 inhibition of GATOR1, a key negative regulator of mTOR activity. Methionine, through production of SAM inhibits SAMTOR to
suppress GATOR1 activity. Activation of growth factor signaling via hormones upstream of mTOR (e.g., leptin, insulin, and IGF1) further suppresses autophagy.
GHRL signaling in contrast can activate AMPK to promote autophagy. Maintenance of protein acetylation by acetyltransferases is enabled by ready supply of
acetyl-coA and suppresses the activity of ATG5-ATG12 complex further limiting autophagy induction. Activation of sirtuins by elevation of NAD+ levels promotes
autophagy by reducing such inhibitory acetylation and enabling ATG5-ATG12 complex to lipidate LC3.
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produced by pancreatic β-cells, is released in response to elevated
blood glucose (Braun et al., 2011). Hyperglycemia is a hallmark
of metabolic syndrome and is associated with insulin resistance,
aberrant glucose metabolism, chronic inflammation, and the
production of other metabolic hormones such as IGF1, leptin,
and adiponectin (Braun et al., 2011). IGF1, a peptide growth
factor produced primarily by the liver, is typically bound to
IGF binding proteins (IGFBPs), which regulate the amount of
free IGF1 bioavailable to bind to the IGF1 receptor (IGF1R) to
induce growth or survival signaling (Pollak, 2012). In metabolic
syndrome, the amount of bioavailable IGF1 increases via
hyperglycemia-induced suppression of IGFBP synthesis and/or
hyperinsulinemia-induced promotion of hepatic GH receptor
expression and IGF1 synthesis (Braun et al., 2011). Elevated
circulating IGF1 is an established risk factor for many cancer
types (Pollak, 2012).

Autophagy is initiated by the activation of Unc-51 like
autophagy activating kinase 1 (ULK1). Upon activation, ULK1
phosphorylates autophagy-related protein 13 (ATG13) and focal
adhesion kinase family interacting protein of 200 kD (FIP200),
promoting the association of a protein complex involving ULK1
and the non-catalytic subunits ATG13, FIP200, and ATG101
(Hurley and Young, 2017). This ULK1 signaling complex links
cellular energy status with autophagy induction, as AMPK
activates the complex by binding and phosphorylating ULK1
on S317 and S777, while mTOR phosphorylates S757, blocking
ULK1 association with AMPK (Kim et al., 2011). Thus, ULK1
signaling is responsive to both ATP levels (through AMPK) and
amino acid levels (through mTOR) (Mihaylova and Shaw, 2011;
Meijer et al., 2015).

Activation of the ULK1 complex initiates the formation
of the phagophore, which requires translocation of the
complex to an endoplasmic reticulum domain enriched for
the lipid phosphatidylinositol 3-phosphate [PI(3)P] (Axe et al.,
2008; Itakura and Mizushima, 2010). ULK1 also promotes
the activation of Beclin 1 (BECN1)-containing PI3K class
III complexes by disrupting the formation of inhibitory
BECN1/BCL2 heterotetramers (Pattingre et al., 2005). Two
distinct PI3K complexes, consisting of BECN1, vacuolar
protein sorting protein 15 (VPS15), VPS34 and either ATG14
(complex I) or UV radiation resistance-associated gene protein
(UVRAG) (complex II), are critical to phagophore initiation and
autophagosome maturation, respectively (Backer, 2016). BECN1
and ATG14 on the PI3K class III complex I are phosphorylated
by ULK1, activating the complex. Activation and recruitment
of PI3K complex 1 to the site of autophagosome formation
drives nucleation of the phagophore membrane and generation
of PI(3)P, which is essential for recruiting additional ATG
proteins and PI(3)P effectors, such as WIPI (Lamb et al., 2013).
PI3K class III complex II promotes downstream fusion of the
autophagosome with an endosome-lysosome, resulting in the
breakdown of sequestered cellular components (Liang et al.,
2008). mTOR directly inhibits the lipid kinase activity of both
PI3K class III complexes through phosphorylation of ATG14 and
UVRAG (Yuan et al., 2013; Kim Y.M. et al., 2015).

Following nucleation of the phagophore via the PI3K class
III complex I, two conjugation systems involving ubiquitin-like

proteins associate with the membrane to aid in phagophore
expansion and autophagosome formation. ATG12 is first
activated by ATG7 before binding irreversibly to ATG5,
which interacts further with a small coiled-coil protein,
ATG16, to form the larger ATG12-ATG5-ATG16L complex
(Mizushima et al., 2011). The complex is recruited to the
phagophore membrane and functions as an E3-like ligase
to mediate the lipidation of microtubule-associated protein
light chain 3 (LC3) with phosphatidylethanolamine (PE)
(Fujita et al., 2008). LC3-PE can be localized to both the
inner and outer membranes of the autophagosome, and
upon autophagosome maturation, the lipidated LC3 on the
outer membrane gets deconjugated by Atg4 (Chen and
Klionsky, 2011). The ATG proteins then dissociate from the
membrane before its closure into an autophagosome, while
lipidated LC3 remains attached to the inner surface of the
autophagosome. LC3 is believed to aid in expansion and closure
of the isolation membrane, and is a widely used marker for
identifying autophagosomes and monitoring autophagic flux
(Tanida et al., 2004). LC3 also serves as a binding motif
for multiple mitophagy-associated receptors such as BNIP3
and FUNDC1, allowing for delivery of the autophagosome
membrane to the mitochondria for receptor-mediated mitophagy
(Liu et al., 2012; Wu et al., 2014). LC3 also plays a critical
role in ubiquitin mediated autophagy/mitophagy, where it
binds LC3 interacting region (LIR) motifs of proteins such
as p62 (SQSTM1, Sequestosome 1), OPTN (Optineurin), and
NBR1(NBR1 Autophagy Cargo Receptor) which serve as a
bridge between ubiquitinated cargo and autophagy machinery
(Chen et al., 2019).

AUTOPHAGY AND CANCER

Autophagy in Cancer Initiation
Basal autophagy exerts a protective role in suppressing malignant
transformation and early tumorigenesis by regulating cellular
homeostasis and metabolism through the degradation of
intracellular components (Yun and Lee, 2018). Autophagy was
initially thought to be a tumor suppressive mechanism because
BECN1, key in phagophore formation, is a haploinsufficient
tumor suppressor with monoallelic loss in several human breast,
prostate, and ovarian cancers (Liang et al., 1999; Qu et al., 2003).
However, this finding is confounded by the location of BECN1
adjacent to the well established tumor suppressor breast cancer
1, early onset (BRCA1) on chromosome 17q21. Nonetheless, the
cellular “quality control” resulting from the unfolded protein
response, preservation of genomic stability, and prevention of
reactive oxygen species (ROS) accumulation point to autophagy
as a mechanism suppressing cancer initiation (Bhutia et al., 2013;
Yun and Lee, 2018). Cancer cells exhibit reduced proteolysis or
autophagic activity when compared with non-transformed cells
(Gunn et al., 1977; Kisen et al., 1993; Bhutia et al., 2013).

Although human cancers largely lack evidence of genetic
inactivation of core autophagy machinery, various murine
models have revealed that knockouts of key autophagic genes
promote tumorigenesis (Amaravadi et al., 2016). In addition

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 November 2020 | Volume 8 | Article 590192

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-590192 October 31, 2020 Time: 15:37 # 5

Cozzo et al. DEM and Autophagy in Cancer

to its role in initiating autophagy (Vega-Rubín-de-Celis, 2019),
BECN1 is essential for early embryonic development and
regulates growth factor receptor signaling (Yue et al., 2003;
Rohatgi and Shaw, 2016). As a result, biallelic deletions of
BECN1 cannot be studied because of lethality in animal
models. In a model of immortalized mouse mammary epithelial
cells (IMMECs) in nude mice, monoallelic BECN1 loss
increased sensitization to metabolic stress, induced DNA damage
response, and stimulated gene amplification in support of
mammary tumorigenesis (Karantza-Wadsworth et al., 2007).
Furthermore, BECN1 overexpression in MCF7 breast carcinoma
cells reduced tumorigenesis in nude mice (Liang et al., 1999).
Moreover, BECN1 heterozygosity in MMTV-Wnt1 mice revealed
increased WNT-1 driven mammary tumorigenesis compared
with wildtype controls (Cicchini et al., 2014). Similarly, mice
with either a monoallelic deletion for autophagy and Beclin1
regulator 1 (Ambra1) or a biallelic deletion for SH3 Domain
Containing GRB2 Like, Endophilin B1 (SH3GLB1, aka Bif-
1) revealed higher rates of spontaneous tumor incidence
(Cianfanelli et al., 2015). UVRAG, another critical autophagy
protein, is a component of Class III PI3K complex II,
and activates BECN1 to enable phagophore formation (Liang
et al., 2006). Mutated UVRAG has been reported to suppress
autophagy and promote tumor growth in colorectal cancers
(He et al., 2015).

The role of autophagy in early breast tumorigenesis remains
unresolved. Murine models of hereditary breast cancer showed
that monoallelic loss of BECN1 reduces tumorigenesis and
facilitates p53 induction (Huo et al., 2013). Similarly, Palb2f /f ;
Wap-cre mice with monoallelic loss of BECN1 (BECN1±)
experienced a significant delay in mammary tumor formation
compared with mice homozygous in BECN1 expression (Huo
et al., 2013). Additionally, Gong et al. (2013) showed that
BECN1 is essential for the tumorigenicity of breast cancer
stem-like cells. BECN1 competes with myeloid cell leukemia
sequence 1 (MCL1), an antiapoptotic BCL2 family member,
for stabilization by a common deubiquitinase, USP9X (Elgendy
et al., 2014). Accordingly, loss of BECN1 may result in
MCL1 accumulation (Elgendy et al., 2014). Hence, BECN1
may regulate breast cancer initiation through an autophagy-
independent pathway.

Genetic disruption of other autophagy-related genes has also
revealed autophagy-associated regulation of cancer initiation
in other cancer types. ATG7 is essential for hematopoietic
stem cell (HSC) maintenance, and deleting ATG7 in LSK
(Lin−Sca-1+c-Kit+) cells resulted in HSC dysfunction,
increased DNA damage, elevated reactive oxygen species
(ROS), and myeloproliferation. Histologically, the infiltrating
myeloid cells in these ATG7-deficient mice reportedly bear
semblance to acute myeloid leukemia (Mortensen et al.,
2011). Additionally, mice with systemic mosaic deletion
of Atg5 and liver specific Atg7 deletion develop benign
liver tumors more frequently than wildtype control mice
(Takamura et al., 2011). Impairing autophagy through in vivo
tissue-specific deletion of Atg7 in pancreatic epithelial cells
revealed increased inflammation, ROS accumulation, and
mitochondrial damage, markers of oxidative stress that are

well known risk factors for promoting cancer initiation
(Antonucci et al., 2015).

Autophagy may also protect against cancer via suppression
of oxidative stress via modulation of nuclear factor erythroid 2-
related factor 2 (Nfe2l2/Nrf2)/kelch-like ECH-associated protein
1 (Keap1) and SQSTM1/p62 pathway (Komatsu et al., 2010; Jiang
et al., 2015). p62 is a selective substrate of autophagy and cargo
adapter that can disturb the Nfe2l2-Keap1 association, leading to
the selective degradation of Keap1 and translocation of Nfe2l2 to
activate antioxidant stress response genes (Taguchi et al., 2012).
Under normal conditions, p62 is degraded by autophagy via its
LC3 interaction region (LIR), but impaired autophagy leads to the
accumulation of oncogenic p62 aggregates (Pankiv et al., 2007).
Thus, the connection of oxidative stress to cancer promotion and
the abnormal accumulation of p62 in several breast (Thompson
et al., 2003; Li S. S. et al., 2017) and other cancers (Kitamura et al.,
2006; Inoue et al., 2012; Saito et al., 2016) may in part explain the
tumor suppressive effects of autophagy.

Autophagy Dependence in Cancer
Malignancy and Response to Therapy
In contrast to the protective role of autophagy in maintaining
function and integrity in normal cells, following transformation,
autophagy promotes progression and metastasis in several cancer
types, thus revealing the “double edged” role of autophagy in
cancer (Huo et al., 2013). In established tumors, autophagy
may also act as an essential adaptive response to promote
growth and overcome cellular stressors (White, 2015). For
example, a variety of human cancers with mutations in the
oncogene Ras—including pancreatic ductal adenocarcinoma
(PDAC), bladder, large cell lung, colon, and prostate cancers—
have high levels of basal autophagy in vivo even under
nutrient-replete conditions, and are subsequently more sensitive
to pharmacological autophagy inhibition (Guo et al., 2011).
Constitutive activation of the GTPase KRAS promotes mitogen-
activated protein kinase (MAPK) signaling as well as increased
dependence on autophagy (Guo et al., 2011). Some types of
Ras-driven cancers, such as those with H-RasV 12 or K-RasV 12

mutations, display up-regulated levels of basal autophagy despite
active mTORC1 (Grotemeier et al., 2010; Guo et al., 2011).
Signaling through the Ras/Extracellular Signal-Regulated Kinase
(ERK) pathway also induces autophagy through BECN1 (Grant,
2008; Mendoza et al., 2011; Wong et al., 2015; Butler et al.,
2017). These cancers are considered “autophagy addicted,” as they
not only require autophagy in the absence of nutrients but also
depend on autophagy for tumor growth (Guo et al., 2011). In
these tumors, mTOR can be bypassed as a regulator of autophagy
(Perera et al., 2015; Wong et al., 2015).

An illustrative example of Ras-driven autophagy addiction
is PDAC, a highly aggressive cancer with a near 100% KRAS
mutation frequency and a 5-year survival rate of less than
5 percent (Siegel et al., 2018; Waters and Der, 2018). To
investigate the interplay between autophagy and Ras-mediated
tumorigenesis, Guo et al. (2011) transduced non-tumorigenic
immortal baby mouse kidney cells (iBMK) with H-rasV 12 or K-
rasV 12 and evaluated tumor growth in the presence or absence of
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the key autophagy genes Atg5 and Atg7. The chronic impairment
of autophagy significantly reduced tumor formation in nude mice
(Guo et al., 2011). Interestingly, in KRASG12D-driven humanized
mouse models of pancreatic ductal adenocarcinoma (PDAC),
deletion of Atg5 or Atg7 leads to development of premalignant
pancreatic lesions, while preventing further progression to
malignancy (Rosenfeldt et al., 2013; Yang et al., 2014).

In HER2-positive breast cancer, the precise role of autophagy
in tumorigenesis and tumor progression is currently being
investigated. Recent work has demonstrated that HER2-positive
breast cancer cells utilize lower levels of basal autophagy
compared to HER2-negative breast cancers under normal
conditions, but under stressed conditions, induce autophagy
to a greater extent (Bortnik et al., 2016). This differential
induction of autophagy was mediated in part through activation
of ATG4B, a protease that cleaves pro-LC3B to form LC3-
I during autophagosome formation (Bortnik et al., 2016).
Interestingly, a recent study by Vega-Rubin-de-Celis et al. (2018)
demonstrated a novel mechanism of autophagy suppression
via interaction of HER2 with BECN1. HER2-positive breast
cancer patients with allelic loss of BECN1 have worse clinical
prognosis, suggesting that suppression of autophagy through
this interaction may have pro-tumorigenic effects. Indeed,
disruption of this interaction using a small molecule, Tat-
Beclin 1, in mice bearing BT-474-VH2 xenografts resulted in
increased autophagy induction and reduced tumor progression
as effectively as treatment with the tyrosine kinase inhibitor
lapatinib (Vega-Rubin-de-Celis et al., 2018).

Autophagy plays a role in nearly every phase of the
metastatic cascade, including modulation of tumor cell motility
and invasion, cancer stem cell viability and differentiation,
resistance to anoikis, epithelial-to-mesenchymal transition,
tumor cell dormancy and escape from immune surveillance,
and establishment of the pre-metastatic niche (for a recent
review on this topic the reader is referred to Mowers et al.,
2017). Importantly, autophagy is also upregulated in response
to stressful stimuli such as DNA damage induced by cytotoxic
agents, contributing to treatment resistance (Kroemer et al.,
2010). For example, increased autophagy induction in response
to treatment with the HER2-directed therapies trastuzumab and
lapatinib has been implicated as a mechanism of drug resistance.
Compared to trastuzumab-sensitive SKBR3 breast cancer cells,
trastuzumab-resistant JIMT-1 cells constitutively utilize higher
levels of autophagy in order to sustain proliferative activities (Cufi
et al., 2013). Similarly, treatment of HER2-positive cells with
lapatinib has been shown to increase autophagy induction, which,
if sustained, allows cells to survive and develop drug-resistance
(Tang et al., 2012; Lozy et al., 2014; Chen et al., 2016).

PROMOTION OF AUTOPHAGY
THROUGH NUTRIENT OR ENERGY
RESTRICTION

Collectively, the studies described above highlight the context-
dependent role of autophagy in cancer incidence and progression.
Thus, it may be unsurprising that both autophagy induction

and autophagy inhibition have shown promise as viable
therapeutic strategies for improving cancer outcomes. Evidence
for autophagy induction achieved through nutrient or energy
restriction is described below.

Approaches for and Cellular Impact of
Dietary Energy Restriction
Approaches to restricting dietary energy intake include caloric
restriction (CR) and fasting. CR is a dietary manipulation
which decreases typical (ad libitum) caloric intake by 20–40%
without incurring malnutrition (Mitchell et al., 2015) and has
potent anticancer effects in both developing and established
cancer (O’Flanagan et al., 2017). On the other hand, fasting
involves short term reduction of caloric intake to 0–500 calories
for defined intervals of time, typically while consuming water
alone, or, in the case of partial fasting regimens, consuming
vegetable broths and/or fruit juices (Wilhelmi, de Toledo et al.,
2013). Intermittent fasting regimens involve cycles of short-
term reduction of caloric intake in intervals ranging from 1 to
3 days per week. This method encompasses protocols for whole-
day fasting, time-restricted feeding, and alternate-day fasting
(Tinsley and La Bounty, 2015). Whole day fasting indicates total
deprivation from caloric intake for periods typically ranging
from 24 to 48 h per week, either consecutively or non-
consecutively, with ad libitum feeding on remaining days (Tinsley
and La Bounty, 2015). Time-restricted feeding regimens define
consecutive periods of ad libitum feeding that range from 3 to
12 h per day with complete fasting during the remaining hours.
Intermittent fasting can also be achieved through alternate day
fasting or by following the 5:2 diet. In clinical and preclinical
protocols for the 5:2 diet, caloric consumption is restricted to
approximately 25% of energetic needs on fasting days, with
ad libitum feeding on the remaining days of the feeding cycle
(Patterson et al., 2015).

Under conditions of low nutrient availability, such as those
that occur during fasting, autophagic flux is increased in
normal and malignant cells to liberate metabolic substrates via
degradation of intracellular structures such as damaged proteins
and mitochondria. For example, during fasting periods of 12–
24 h, mice experience an induction of autophagy in several
tissues, including the liver, kidney, and neurons (Komatsu et al.,
2005; Alirezaei et al., 2010; Takagi et al., 2016). Specifically, fasting
potently activates AMPK in multiple tissues, including skeletal
muscle, adipocytes, and the hypothalamus (Figure 2; Kajita et al.,
2008; Lim et al., 2010; Bujak et al., 2015). Interestingly, endocrine
signaling involving ghrelin, a gut-brain peptide upregulated
during periods of fasting, has tissue-specific effects on AMPK
activation, as ghrelin activates AMPK in neurons and the
hypothalamus yet inhibits AMPK in cardiomyocytes (Figure 2;
Toshinai et al., 2001; Andersson et al., 2004; Wang et al., 2014;
Bayliss et al., 2016).

Both the ATG12- ATG5- ATG16L and LC3 conjugation
systems are regulated by protein acetylation status—further tying
autophagic flux to cellular energy and nutrient status (Bánréti
et al., 2013). High levels of acetyl CoA, characteristic of a
fed, high-energy state, repress autophagy through acetylation of

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 November 2020 | Volume 8 | Article 590192

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-590192 October 31, 2020 Time: 15:37 # 7

Cozzo et al. DEM and Autophagy in Cancer

FIGURE 2 | Promotion of autophagy through nutrient or energy restriction. Caloric restriction (CR) suppresses insulin, IGF1, and leptin, each of which suppress
autophagy via activation of mTOR following binding to their cognate receptor. Induction of ghrelin by CR promotes activation of AMPK to promote autophagy. Dietary
energy modulation by CR limits availability of key nutrient regulators of autophagy including amino acids and glucose. In CR, AMPK signaling is induced in response
to reduced ATP and/or glucose concentrations. ATG5-ATG12 complex activity is regulated by the availability of acetyl-coA and the activity of deacetylases. In CR,
reduced acetyl-coA limits protein acetylation by reducing substrate availability for acetyltransferases. CR induced increase in NAD + levels promote the activity of
sirtuins. Key: Black lines reflect regulation at basal states; Black arrows reflect activation, while black T bars reflect inhibition. Red arrows reflect changes in
hormone/metabolite availability induced by fasting which may modulate autophagy.
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ATG5, ATG7, ATG12, and LC3 by the p300 acetyltransferase
(Lee and Finkel, 2009; Mariño et al., 2014). Conversely, increased
expression and activity of the NAD+-dependent sirtuin 1 (sirt1),
inducible by caloric restriction, stimulates autophagy via direct
deacetylation of the Atg and LC3 machinery (Figure 2; Cohen
et al., 2004; Lee et al., 2008). Fasting and caloric restriction
result in an increase in the cellular NAD+/NADH ratio, resulting
in high concentrations of the NAD+ substrate necessary for
sirtuin activity (Hayashida et al., 2010). Other sirtuins regulate
autophagy indirectly. Sirt2 has been implicated in autophagy
modulation through its role in inactivating cytosolic FoxO1,
which, under starvation conditions, disassociates from Sirt2 and
promotes autophagy via acetylation of lysine residues on Atg7
(Zhao et al., 2010). Sirt3, the primary mitochondrial histone
deacetylase, plays a key role in oxidative stress homeostasis
through its role in deacetylation of superoxide dismutase 2
(SOD2), a major mitochondrial antioxidant enzyme. Caloric
restriction and oxidative stress increase the expression of Sirt3,
which is now recognized as a critical component of multiple
autophagy inducing pathways (Qiu et al., 2010; Pi et al., 2015; Shi
et al., 2015; Liu et al., 2018).

Systemic Impact of Dietary Energy
Restriction
CR and fasting promote longevity in model organisms
via reprogramming of endocrine signaling and systemic
metabolism, reducing exposure to oxidative stress, and improved
mitochondrial function (Michalsen and Li, 2013). Autophagy has
been implicated in CR-mediated effects on longevity, and animal
models have also demonstrated that this induction of autophagy
is necessary for survival during fasting, as it is required to prevent
fatal hypoglycemia and cachexia (Karsli-Uzunbas et al., 2014).
In the context of cancer, chronic CR has demonstrated tumor
suppressive effects in breast, colon, and pancreatic cancers in
animal models (Brandhorst et al., 2015; Di Biase et al., 2016;
Rossi et al., 2017).

In rodents, fasting and CR modulate similar metabolic
targets, but elicit distinct physiological responses (Lee and
Longo, 2011). During periods of fasting, serum glucose
levels decrease and hepatic glycogen stores diminish within
24 h (Longo and Mattson, 2014). Alternative metabolic
pathways are upregulated to provide substrates for energy
utilization; for example, gluconeogenesis is activated to
provide glucose to specific tissues, primarily the brain.
Additionally, β-oxidation of free fatty acids released from
adipose tissue is upregulated, while the ketone bodies β-
hydroxybutyrate and acetoacetate, released as a byproduct
of β-oxidation and from the conversion of ketogenic amino
acids, are utilized in the process of ketolysis (Longo and
Mattson, 2014). Fasting also results in pronounced endocrine
changes, as discussed below. In mice, intermittent fasting
regimens are modeled by completely removing food for
approximately 24–48 h every 5–7 days (Longo and Mattson,
2014). This intervention decreases fasting insulin, glucose
concentrations, total plasma cholesterol, and triglycerides as
effectively as continuous CR (Varady et al., 2007). Within a

48 h fasting period, blood glucose decreases by roughly 50%
(Jensen et al., 2013).

Metabolic benefits from CR and/or fasting have also been
demonstrated in humans. Adherence to these dietary restriction
protocols promotes modest weight loss and reductions in total
plasma cholesterol and triglyceride concentrations, glucose, and
low-density lipoprotein cholesterol (Johnson et al., 2007; Klempel
et al., 2013; Rothschild et al., 2014). For example, a 48 h fast in
rodents results in weight loss of approximately 20 percent of total
body weight, compared to a 4 day fast in humans which results
in less than 2 percent weight loss (Pietrocola et al., 2017b). While
blood glucose levels in humans decrease after 2 days in the fasted
state, clinically acceptable glucose levels are maintained within
this period (Lieberman et al., 2008). Additionally, in humans
and mice, IGF1 levels decrease by approximately 30 and 70
percent, respectively, during periods of fasting ranging from 24
to 72 h (Dorff et al., 2016). Alternatively, IGF1 decreases by
25 percent with continuous CR in mice, but in humans does
not decline unless CR is also accompanied by restriction of
protein intake (Lee and Longo, 2011). An intermittent fasting
regimen that restricted calories by 85% on alternate fasting days
in mice resulted in decreases in IGF1, leptin, and visceral fat,
and increased levels of adiponectin (Varady et al., 2009). Thus,
a variety of dietary energy restriction approaches are available to
reduce circulating IGF1.

A reduction in circulating IGF1 and insulin levels in humans
may result in increased autophagic flux through downregulation
of the PI3K/AKT/mTOR pathway (Figure 2; Thissen et al., 1994).
Leptin, an adipokine, is another known regulator of energy
expenditure and neuroendocrine signaling, and is associated with
cancer progression (Garofalo and Surmacz, 2006). Leptin has
tissue-specific effects on autophagy; however, it is predominantly
associated with autophagy inhibition via the PI3K/Akt/mTOR
signaling pathway (Maya-Monteiro and Bozza, 2008; Wang et al.,
2012; Cassano et al., 2014). In both obese and normal weight
humans, fasting and CR also decrease serum concentrations of
leptin, consistent with its classical role as a satiety hormone
(Boden et al., 1996; Weigle et al., 1997; Rogozina et al., 2011).

Intermittent fasting regimens have not consistently been
demonstrated to improve insulin and glucose control (Patterson
et al., 2015). One study that compared the metabolic impact of
intermittent CR (2 days per week) vs. continuous CR (7 days
per week) in overweight, premenopausal women demonstrated
that intermittent CR resulted in a greater reduction in fasting
insulin levels and insulin resistance (Harvie et al., 2011). In both
interventions, similar decreases in leptin, C-reactive protein, LDL
cholesterol, and triglycerides were achieved, but the differences
in glycemic control that followed adherence to each respective
regimen indicate that different mechanisms may be driving the
metabolic alterations (Harvie et al., 2011).

Dietary Energy Restriction During
Cancer Therapy
In response to fasting and fasting-mimicking diets, normal cells
enter a state characterized by decreased cellular division, reduced
metabolic activity, and increased utilization of repair pathways,

Frontiers in Cell and Developmental Biology | www.frontiersin.org 8 November 2020 | Volume 8 | Article 590192

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-590192 October 31, 2020 Time: 15:37 # 9

Cozzo et al. DEM and Autophagy in Cancer

resulting in chemo-protective effects (Raffaghello et al., 2008; Lee
et al., 2010). Decreased levels of bioavailable serum IGF1 and
reduced activation of the PI3K/Akt/mTOR axis are implicated in
both the longevity effects of CR as well as this fasting-induced
stress resistance in normal cells (Raffaghello et al., 2008; Lee et al.,
2010). Conversely, as malignant cells are unable to downregulate
their oncogene-driven metabolic programs, their sensitivity to
chemotherapeutics is retained or even increased following bouts
of short-term fasting, resulting in destruction of cancer cells
by chemotherapy in a phenomenon termed differential stress-
sensitization (Raffaghello et al., 2008; Lee et al., 2010).

Though the impact of dietary energy restriction on cancer
progression in humans has not yet been fully characterized,
interventions which reduce caloric intake during cytotoxic
chemotherapy may improve therapeutic efficacy while reducing
undesirable side effects in untransformed cells (Buono
and Longo, 2018). In humans, side effects from cytotoxic
chemotherapies include nausea, vomiting, gastrointestinal
inflammation, central and peripheral neurotoxicity and
neuropathy, bone marrow toxicities such as myelosuppression
and febrile neutropenia, and long-term sequelae including
cardiovascular disease and increased risk of secondary
malignancies (Nurgali et al., 2018). These side effects are
non-trivial and may result in physical and emotional stress
that poses an obstacle to treatment, negatively influencing
patient outcomes.

Numerous short-term fasting protocols, including
intermittent fasting, periodic fasting, and fasting-mimicking
diets, have been tested for their ability to improve efficacy and
tolerability of chemotherapy cycles (Brandhorst and Longo,
2016). Unlike intermittent fasting, periodic fasting regimens
last for 3 days or longer and are repeated every 2 or more
weeks, while fasting-mimicking regimens use a plant-based
low carbohydrate and low-protein diet that is indicated for
use every 3 to 4 weeks (Longo and Mattson, 2014; Brandhorst
et al., 2015). There are numerous clinical trials registered
on ClinicalTrials.gov investigating the impact of fasting or
other dietary energy restriction approaches on response to
chemotherapy across a wide variety of cancer types. Most of
these trials to date have focused on tolerability of the fasting or
fasting-mimicking regimen in combination with chemotherapy
as well as measurable side effects in human subjects. We will
discuss below representative trials for which final or interim
results have been peer-reviewed for publication or submitted as
abstracts for presentation at major conferences.

Bauersfeld et al. (2018) conducted a randomized, individually
controlled cross-over trial wherein subjects with breast and
ovarian cancers underwent a modified fasting protocol for
multiple 60 h periods over the course of three out of six cycles
of chemotherapy (36 h before to 24 h after the chemotherapy;
subjects were fasted during either the first three cycles or
the second three cycles). Subjects were allowed a maximum
daily intake of intake of 350 kcal during fasting periods and
reported improved quality-of-life and reduced self-reported
fatigue following therapy when therapy was administered during
a fasting period (Bauersfeld et al., 2018). Greater benefit was
perceived when subjects were fasted during the first three

chemotherapy cycles as opposed to the second three cycles
(Bauersfeld et al., 2018).

Cheng et al. (2014) reported a protective effect of prolonged
fasting cycles during chemotherapy against chemotherapy-
induced myelosuppression in mice, as well as preliminary
findings suggesting myeloprotective effects of fasting in humans.
Similarly, de Groot et al. (2015) investigated whether fasting for
24 h before receiving (neo) adjuvant TAC-chemotherapy therapy
and for a subsequent 24 h after completing therapy could reduce
hematological toxicity in subjects with stage II and III HER2-
negative BC, using γ-H2AX in peripheral blood mononuclear
cells (PBMCs) as a proxy marker for chemotherapy toxicity in
normal somatic cells. No significant differences were observed in
the frequency of grade I, II, III, or IV side effects due to fasting;
however, fasted subjects experienced attenuated bone marrow
toxicity as well as a smaller and less consistent increase in markers
of chemotherapy-induced DNA damage in PBMCs compared to
non-fasted subjects (de Groot et al., 2015). Of note, while fasting
significantly reduced IGF1 as compared with baseline values, final
IGF1 serum values did not differ across the two treatment arms
(de Groot et al., 2015). Similar findings suggesting protection
against bone marrow toxicity and DNA damage in circulating
PBMCs were also reported following prolonged fasting (48–72 h)
in subjects receiving platinum-based combination chemotherapy
without concurrent radiation across a variety of cancer types
(Dorff et al., 2016). Limitations of this study include a small
sample size and the lack of a non-fasted control group (Dorff
et al., 2016). Importantly, the safety of completely abstaining from
food for periods of 2 or more days has been demonstrated in a
medically-supervised setting with the majority of cancer patients
experiencing minimal adverse reactions (de Groot et al., 2015;
Bauersfeld et al., 2018; Finnell et al., 2018).

Taken together, the quantitative biomarker-based data
available to support fasting-induced differential stress resistance
in humans during chemotherapy is limited but compelling.
Considering the importance of autophagy in protection against
genotoxic insult and cellular transformation, future studies
should address whether autophagy induction in normal cells
underlies the reduced severity of chemotherapy-induced side
effects and/or increased rate of cellular repair in normally
functioning cells in response to dietary restriction.

Dietary Energy Restriction in Cancer
Cachexia
Cancer cachexia is a catabolic wasting syndrome characterized by
anorexia and progressive loss of muscle and adipose tissue mass
(Aoyagi et al., 2015). The combination of hypermetabolism and
the anorectic effect of elevated IL-6 contribute to a chronic caloric
deficit of approximately 200-450 kcals per day in weight-losing
patients with cachexia (Kumar et al., 2010; White, 2017). Elevated
IL-6 also leads to the release of glucocorticoids, which contribute
to muscle wasting in cancer cachexia (White, 2017). While
parenteral nutritional supplementation provides some benefit,
as does enteral tube feeding (Amano et al., 2020), there is little
effect on mortality in response to oral dietary supplementation
(Baldwin et al., 2012).
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Given the strong relationship between caloric intake and
mortality in patients with cachexia, CR/fasting interventions in
patients with advanced cancers may not be advised. Some of
the metaboendocrine effects of CR—including improved insulin
sensitivity, reduced leptin, and increased ghrelin—have been
independently considered as approaches for intervention in
cancer cachexia. For example, treatment with ghrelin has arisen
as a promising treatment option in cancer cachexia, improving
appetite, food consumption, and body composition (Khatib et al.,
2018). While CR is associated with elevation of ghrelin, by
definition of CR this elevation cannot translate into improved
caloric intake. Additionally, low leptin predicts poor survival
in cancer cachexia (Mondello et al., 2014), while induction of
autophagy in response to CR contributes to muscle wasting in
mouse models of cachexia (Penna et al., 2013, 2019).

Other approaches used to combat cachexia have
included several immunomodulatory agents, which dampen
proinflammatory signaling (Aoyagi et al., 2015). While
inflammatory signaling pathways are reduced by CR, growth
factor signaling is also reduced (Hursting et al., 2013); thus it is
unclear whether the anti-inflammatory aspects of CR promote or
impair retention of skeletal muscle mass, or perhaps even further
exacerbate wasting. In an experimental model of cachexia, CR
preserved grip strength but did not otherwise alter the course
of cachexia (Levolger et al., 2018). It should also be noted that
in this study CR was not compared against other protective
interventions (Levolger et al., 2018). In summary, while CR
may appear to promote a protective metaboendocrine state,
limited evidence support a protective role for CR and much of
the existing literature implicate CR as a potentially deleterious
intervention in the context of cachexia. Thus, any consideration
of CR or fasting in cancer therapy should include assessment of
the patient’s risk of cachexia.

PHARMACOLOGICAL AUTOPHAGY
MODULATION AS AN APPROACH TO
CANCER TREATMENT

Perturbing Growth Factor Signaling as a
Mimetic of Dietary Energy Restriction
Reductions in circulating IGF1 may be an important driver of
the potent anticancer effects of dietary restriction, as fasting
and CR result in enhanced cancer cell apoptosis, reduced
angiogenesis, and alterations in key metabolites and systemic
signaling pathways downstream of IGF1/IGF1R (O’Flanagan
et al., 2017). As a reduction in bioavailable IGF1 is a common
theme in response to dietary energy restriction interventions, it
is tempting to speculate that inhibitors of IGF1 signaling could
be used as a metabolic reprogramming intervention and mimetic
of energy restriction (Figure 3), yielding some of the protective
effects of fasting on chemotherapy toxicity. IGF1 is a nutrient-
sensitive endocrine hormone that is primarily secreted by the
liver. Upon binding of IGF1 to its cognate receptor, insulin-
like growth factor receptor 1 (IGF1R), autophosphorylation
events lead to the activation of two signaling axes—MAPK

and PI3K (class I)/AKT/mTOR—which promote increased cell
proliferation, inhibition of autophagy, and evasion of cell death
(Meynet and Ricci, 2014; O’Flanagan et al., 2017). Human
studies have demonstrated that modest protein restriction in
a chronic CR regimen modulates anti-cancer effects associated
with decreased IGF1 levels (Fontana et al., 2008). However,
monoclonal antibodies directed at IGF1R have resulted in
unexpected toxicity in human subjects when combined with
chemotherapy (Langer et al., 2014; Di Cosimo et al., 2015; Baselga
et al., 2017), while several small molecule inhibitors of IGF1R
have not yielded clinical benefit when used as single agents
in clinical trials (Fassnacht et al., 2015; Chiappori et al., 2016;
Gradishar et al., 2016; Bergqvist et al., 2017). Yet, small molecule
IGF1R inhibitors—as well as inhibitors of other components
of the IGF1R pathway—may still hold clinical potential when
used in combination therapies. For example, combination of
AXL1717 (picropodophyllin), an IGF1R pathway inhibitor, with
gemcitabine HCl and carboplatin yielded an acceptable toxicity
profile in previously untreated, locally advanced, or metastatic
NSCLC (Holgersson et al., 2015). Similarly, BMS-754807 is
a reversible small molecule inhibitor of IGF1R and insulin
receptor (IR) (Carboni et al., 2009) that has demonstrated
effectiveness in vitro in combination with anti-cancer therapies
for the treatments of breast, pancreatic, colon, lung, and
gastric cancers (Carboni et al., 2009). IGF1R inhibition may
also be an approach to tackling drug resistance in HER2-
overexpressing breast cancers, as one of the potential mechanisms
of resistance to trastuzumab occurs through upregulation of
IGF1R and subsequent cross-phosphorylation and activation of
HER2 (Chakraborty et al., 2017).

Direct inhibition of mTOR has also been investigated as
an approach to manipulation of the PI3K/Akt/mTOR axis
(Figure 3). Combination of the PI3K/mTOR inhibitor buparlisib
with fulvestrant resulted in a significant increase in median
progression-free survival yet an unacceptable toxicity profile in
postmenopausal women with hormone-receptor-positive, HER2-
negative, advanced breast cancer (Di Leo et al., 2018). However,
mTOR inhibition via temsirolimus or everolimus, a derivative
of rapamycin that inhibits activation of mTORC1 by binding to
FKBP12 (also known as RAD001 or Affinitor), in combination
with liposomal doxorubicin and bevacizumab was well tolerated
and yielded an increase in objective response rate in patients
with metaplastic TNBCs bearing PI3K/AKT/mTOR pathway
aberrations (Basho et al., 2017).

Treatment with everolimus downregulates the nutrient-
sensing effects of mTOR and results in reduced protein synthesis,
cellular proliferation, and glucose uptake, as well as increased
autophagic flux (Jobard et al., 2017). In HER2-positive breast
cancer patients treated with trastuzumab plus everolimus,
serum metabolomic analysis revealed that this combination
modulated a physiological state similar to that which occurs
during fasting where lipolysis and autophagy are upregulated
and gluconeogenesis and glycogenolysis are decreased (Jobard
et al., 2017). The combination of everolimus with HER2-directed
therapies is also a promising approach to combat drug resistance.
In drug resistant HER2-positive breast tumors, trastuzumab
treatment increases phosphorylation of PDK1 and mTOR, which
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FIGURE 3 | Pharmacological Autophagy Modulation. mTOR signaling regulates induction of autophagy via inhibition of AMPK, ULK1, and Class III PI3K signaling.
Autophagy can be induced by inhibition of growth factor signaling upstream of mTOR by ligand-targeting monoclonal antibodies (Kuma and Mizushima, 2010),
receptor-targeting monoclonal antibodies, or small molecule inhibitors (e.g., AXL1717 and BMS-754807) (Mizushima et al., 2004). mTOR signaling is directly
inhibited with compounds such as temsirolimus, and everolimus (Shaid et al., 2013). Autophagy can be inhibited with lysosomotropic agents such as chloroquine
and hydroxychloroquine, which inhibit maturation of the autophagolysosome (Mizushima and Komatsu, 2011).

activates ribosomal protein S6 kinase beta-1 (S6K1) and promotes
anabolic activities (Huynh et al., 2017). Blocking this escape
pathway with everolimus is one approach to improve the
efficacy of trastuzumab.

Metabolic Reprogramming Interventions
(MRIs)
In addition to direct inhibition of growth factor signaling, a
pharmacological strategy currently being investigated to treat
cancer involves the combination of metabolic reprogramming
interventions (MRIs) with traditional cytotoxic chemotherapies.
These approaches are based on the identification of compounds
that mimic the beneficial effects of caloric restriction without
the need for challenging dietary changes. A subclass of
MRIs is termed caloric restriction mimetics (CRMs),
which induce a metabolic reprogramming in cancer cells

intended to recapitulate the biochemical effects of dietary
energy restriction.

CRMs exert their anticancer effects by increasing autophagic
flux in response to a reduction in cellular protein acetylation
(Madeo et al., 2014). This increase in autophagic flux results in
an increase in extracellular ATP, a potent chemoattractant for
professional phagocytes (Corriden and Insel, 2012), and therefore
promotes immunogenic cell death. Pietrocola et al. (2016)
provide compelling evidence that robust immunosurveillance
and increased chemotherapeutic efficacy following nutrient
deprivation are dependent upon an increase in cancer cell
autophagy; the increased chemosensitivity and enhanced
immunity were reversible upon intraperitoneal injection of
recombinant IGF1). Importantly, success of antineoplastic
therapies in the long-term is largely determined by their ability to
reinstate robust and prolonged anticancer immunosurveillance
(Kepp et al., 2014).
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Pharmacological Inhibition of Autophagy
Despite gaps in our understanding of autophagy’s complete
role in cancer, pharmacological inhibition of autophagy is
currently being investigated for potential use as adjuvant therapy,
as inhibition of autophagy causes metabolic instability that
can be exacerbated in combination with therapy (Pascolo,
2016). Chloroquine (CQ) is a pharmacological agent that
indirectly inhibits autophagy by preventing endosomal
acidification, resulting in inhibition of lysosomal enzymes
that require an acidic pH and disrupting the maturation of
the autophagolysosome (Figure 3; Solomon and Lee, 2009;
Amaravadi et al., 2011). In preclinical models of Ras-driven
pancreatic cancers, CQ has been shown to effectively reduce cell
growth, tumorigenicity, and oxidative phosphorylation (Yang
et al., 2011). Yang et al. (2011) demonstrated that CQ potently
retards in vitro proliferation and anchorage-independent growth
of several different human pancreatic cell lines. Moreover,
CQ treatment significantly increased survival in a transgenic,
Kras-driven murine model of PDAC and diminished in vivo
growth of a human PDAC cell line in immunocompromised
mice (Yang et al., 2011).

However promising, the translational relevance of these
findings is limited. Subcutaneous injection of pancreatic cell
lines precludes investigation into factors within the pancreatic
tumor microenvironment that may hinder or promote tumor
cell survival in the face of autophagy ablation. Similarly, the
use of immunocompromised mice prevents identification of
potentially important effects of autophagy inhibition on tumor
immunosurveillance (Li Y. Y. et al., 2017; Pietrocola et al.,
2017a). Of note, a phase II pharmacodynamic study that used the
chloroquine analog hydroxychloroquine (HCQ, which has been
shown to have decreased toxicity in humans compared to CQ) to
inhibit autophagy in patients with metastatic PDAC showed no
significance in progression-free survival (Wolpin et al., 2014).

Many chemotherapies—such as gemcitabine, which is
commonly used to treat PDAC, or platinum-based compounds
used in the treatment of primary and metastatic breast cancers—
induce autophagic flux, and the putative cytoprotective roles of
autophagy may limit the efficacy of chemotherapy (Donohue
et al., 2013; Hashimoto et al., 2014; Jiang et al., 2017). Therefore,
CQ in combination with chemotherapy may present an attractive
therapeutic strategy to increase the cytotoxicity of treatment
regimens (Hashimoto et al., 2014). Indeed, combination
treatment with chloroquine and gemcitabine showed increased
efficacy in delaying tumor growth of patient-derived PDAC
xenografts relative to the use of either as a single agent (Balic
et al., 2014). A phase I clinical trial in patients with metastatic or
unresectable PDAC reported no dose-limiting toxicities following
a combination of CQ and gemcitabine; furthermore, of the nine
patients enrolled in the trial, 3 patients showed a partial response
while two patients exhibited stable disease (Samaras et al., 2017).
At the time of this review, the Abramson Cancer Center of the
University of Pennsylvania is actively recruiting patients with
advanced primary or metastatic PDAC to explore the efficacy of
hydroxychloroquine in combination with gemcitabine or another
chemotherapeutic agent (ClinicalTrials.gov: NCT01506973).

Collectively these findings suggest that CQ and its analogs
may have the potential to improve clinical outcomes in
PDAC treatment when used in combination with current
standard-of-care chemotherapy approaches.

Consistent with findings in PDAC, CQ-associated increases
in therapeutic potency of chemotherapeutic agents have also
been reported in preclinical TNBC studies. Gemcitabine induced
mTOR-independent autophagy in MDA-MB-231 cells in vitro;
accordingly, combination treatment with CQ and gemcitabine
resulted in increased apoptotic cell counts compared to treatment
with only gemcitabine (Chen et al., 2014). Similarly, a model
of human TNBC using subcutaneous patient derived xenografts
(PDX) in nude mice reported that the addition of CQ potentiated
the effects of adriamycin and cyclophosphamide treatment by
significantly reducing primary tumor size and multiplicity of lung
metastases (Lefort et al., 2015).

Chloroquine and its analogs have also shown promise
in situations of acquired therapeutic resistance, a frequent
challenge faced in TNBC treatment (Kim et al., 2018). Compared
with the parental MDA-MB-231 cell line, anthracycline-resistant
MDA-MB-231 cells showed heightened levels of basal autophagy
(Chittaranjan et al., 2014), prompting Chittaranjan et al.
(2014) to test whether the use of autophagy inhibition could
improve outcomes in cases of therapy resistance. Indeed,
combination treatment with epirubicin and HCQ increased
therapeutic efficacy by significantly reducing PDX tumor growth
compared with saline controls and epirubicin alone (Chittaranjan
et al., 2014). CQ in combination with carboplatin also
reduced tumor growth in carboplatin-resistant TNBC orthotopic
xenografts, potentially through depletion of cancer stem cells
(Liang et al., 2016).

Additional Considerations of Autophagy
Modulation
Several autophagy inhibitors are available, and their mechanisms,
and potential for modulation of pathways other than autophagy,
are distinct. In addition to its ability to prevent completion of
the autophagic process, CQ has been implicated in tumor vessel
normalization (Maes et al., 2014), suppression of macrophage
endocytosis to improve nanoparticle delivery (Wolfram et al.,
2017), and increased sensitivity to cisplatin in breast cancer cells
(Maycotte et al., 2012), each of which were shown to occur
via mechanisms independent of autophagy suppression. With
this in mind, based on promising preclinical data, there are
a growing number of clinical trials investigating the potential
for use of CQ as adjuvant therapy, including a Phase II trial
testing the efficacy and safety of CQ in combination with taxane
or taxane-like chemotherapeutic agents in the treatment of
advanced or metastatic BC who were non-responders to AC
therapy (ClinicalTrials.gov; NCT01446016).

Perhaps in the context of chemotherapeutic resistance, an
approach combining cancer therapies with interventions that
increase dependence on autophagy (e.g., through manipulation
of dietary energy intake or pharmacologic interventions such
as MRIs or growth factor inhibition) will expose a metabolic
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weakness that could be exploited with autophagy inhibitors.
Indeed, the results of Lashinger et al. (2016) showed that
conditions of CR in combination with genetic autophagy ablation
in a Ras-driven model of pancreatic cancer had greater effects
on decreasing tumor volume and progression than either
condition in isolation. The effect of chemotherapy under these
conditions was not explored. Combining autophagy induction
and inhibition increased radiosensitivity of colorectal cancer
cells in culture (Shiratori et al., 2019). However, a phase 1 trial
combining the Akt inhibitor MK-2206 with hydroxychloroquine
in patients with advanced solid tumors resulted in a substantial
number of drug-related adverse events and minimal evidence of
antitumor activity (Mehnert et al., 2019). Interestingly, use of
these drugs in combination altered the pharmacokinetics of both
drugs (Mehnert et al., 2019), which may have impacted toxicity.
Perhaps in combination the dosages of these drugs should be
reduced, or hydroxychloroquine should be tested in combination
with other autophagy inducers.

Notably, some have reported that cancer cell autophagy
is required for immunogenic cell death yet dispensable for
chemotherapy-induced cell death (Michaud et al., 2011).
Antunes et al. (2017) demonstrated increased chemotherapeutic
efficacy following nutrient deprivation in an autophagy-
independent manner. These findings argue for caution
regarding the use of autophagy inhibitors in the absence
of chemotherapeutic resistance, as an inhibition of primary
tumor growth may be concomitant with impairment of anti-
tumor immunosurveillance and an elevated risk of recurrence.
Longitudinal resection studies in mice addressing the potential
for recurrence following autophagy inhibition during treatment
may be helpful in untangling this research question.

CONCLUSION

In sum, cancer cells often exhibit an increased dependence
on autophagy, both for baseline survival and as a response

to stressors such as chemotherapy or a decline in nutrient
availability. Numerous hormonal and metabolic cues direct
autophagic induction in cancer. There is evidence to suggest
that the increased dependence on autophagy in cancer
cells may be exploitable clinically by combining autophagy
modulators with existing chemotherapies. Fasting appears
to hold promise for reducing dose-limiting side effects
of chemotherapy in humans. However, it remains unclear
whether therapeutic agents aimed at autophagy induction,
autophagy inhibition, or both are a viable therapeutic
strategy for improving cancer outcomes. In light of the
burgeoning interest in precision medicine, identification of
oncogenic drivers associated with increased susceptibility
to fasting, autophagy induction or inhibition may hold
clinical promise.
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