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Abstract

Speech production gives rise to distinct auditory and somatosensory feedback signals

which are dynamically integrated to enable online monitoring and error correction, though it

remains unclear how the sensorimotor system supports the integration of these multimodal

signals. Capitalizing on the parity of sensorimotor processes supporting perception and pro-

duction, the current study employed the McGurk paradigm to induce multimodal sensory

congruence/incongruence. EEG data from a cohort of 39 typical speakers were decom-

posed with independent component analysis to identify bilateral mu rhythms; indices of sen-

sorimotor activity. Subsequent time-frequency analyses revealed bilateral patterns of event

related desynchronization (ERD) across alpha and beta frequency ranges over the time

course of perceptual events. Right mu activity was characterized by reduced ERD during all

cases of audiovisual incongruence, while left mu activity was attenuated and protracted in

McGurk trials eliciting sensory fusion. Results were interpreted to suggest distinct hemi-

spheric contributions, with right hemisphere mu activity supporting a coarse incongruence

detection process and left hemisphere mu activity reflecting a more granular level of analy-

sis including phonological identification and incongruence resolution. Findings are also con-

sidered in regard to incongruence detection and resolution processes during production.

1. Introduction

During speech production, sensory feedback is integrated into feedforward motor commands

to enable online error detection and fluent coarticulation at normal speech rates [1]. These

notions have been explicitly outlined in computational models of speech production such as

Directions Into Velocities of Articulator (DIVA; [2, 3]) and State Feedback Control (SFC; [4]),

with their assertions well supported by the results of auditory perturbation studies demonstrat-

ing online adaptations to vocal output as a function of unexpected perturbations to auditory

reafference [5, 6]. Similar results are also observed during physical (i.e., somatosensory)
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perturbation of the larynx during speech production [7, 8], demonstrating the sensitivity of

speech motor control to multiple forms of sensory feedback. However, the influence of audi-

tory and somatosensory feedback signals on speech motor control are frequently probed in

isolation, a critical omission given that speech gives rise to multimodal sensory feedback sig-

nals which must be evaluated and compared against each other. A recent study by Smith et al.

[9] probed the influence of convergent and divergent feedback signals on speech motor con-

trol, demonstrating dynamic patterns of adaptive behavior in response to unimodal and multi-

modal sensory feedback perturbations. However, it remains unclear how these multimodal

feedback signals are integrated in the brain and how these integration processes influence sen-

sorimotor activity supporting speech processing [10, 11]. This is a critical gap in knowledge

given the proposed role of sensory feedback anomalies in sensorimotor-linked disorders such

as stuttering [12, 13]. The goal of the current study is therefore to clarify how the integration of

convergent and divergent sensory streams influences sensorimotor activity.

This study probes these integration processes by employing the McGurk paradigm [14], in

which the pairing of mismatched auditory and visual stimuli (e.g., audio /ba/ with visual /ga/)

leads to a fusion percept (in this example, /da/). The use of this perception-based task has sev-

eral advantages making it well suited to probing the influence of discrepancy-resolution pro-

cesses on sensorimotor activity. First, the congruence/divergence between auditory and visual

stimulus components is controlled by experimenters, removing a potential source of noise in

sensorimotor predictions elicited during speech production [15, 16]. Second, audiovisual

fusion provides a salient marker that multimodal sensory integration has occurred, enabling

observed differences to be more clearly interpreted as through the framework of sensory fusion

rather than more general effects of multisensory processing [17, 18], a mirroring response

[19], or a particular audiovisual pairing. Third, perceptual tasks elicit similar sensorimotor

responses as those elicited during production [10, 20–22] such that findings hold relevance for

production. Fourth, the elicitation of the McGurk effect has been previously associated with

Analysis by Synthesis [23], providing a robust theoretical framework for the interpretation of

observed neural activity.

Analysis by Synthesis is a Constructivist perspective proposing that perception arises from

the interaction of bottom-up sensory processing and top-down guidance by prior knowledge

(e.g., motoric representations) [24–26]. Specifically, a coarse sketch of the incoming stimulus

is relayed to anterior motor regions by an inverse (i.e., sensory to motor) model for mapping

onto an articulatory representation. A sensory representation of this motor-based hypothesis

is then returned to posterior sensory regions by a forward (i.e., motor to sensory) model for

validation against the full signal [25]. Confirmed hypotheses lead to stimulus identification,

while mismatches lead to iterative hypothesis-test loops until the mismatch is resolved and the

stimulus is identified [27]. As these dynamic internal modeling processes fluctuate in response

to stimulus parameters [28–30] and task demands [31, 32], it is imperative to evaluate these

sensorimotor interactions with high temporal precision.

To probe sensorimotor dynamics during speech perception, Jenson et al. [20] recorded the

mu rhythm, an oscillatory marker of sensorimotor activity [33] commonly recorded over ante-

rior sensorimotor regions [22, 34–38] from a typical cohort during the accurate discrimination

of /ba/ /da/ syllable pairs. Time-frequency (ERSP) decomposition of mu oscillations into con-

stituent alpha (~10 Hz; sensory) and beta (~20 Hz; motor) frequency bands revealed robust

patterns of activity, with concurrent alpha and beta desynchronization (ERD; active process-

ing) emerging following stimulus offset and persisting across the remainder of the trial. Based

on the similarity of the observed patterns to those elicited during speech production [36, 39]

and working memory [40, 41], findings were interpreted as evidence of covert rehearsal to sup-

port working memory maintenance. Specifically, alpha and beta ERD were considered
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evidence of the paired inverse and forward models, respectively [11] instantiating covert pro-

duction [10]. However, working memory maintenance is necessarily preceded by an encoding

phase, in which the sensory signal is mapped onto a phonological representation [42]. Criti-

cally, the Analysis by Synthesis processes under investigation in the current study are engaged

only in the encoding stage, and it is therefore essential to disentangle the influence of encoding

and maintenance processes on mu oscillations. However, this disambiguation was not possible

based on the experimental paradigm of Jenson et al. [20].

In a follow-up study to resolve this ambiguity, Jenson et al. [30] evaluated the mu rhythm

during the discrimination of un-degraded syllable pairs and the same syllable pairs degraded

with noise masking and robust filtering [43, 44]. While concurrent alpha and beta ERD was

observed following stimulus offset in all conditions, activity was weaker in degraded compared

to non-degraded conditions, normalizing in the late stage of the trial epoch. This was inter-

preted through the framework of Analysis by Synthesis to suggest that degraded conditions are

characterized by a prolonged encoding phase and a delayed maintenance stage of working

memory processing. Specifically, the low fidelity of degraded stimuli required more iterations

through the hypothesis-test-refine loop to be successfully mapped onto phonological represen-

tations prior to the engagement of covert rehearsal. While the results of Jenson et al. [30] dem-

onstrate the sensitivity of mu oscillations to the internal modeling processes which map

auditory signals onto phonological representations, it is critical to consider how these pro-

cesses may unfold in the McGurk paradigm.

The McGurk paradigm consists of the concurrent presentation of either congruent or

incongruent auditory and visual signals [14]. Interpretations of Jenson et al. [30] notwithstand-

ing, the capacity for lip-reading [45] and visual speech identification [46, 47] may be inter-

preted to suggest that the initial articulatory hypotheses supporting Analysis by Synthesis may

be generated by either auditory or visual signals. It may then be proposed that in the McGurk

paradigm, both visual and auditory streams give rise to independent articulatory hypotheses,

which must be reconciled to allow the extraction of a unified phonological representation dur-

ing working memory encoding. This assertion is consistent with previous investigations of the

McGurk paradigm which have proposed an initial discrepancy detection stage followed by

later resolution/integration processes [48–50]. In congruent (i.e., audiovisual match) trials,

minimal discrepancy is anticipated between initial visual-based and auditory-based articula-

tory hypotheses, allowing for rapid phonological encoding in working memory. In contrast, in

incongruent (i.e., audiovisual mismatch) trials resulting in sensory fusion, greater discrepancy

is anticipated between initial auditory-based and visual based articulatory hypotheses, necessi-

tating multiple iterations through hypothesis-test-refine loops to resolve the discrepancy and

resulting in a protracted encoding phase of working memory. For incongruent trials in which

sensory fusion does not occur, a discrepancy in initial articulatory hypotheses cannot be

assumed, and a prolonged encoding phase should not be anticipated. Given its sensitivity to

working memory encoding demonstrated by Jenson et al. [30], mu activity is expected to

inform regarding how the sensorimotor system supports the integration of discordant sensory

signals onto a single phonological representation in the McGurk paradigm.

Based on the notion that incongruent trials will elicit a sensory mismatch requiring a pro-

tracted phonological encoding phase to resolve initial hypotheses discrepancy [29, 30], and

that protracted phonological encoding is marked by weaker alpha and beta ERD [30], it is

hypothesized that early post-stimulus mu activity will be weaker in mismatched trials leading

to sensory fusion. In line with the notion that a discrepancy in initial articulatory hypotheses

cannot be assumed in the absence of sensory fusion, it is further hypothesized that there will

be no difference in mu activity between congruent trials and incongruent trials that do not

result in sensory fusion. The results of the current study are expected to clarify how the
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sensorimotor system supports the integration of the multimodal sensory streams arising dur-

ing speech perception and production. Findings additionally hold promise for describing the

neural dynamics of multimodal feedback integration during production as well as clarifying

the nature of the underlying compromise in sensorimotor-linked disorders.

2. Methods

2.1 Participants

39 native English speakers (mean age = 24.5 years; 34 female; 1 left handed) with no reported

history of hearing impairment, attention deficit (i.e. ADD / ADHD), or cognitive/communica-

tive disorder were recruited for the current study. Handedness dominance was evaluated with

the Edinburgh Handedness Inventory [51]. This study was approved by the Washington State

University Institutional Review Board (WSU-IRB; protocol #17179–003) and conducted in

accord with the principles of the Declaration of Helsinki. All subjects provided written

informed consent on a document approved by the WSU-IRB prior to study participation. Par-

ticipants were compensated for their participation.

2.2 Stimuli

The stimuli for the current study consisted of all possible audiovisual pairings (9 total) of /ba/,

/da/, and /ga/ spoken by two different female speakers. Stimulus pairings were generated from

a subset of the raw auditory and visual signals available from the OLAVS stimulus repository

[52], with the speakers selected on the basis of minimal head movement during speech produc-

tion and the similarity in the time course of sound onset across speech tokens. Videos were

recorded at 25 frames per second and presented in 1920 x 1080 resolution. Visual signals

showed the speaker’s full face and shoulders, with speakers displaying neutral affect and wear-

ing a black shirt on a black background. Stimuli were initiated by a static image of the speaker’s

face with the mouth closed, which represented the last video frame prior to movement onset.

Due to variability in speech movements across tokens and speakers, the duration of this static

image varied from 280–640 ms. The next portion of each video consisted of the speaker’s facial

movements as they articulated one of the speech tokens (/ba/, /da/, /ga/), with their mouth

returning to the closed position following articulation. This final frame of speech movement in

which the oral aperture was closed was presented as a static image for the remainder of the

video. Due to variability in the timing of speech movements across speakers and tokens, this

static image appeared between 1360 and 1640 ms from video onset. Auditory signals were

recorded at 48 kHZ and consisted of the spoken production of one three speech tokens. To

minimize the potential for differential stimulus processing based on the unconscious associa-

tion of a given face/voice pairing [53], audiovisual signals were not combined across speakers.

Subject to this constraint, 18 audiovisual pairings (2 speakers x 9 tokens) were generated for

use in the current experiment, with all resulting videos being 2200 ms in length. Despite the

variability in the timing of movement onset across speech tokens, it should be noted that trials

were aligned by auditory onset and that movement onset for all stimuli falls outside the data

analysis window. A pilot study confirmed both the perceptibility and the reliable elicitation of

sensory fusion for the resulting stimuli.

2.3 Design

The experiment consisted of a three condition, within-subjects design. The three conditions

presented to subjects are listed below, while the contribution of each audiovisual stimulus pair-

ing to experimental conditions is shown in Table 1.
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1. Audiovisual match; (Match)

2. Audio /ba/ paired with visual /ga/; (McGurk)

3. All other pairings of /ba/, /da/, or /ga/; (Mismatch)

The Mismatch condition consisted of all possible mismatched audiovisual pairings (not

including the McGurk pairing), which do not lead to sensory fusion. This condition was

included as a distractor stimulus set to control for the presence of audiovisual mismatch [54],

allowing neural differences observed during the perception of the McGurk effect to be inter-

preted as indices of sensory fusion. Stimulus presentation was fully randomized, with the ratio

of stimuli predetermined, but the actual order of stimulus presentation randomly determined

for each subject and experimental block by the presentation software. The proportion of sti-

muli per condition is based on the designs of Roa Romero et al. [49, 54], which served as mod-

els for the current study.

2.4 Procedures

The experiment was conducted in a double-walled, sound-treated booth fit with a faraday cage

to minimize electromagnetic interference. Participants were seated in a comfortable chair with

their head and neck well-supported. Stimulus presentation and acquisition of behavioral

responses (via button press) was performed by a desktop computer running E-Prime version

3.0 coupled with a Brain Products TriggerBox to allow the timing of stimulus presentation to

be marked in the EEG data stream. The auditory portions of stimuli were presented binaurally

at 70 dB SPL with Etymotic insert earphones (ER1-14A). Visual signals were presented on a

computer monitor approximately 57 inches / 145 cm from subjects, with the speaker’s face

subtending a visual angle of approximately 11.03. The response cue for all trials was a 2x2 grid

(mimicking the layout of buttons on the response pad) containing the options “Ba,” “Da,”

“Ga,” and “Something Else” [55]. Subjects were instructed to press the button corresponding

to the option that they heard on a Cedrus RB-844 response pad. Four permutations of the

response grid with different arrangements of the options were used to ensure that subjects

could not select a response prior to the end of the trial. Anticipatory motor planning can pre-

cede movement onset by up to 2000 ms [56], and it was necessary to ensure that sensorimotor

Table 1. Contributions of audiovisual pairings to stimulus conditions.

Stimulus pairinga Condition Number of trialsb

Aba_Vba Match 40

Aba_Vda Mismatch 12

Aba_Vga McGurk 120

Ada_Vba Mismatch 12

Ada_Vda Match 40

Ada_Vga Mismatch 12

Aga_Vba Mismatch 12

Aga_Vda Mismatch 12

Aga_Vga Match 40

aStimulus names represent the auditory and visual portions of each pairing (e.g., Aba_Vga corresponds to audio “ba”

paired with visual “ga”).
bStimuli were recorded from two different speakers, with each speaker’s tokens comprising half of the trials presented

for each audiovisual pairing.

https://doi.org/10.1371/journal.pone.0258335.t001
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activity associated with the button press did not contaminate activity associated with stimulus

processing. While handedness of the button press response was not directly controlled, the

response grid permutation was randomly selected on each trial, and subjects were instructed

to use left and right thumbs and forefingers on the response pad. Consequently, there is no

reason to suspect that handedness of behavioral responses influenced results.

All trial epochs were 4750 ms in length, ranging from -2750 ms to +2000 ms around time

zero, defined as the onset of the auditory portion of stimuli. All epochs were initiated by a

silent baseline of 1000 ms (i.e., -2750 to -1750 ms) taken from the inter-trial interval to enable

subsequent ERSP decomposition. Following the baseline, the screen was blank (i.e., black)

until ~750 ms prior to time zero (740–752 depending on the stimulus), at which point a static

image of the speaker’s face (last frame before movement onset) was displayed. Time point zero

was defined as the onset of the auditory portion of the stimulus. At +1250 ms, a blank screen

was presented for 1500, after which the response grid was displayed until subjects indicated

their selection via button press. Stimuli were presented in 4 blocks of 75 trials each (300 total),

with the conditions randomly distributed within each block and separated post-hoc for the

purpose of analysis. The timeline of trials is shown below (Fig 1).

2.5 Neural data acquisition

Whole head EEG data were recorded from two 32 channel actiCHamp active electrode mod-

ules (64 channels total) configured in an Easycap actiCAP according to the extended 10–20

system [57]. EEG data were acquired Using Brain Vision Recorder coupled with the Brain

Products actiCHamp system. During signal acquisition, EEG data were band pass filtered

(.016–250 Hz) and digitized at a sampling frequency of 1 kHz. Neural data from all four exper-

imental blocks were captured in a single data file with the reference channel set to FCz.

2.6 Data processing

All processing of neural data was conducted in EEGLAB 14.1.2b [58, 59], an open-source

Matlab (R2015b) toolbox for the analysis of electrophysiologic data. Data were processed at

both individual and group levels to identify the mu rhythm and evaluate differences in time-

frequency fluctuations across conditions, respectively. Each step of the data-processing pipe-

line listed here is discussed in greater detail below:

2.7 Processing pipeline

1. Individual Processing

• Pre-processing of individual subjects’ raw data;

Fig 1. Epoch timeline. 4750 ms trial epoch timeline for single trials across all perceptual conditions.

https://doi.org/10.1371/journal.pone.0258335.g001
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• Independent Component Analysis (ICA) of individual data files to identify independent

components of neural activity;

• Source localization of all independent components per subject.

2. Group Processing

• Pre-processed data files from each subject submitted to the EEGLAB STUDY module;

• Independent components common across subjects identified via Principal Components

Analysis (PCA);

• Identification of bilateral mu clusters from the results of PCA;

• Time frequency decomposition (via ERSP) of bilateral mu clusters;

• Source localization of mu clusters with equivalent current dipole models.

2.8 Individual pre-processing

Raw data files for each subject were re-referenced to linked mastoid channels for the reduction

of common mode noise and downsampled to 256 Hz to reduce the computational demands of

subsequent processing steps. Data were then bandpass filtered from 3–35 Hz (-6 dB roll-off) to

reduce the influence of muscle artifact and enable clear visualization of alpha and beta fre-

quency bands. Next, 4750 ms epochs, ranging from -2750 -> +2000 ms around time zero

(defined as auditory onset) were extracted from the continuous dataset (300 epochs total).

Channel data were then visualized, with noisy channels identified based on the presence of

either high frequency noise or large nonlinearities in the data. Channels deemed to be noisy at

this stage were removed from the dataset. Additionally, to control for the potential influence of

salt-bridging [60, 61], correlation coefficients were calculated for each pair of channels with

custom Matlab code. Correlations exceeding 0.99 were considered evidence of salt-bridging

[30]. For salt-bridged channel pairs, one of the channels was removed from the dataset to elim-

inate signal redundancy, a necessary step as all signals submitted to ICA must constitute inde-

pendent observations [62].

In order to be retained for further analysis, data epochs had to meet three distinct criteria.

First, the button press response had to indicate a ‘correct’ behavioral response. For Match tri-

als, the behavioral response had to correspond to the identity of auditory and visual signals

(i.e., “Ba,” “Da,” or “Ga”). For McGurk epochs (audio /ba/ paired with visual /ga/) to be

retained, subjects had to respond either “Da” (fusion percept) or “Something Else,” indicating

that the visual signal altered their perception of the auditory stimulus [55]. For Mismatch trials

to be included, the behavioral response had to match either the auditory or visual component

of the stimulus. Application of this inclusion criteria to Mismatch trials ensured that no inte-

gration of sensory signals occurred, enabling Mismatch trials to serve as a control on audiovi-

sual mismatch for McGurk trials. Trials in which the behavioral responses did not meet the

above criteria were removed from the dataset. Additionally, to confirm that subjects were

actively attending to stimuli and engaged in the experimental task, behavioral responses had to

occur within 2 seconds of the response cue for trial epochs to be retained. Finally, the remain-

ing trial epochs were visually inspected and removed if they contained gross artifact. All

remaining usable trials were then submitted to further steps of the processing pipeline. If

behavioral responses for an individual subject indicated that they did not experience sensory

fusion in at least 15% of McGurk trials [49], all data from that subject was removed from the

study.
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2.9 ICA

Pre-processed datasets for each subject were decorrelated with an extended Infomax algorithm

[63] prior to ICA training using the “runica” algorithm. The initial learning weight was set to

0.001 and a specified stopping weight criterion of 10−7. The number of independent compo-

nents (ICs) returned by ICA training conforms to the number of channels in the pre-processed

dataset, with a maximum of 62 ICs per subjects (64 recording channels– 2 reference channels).

However, the true number of ICs returned by ICA varied across subjects based on the differen-

tial number of channels rejected during pre-processing. Scalp maps, representing coarse esti-

mates of the scalp distribution for each IC were generated by projecting the inverse weight

matrix (W-1; resulting from ICA decomposition) back onto the original recording montage.

To reduce the computational demands of subsequent processing steps, the resulting compo-

nents were evaluated with the Multiple Artifact Rejection Algorithm (MARA), an open-source

EEGLAB plug-in which employs machine learning to evaluate component likelihood of being

artifactual [64]. Components deemed to have a 40% chance or higher of being artifact [65]

were excluded from further stages of the processing pipeline.

2.10 Dipole localization

Each component identified by ICA was mapped onto an equivalent current dipole (ECD)

model with the DIPFIT toolbox [66, 67], yielding point source estimates for the location of

neural generators. Standardized 10–20 electrode coordinates for the recording montage were

warped to a 4-shell spherical (i.e., BESA) head model, with automated coarse and fine fitting to

the head model yielding single models for each of the 1581 components. The resultant dipole

models constitute physiologically plausible solutions to the inverse problem and represent

hypothesized generator sites for component activations. Dipole models were then back-pro-

jected onto the recording montage and compared against the original scalp recorded signal.

The residual variance (RV%), constituting a measure of “goodness of fit” of the dipole models

is determined by the mismatch between this back-projection and the original scalp-recorded

signal, with lower RV% indicating a better ECD fit to the original signal.

2.11 STUDY module

All group level analyses were performed in the EEGLAB STUDY module, which allows IC

activity to be evaluated across subjects and conditions. Processed data files from each subject

were loaded into the STUDY modules, and all components localized within the cortical vol-

ume with RV< 20% were submitted for analysis. This threshold was selected as higher levels

of variance likely indicate the presence of artifact or noise. While all experimental conditions

were contained within a single dataset for each subject, distinct event markers were coded for

each AV stimulus, allowing data from each condition to be segregated for analysis within the

STUDY module.

2.12 PCA clustering

Component pre-clustering was performed on the basis of similarities in scalp maps, dipole

localization, and component spectra across subjects. Principal Component Analysis (PCA)

was implemented using the K-means statistical toolbox to group similar components based on

specified criteria. Components were assigned to 38 clusters, from which bilateral mu clusters

were identified on the basis of similarities in spectra, scalp maps, and dipole location. Final

allocation of components to mu clusters was based primarily on the results of PCA, though all

clusters were visually inspected to ensure that all components allocated to mu clusters met
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inclusion criteria, and no components meeting inclusion criteria had been mis-allocated.

Inclusion criteria for mu clusters included a characteristic mu spectrum with peaks in alpha

and beta frequency bands, RV< 20%, and ECD localization to accepted mu generator sites

(i.e., Brodmann’s areas 1–4 or 6; [34]). Components determined to have been misallocated

were then manually reassigned. To normalize the contribution of each subject to group-level

analyses, only one component per subject was included in left and right mu clusters. For sub-

jects contributing more than one component to each cluster, only the component with the

lowest RV% was retained.

2.13 Source localization

Following final allocation of neural components to bilateral mu clusters, clusters were localized

through ECD methods. The ECD source localization for each cluster represents the mean of

the (x, y, z) Talairach coordinates for each contributing component. The resulting stereotactic

coordinates were submitted to the Talairach Client for mapping to anatomic locations, yield-

ing estimates of most likely source locations and associated Brodmann’s areas for mu clusters.

2.14 ERSP

ERSP analysis was performed to evaluate fluctuations in spectral power (in normalized dB

units) between 3 and 35 Hz across the time course of perceptual events. Single trial data rang-

ing from 3 to 35 Hz were decomposed with a family of Morlet wavelets, with 3 cycles at 3 Hz

and an expansion factor of 0.8. ERSP data were referenced to a surrogate distribution gener-

ated from 200 time points randomly selected from a 1000 ms silent baseline extracted from the

inter-trial interval [68]. This baseline window was selected to fully characterize sensorimotor

responses to both auditory and visual portions of stimuli, as information from neither sensory

stream was present during this time period. Individual ERSP changes were calculated with a

bootstrap resampling method (p< .05, uncorrected). Statistical comparisons across conditions

employed permutation statistics with cluster-based corrections for multiple comparisons [69].

3. Results

One subject was excluded from the study as they disclosed a previous closed-head injury after

participating in the study. While the long-term impact of closed-head injuries on the electro-

encephalogram remains unclear [70], data from this subject was excluded out of an abundance

of caution. Data from an additional 6 subjects were excluded from the analysis as they did not

perceive the McGurk effect in at least 15% of trials [49]. Neural data from one additional sub-

ject was rendered unusable due to an equipment error. Consequently, data from only 31 par-

ticipants were submitted for further analyses.

3.1 Behavioral data

Of the subjects who contributed to mu clusters, the mean number of trials in which the

McGurk effect was perceived out of 120 presentations was 88.2 (SD = 26.5). However, the

number of usable trials was less than this as two additional criteria (i.e., response latency < 2

seconds, devoid of artifact) had to be met for trial inclusion. The mean number of usable trials

per condition for subjects contributing to mu clusters were: Match = 105 (SD = 9.4),

McGurk = 78.1 (SD = 24.5), and Mismatch = 42.4 (SD = 9.72). A repeated measures ANOVA

with Greenhouse-Geisser corrections [ε = .56] for violations of sphericity [X2 = 47.57, p<
.001] revealed a main effect of Condition [F(1.11,32.04) = 109.24; p< .001]. Bonferroni-cor-

rected post-hoc tests revealed that the mean number of usable trials differed across all
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conditions. Specifically, the number of trials in the Mismatch condition was less [t(29) = 6.48,

p< .001] than the McGurk condition, which itself contained fewer [t(29) = 5.86, p< .001] tri-

als than the Match condition.

3.2 Cluster characteristics

The distribution of components contributing to left and right hemisphere mu clusters, respec-

tively, are shown below (Figs 2 and 3). Of the subjects whose neural data was submitted for

analysis, 29/31 contributed to the left hemisphere mu cluster and 28/31 contributed to the

right hemisphere mu cluster. Specifically, 27 contributed components to both left and right

mu clusters, 2 contributed to the left mu cluster only, and 1 contributed only to the right mu

cluster. The mean ECD dipole localization for the left mu cluster was at Talairach (-40, -19, 46)

in the postcentral gyrus (BA– 3) with residual variance of 1.89%. The mean dipole localization

for the right mu cluster was at Talairach (40, -11, 47) in the precentral gyrus (BA– 4) with

residual variance of 1.83%.

3.3 ERSP characteristics

3.3.1 Left hemisphere. ERSP data from the left hemisphere mu cluster was characterized

by weak alpha ERS (event related synchronization; inhibition) concurrent with the onset of

the auditory signal, followed by the emergence of paired alpha and beta ERD at ~200 ms fol-

lowing acoustic onset in all conditions. Alpha ERD persisted across the remainder of the trial

epoch in all conditions, while the time course of beta ERD was more variable. Specifically, beta

ERD persisted across the remainder of the trial epoch in the McGurk condition, while ending

~850 ms following acoustic onset in both Match and Mismatch conditions. A 1 x 3 ANOVA

employing permutation statistics with cluster-based corrections for multiple comparisons [69]

identified omnibus alpha and beta differences spanning ~400–800 ms, and from 900 ms

throughout the remainder of the trial epoch.

To decompose the omnibus effect, a series of paired t-tests employing permutation statistics

with cluster-based corrections for multiple comparisons were performed between each pair of

conditions. The results of these post-hoc tests revealed no differences between Match and Mis-

match conditions, while alpha and beta differences were observed between Match and

McGurk conditions as well as between McGurk and Mismatch conditions. Alpha and beta dif-

ferences were observed between Match and McGurk from ~300–800 ms and ~900 ms through

the remainder of the trial epoch. Alpha and beta differences between McGurk and Mismatch

conditions were observed from ~350–700 ms and ~800 ms through the remainder of the trial

epoch. The results of the left hemisphere omnibus and post-hoc tests can be seen in Fig 4.

3.3.2 Right hemisphere. ERSP data from the right hemisphere mu cluster was character-

ized by alpha ERS slightly preceding the onset of the acoustic signal, with paired alpha and

beta ERD emerging following auditory onset in all conditions. Though the timeline of alpha

ERD emergence varied across conditions (i.e., ~350 ms in the Match, ~500 ms in McGurk and

Mismatch), alpha ERD persisted across the remainder of the trial epoch in all conditions. Beta

ERD emerged ~300 ms following acoustic onset in Match and McGurk, though emerged

slightly later (~450 ms) in the Mismatch condition. Following its emergence, beta ERD per-

sisted throughout the remainder of the trial epoch in Match and McGurk trials, while it dissi-

pated at ~1000 ms following acoustic onset in Mismatch trials. A 1 x 3 ANOVA employing

permutation statistics with cluster-based corrections for multiple comparisons identified

omnibus alpha differences from auditory onset through the remainder of the trial epoch, with

beta differences spanning ~300–850 ms, and ~1000–1300 ms following acoustic onset.
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To decompose the omnibus effect, a series of paired t-tests employing permutation statistics

with cluster-based corrections for multiple comparisons were performed between each pair of

conditions, with results indicating robust differences between condition pairs. The contrast

between Match and McGurk revealed significant alpha differences from -400 ms to 900 ms,

with stronger alpha ERS and weaker alpha ERD noted in the McGurk condition. Beta differ-

ences were observed from ~300–850 ms, with weaker beta ERD in McGurk compared to the

Match condition. The comparison between Match and Mismatch revealed alpha differences

throughout the trial epoch, with weaker alpha activity in Mismatch compared to Match. Beta

differences, characterized by weaker beta ERD in Mismatch compared to Match, were present

from ~250–850 ms. No significant differences were observed in the contrast between McGurk

and Mismatch conditions. In order to minimize the potential for Type I error [71], consider-

ation of post-hoc test results will be restricted to time-frequency voxels statistically significant

in both the omnibus and post-hoc tests. While the overall patterns of activity appeared similar

in both left and right hemispheres, patterns of between-condition differences were characteris-

tically distinct. The results of the right hemisphere omnibus and post-hoc tests can be seen in

Fig 5.

Fig 2. Cluster characteristics for left mu cluster. (A) Mean spectra for cluster components. (B) Mean scalp map for left hemisphere mu cluster. (C)

ECD source localization estimates for contributing components. (D) Probabilistic dipole density, demonstrating maximal cluster localization.

https://doi.org/10.1371/journal.pone.0258335.g002

Fig 3. Cluster characteristics for right mu cluster. (A) Mean spectra for cluster components. (B) Mean scalp map for right hemisphere mu cluster. (C)

ECD source localization estimates for contributing components. (D) Probabilistic dipole density, demonstrating maximal cluster localization.

https://doi.org/10.1371/journal.pone.0258335.g003
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Fig 4. ERSP data from left hemisphere mu cluster. The first three columns represent data from Match, McGurk, and Mismatch

conditions, with the right-most column showing time-frequency voxels significant at p< .05 (cluster corrected). The top row shows the

results of the omnibus tests, while the lower rows show the results of the post-hoc tests.

https://doi.org/10.1371/journal.pone.0258335.g004

PLOS ONE Sensorimotor activity during the McGurk effect

PLOS ONE | https://doi.org/10.1371/journal.pone.0258335 October 7, 2021 12 / 28

https://doi.org/10.1371/journal.pone.0258335.g004
https://doi.org/10.1371/journal.pone.0258335


Fig 5. ERSP data from right hemisphere mu cluster. The first three columns represent data from Match, McGurk, and Mismatch

conditions, with the right-most column showing time-frequency voxels significant at p< .05 (cluster corrected). The top row shows the

results of the omnibus tests, while the lower rows show the results of the post-hoc tests.

https://doi.org/10.1371/journal.pone.0258335.g005
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While it does not appear robust due to the color scale of Figs 4 and 5, it should be noted

that weak bilateral ERD is present in alpha and beta bands prior to auditory onset in all condi-

tions, though the magnitude of ERD following auditory onset is higher. This may be attribut-

able to the variable time course of movement onset across the stimuli. Specifically, in contrast

to auditory onset, which was temporally aligned across all trials, the onset of visual movement

varied by ~350 ms across trials due to the variability in timing of speech movements across

speakers and tokens. Alternatively, it may suggest stronger mu responses to multimodal than

unimodal stimuli [72]. However, due to its weak appearance and the lack of a pure control

condition against which its significance could be established, this pre-auditory mu activity is

not considered further.

4. Discussion

Despite being a robust perceptual experience [73–75], the McGurk Effect is not perceived by

all individuals [76], nor do those who perceive it do so reliably across all trials [77, 78]. In the

current study, ~15% of subjects (6/39) were classified as non-perceivers and excluded from

further analysis as they did not perceive sensory fusion in at least 15% of McGurk trials [49].

The proportion of subjects not susceptible to the McGurk illusion is not universally reported

in the literature, nor is there a standardized threshold subjects must meet to be considered a

‘perceiver / non-perceiver.’ This consideration notwithstanding, reported ranges for the pro-

portion of non-perceiving subjects range from 0–54% [48, 79] with an average of ~25% [54].

Among the subjects in the current study who reliably perceived the McGurk illusion, sensory

fusion was reported in 73.5% of trials. While there is considerable variability across studies,

published averages for the proportion of trials inducing the McGurk illusion range from 32–

84% [48, 49, 80]. Given the reliable elicitation of the McGurk illusion in the current study, as

well as the concordance with previous reports regarding both the proportion of perceiving

subjects and trials eliciting sensory fusion, neural data are interpreted through the lens of the

McGurk effect.

In the current study, ICA identified bilateral mu rhythms from a cohort of non-clinical con-

trol subjects during the perception of matched and mismatched audiovisual syllables. In line

with other EEG studies employing similar inclusion criteria for cluster membership [81–84],

96% of McGurk-perceiving subjects contributed to mu clusters, with 93% contributing to the

left mu cluster and 90% contributing to the right mu cluster. ECD models localized left and

right mu clusters to BA-3 and BA-4, respectively, with activation spreading across anterior

sensorimotor regions. It should be noted that while the localization of the left hemisphere clus-

ter was slightly more posterior than in previous work from this lab, it is still consistent with

accepted generator sites for mu rhythms [34, 85]. Consequently, given the high proportion of

subjects contributing to mu clusters and the stability of mu spectra across conditions, it was

possible to test experimental hypotheses regarding the integration of convergent and divergent

sensory streams. However, before results from divergent (i.e., McGurk, Mismatch) trials can

be meaningfully interpreted, it is first essential to consider how sensorimotor activity unfolds

during convergent trials.

4.1 Overall patterns

In the Match condition, bilateral mu ERSP data was characterized by weak alpha ERS tempo-

rally aligned with the onset of auditory stimulation. Alpha ERS gradually transitioned to con-

current alpha and beta ERD following auditory onset, with alpha ERD persisting across the

remainder of the trial epoch and beta ERD fading ~850 ms following auditory onset. This pat-

tern of activity is broadly consistent with the tenets of Analysis by Synthesis. In particular,
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alpha ERS is generally considered a marker of cortical inhibition [86, 87], and is thought to

sharpen attention by enabling the reallocation of cognitive resources [88, 89]. Its emergence in

perceptual tasks [28, 90, 91] may be interpreted as evidence of Predictive Coding [27, 92, 93],

in which prior knowledge tunes and sharpens neural processing toward expected stimulus fea-

tures [94]. Specifically, articulatory knowledge derived from facial movements imposes motor-

based constraints on upcoming sensory processing [95]. This interpretation is consistent both

with the activation of anterior sensorimotor regions by visual speech [96, 97] and the influence

of early visual information on auditory processing [23, 75, 98]. It should be noted that the the-

oretical frameworks accounting for the emergence of the McGurk Effect [49, 99] propose mul-

tiple distinct stages; a) the influence of visual context, b) incongruence detection, and c)

incongruence resolution [49]. It may then be proposed that alpha ERS emerging prior to audi-

tory onset reflects the influence of visual context on sensorimotor decoding of audiovisual

speech.

The concurrent alpha and beta ERD which emerged following auditory onset in the cur-

rent study has been observed in a number of speech perception studies [20, 30, 91, 100], sug-

gesting that it may characterize sensorimotor responses to such tasks. This pattern of activity

is consistent with the tenets of Analysis by Synthesis [26], which proposes that a coarse

sketch of the incoming stimulus is mapped onto a motor-based articulatory hypothesis in

anterior motor regions and is then validated against the full signal in posterior sensory

regions [25, 101]. Interactions between these regions are reflected in alpha and beta channels

of the mu rhythm [11], with alpha ERD reflecting the inverse model projection of the sensory

signal to motor regions, and beta ERD reflecting the forward model projection to sensory

regions for comparison against the full signal [22, 30]. It should be noted that the current

study did not employ any connectivity metrics able to identify direction of information flow,

and interpretations are based on previous associations of alpha and beta ERD with inverse

and forward models, respectively [11, 22]. Since any mismatch arising from the comparison

between the full signal and the forward model projection is relayed back to anterior motor

regions for iterative hypothesis revision and re-testing, paired alpha and beta ERD is

expected to persist until the mismatch is resolved and stimuli are identified. Alpha ERD has

been observed to persist beyond the cessation of beta ERD in perceptual tasks [102], where

this post-stimulus activity has been interpreted as evidence of contextualizing sensory infor-

mation by drawing on a repository of stored knowledge [103]. Taken together, these findings

may be interpreted to suggest that the cessation of beta ERD at ~800 ms following auditory

onset represents the termination of Constructivist hypothesis-test-refine loops, constituting

a temporal marker for stimulus identification. However, while overall patterns of mu activity

are broadly consistent with interpretations through Analysis by Synthesis, to evaluate the

manner in which the sensorimotor system supports the integration of discordant sensory

signals onto a unified phonological representation, it is essential to consider between-condi-

tion differences.

4.2 Left hemisphere differences

When ERSP data from Match trials were compared to data from McGurk trials eliciting sen-

sory fusion, differences were observed in two distinct time windows. The early effect was char-

acterized by weaker alpha and beta ERD from ~400–750 ms following auditory onset in

McGurk trials. Previous reports of elevated anterior sensorimotor responses to congruent

audiovisual stimuli [48, 104] have been interpreted as evidence of synergistic activation elicited

by the increased relevance of matching auditory information [105] consistent with pre-existing

heuristics [48, 106]. Within the framework of Analysis by Synthesis, it was hypothesized that
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the visual signal would be mapped onto an articulatory hypothesis via an inverse mapping

(alpha), with a forward model transformation (beta) of that articulatory hypothesis compared

against the full signal for hypothesis testing [22]. It may be proposed that the elevated early

alpha and beta ERD in Match trials reflects the detection of congruence, with auditory signals

confirming articulatory hypotheses generated by the visual signal. It should be noted that this

notion is consistent with the presence of a similar pattern in Mismatch trials, as there is no

indication based on behavioral responses that incongruence was detected (i.e., subjects

responded with either the visual or auditory stimulus component). This proposal is addition-

ally consistent with the results of Jenson et al. [30], in which stronger alpha and beta ERD were

interpreted as the successful extraction of a phonological form [42] allowing stimuli to be

encoded into working memory. Weaker early alpha and beta ERD in McGurk trials is there-

fore consistent with the notion that a phonological representation has not been successfully

identified in this time window, though it remains to be considered how this early difference

relates to the later effect.

The stronger alpha and beta ERD present from ~900 ms onward in McGurk trials when

compared to Match trials suggests some degree of elevated processing not elicited during

audiovisual congruence. Results could be interpreted through the framework of performance

updating [107, 108] to suggest that the elevated late ERD in McGurk trials reflects the recali-

bration of sensorimotor mappings. That is, phoneme boundaries are updated on a trial-by-

trial basis in light of the detected incongruence between sensory streams. Such an interpreta-

tion is consistent with behavioral findings showing gradual adaptation to [6] and recovery

from (i.e., washout) [109] auditory perturbations. However, previous oscillatory investigations

of post-hoc internal model updating in perception have reported beta ERS (i.e., beta rebound)

[110–112], and it remains unclear how this relates to the late ERD observed in the current

study. Additionally, performance updating would be expected to elicit a trial-to-trial shift in

the categorical perceptual boundaries between phonemes [113], the consideration of which is

beyond both the design and scope of the current study.

When considered within the framework of Analysis by Synthesis, results are consistent

with notions of hypothesis-test-refine loops engaging to resolve the discrepancy between audi-

tory and visual streams [24]. These loops support communication between anterior motor and

posterior sensory regions [95, 114] via paired forward and inverse models [115, 116], which

are reflected in beta and alpha ERD, respectively [11, 22]. Jenson and Saltuklaroglu [29]

recently probed the influence of discrepancy resolution processes on sensorimotor activity in a

study comparing mu responses to matched and mismatched syllable pairs in speech discrimi-

nation. Mismatched pairs were characterized by stronger alpha and beta ERD in the later trial

epoch, which was interpreted as evidence of prolonged working memory processing to resolve

violated hypotheses arising via Predictive Coding. The presence of a similar pattern of

increased late ERD in McGurk trials in the current study may reflect a prolonged phonological

encoding phase to resolve sensory mismatches arising from audiovisual divergence and extract

a unified phonological representation.

A protracted time course of working memory encoding has been observed in studies

employing complex [117] and degraded [118] stimuli, and it may be suggested that a similar

process is engaged during resolution of audiovisual discrepancies. This interpretation is con-

sistent with previous reports of increased response latency for McGurk trials [119], though

this assertion is made cautiously for multiple reasons. First, increased response latency for

McGurk stimuli is not universally reported [120], with variability across studies potentially

rooted in the inclusion/absence of McGurk trials not eliciting sensory fusion (i.e., ‘unfused’

McGurk trials). Second, the design of the current study, in which subjects were cued to

respond at a given time (i.e., 1500 ms post-stimulus) precludes meaningful interpretation of
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response latencies. Third, a prolonged encoding phase constitutes a neural process, while

response latency differences represent a behavioral effect. While a link between them appears

intuitive, they constitute distinct phenomena and the relationship between the two awaits clar-

ification. Thus, while late mu differences are consistent with notions of a prolonged encoding

phase to resolve audiovisual discrepancies via internal modeling, further work is necessary to

more clearly support this interpretation.

Alternatively, it may be proposed that the observed left hemisphere findings reflect a

more basic effect of audiovisual conflict (i.e., incongruence) detection rather than sensori-

motor contributions to the integration of divergent sensory streams onto a unified phono-

logical representation. However, findings from the Mismatch condition (in which sensory

fusion did not occur) argue against such an interpretation for two primary reasons. First, no

differences were observed between Match and Mismatch trials in any time/frequency range

despite the presence of convergent and divergent audiovisual streams, respectively. Second,

the differences observed between Mismatch and McGurk trials occur in the same time/fre-

quency ranges as those observed between Match and McGurk trials, suggesting that they

index a process occurring during McGurk trials only. Based on the observed differences, it

may be proposed that audiovisual incongruence alone is insufficient to elicit differential left

hemisphere mu activity. That is, differential left mu activity emerges only in the presence of

sensory fusion, a finding consistent with the above interpretations through the framework of

Analysis by Synthesis. This assertion is made tentatively, though, as the exclusion of

‘unfused’ McGurk trials in the current study limits the ability to clearly associate results with

sensory fusion.

4.3 Right hemisphere differences

Similar ERSP patterns were observed in the right hemisphere, with early alpha ERS giving rise

to concurrent alpha and beta ERD in all conditions following auditory onset. While the overall

similarity of activity patterns across hemispheres is consistent with the notion that sensorimo-

tor processes supporting speech are bilateral [121], patterns of between-condition effects dif-

fered between hemispheres. Specifically, right hemisphere alpha and beta ERD from ~500–

1000 ms was stronger in Match trials than either McGurk or Mismatch trials, with no differ-

ences observed between McGurk and Mismatch. Thus, unlike the left hemisphere in which dif-

ferences only emerged in the presence of sensory fusion (regardless of congruence/

incongruence), right hemisphere differences appear exclusively driven by audiovisual congru-

ence/incongruence. This may be interpreted to suggest that the right hemisphere performs a

more general function than the left in audiovisual speech perception, providing a confirmation

of early articulatory hypotheses only in the presence of perfect congruence between sensory

streams. There is precedent for the notion that the right hemisphere provides a coarser level of

speech analysis than the left, with Asymmetric Sampling in Time (AST; Poeppel, 2003) sug-

gesting that differences in temporal integration windows underlie the left hemisphere speciali-

zation for phonemic processing [122]. While AST is specifically targeted towards auditory

regions, the results of the current study may be interpreted to suggest that a similar hemi-

spheric dissociation is present in anterior sensorimotor regions. Specifically, right hemisphere

mu activity supports a general confirmation of audiovisual congruence, while left hemisphere

mu activity supports the integration of auditory and visual streams at the phonological level.

As the between-condition differences persist later in the left hemisphere, results are consistent

with the notion that the right hemisphere provides a coarse analysis of congruence/incongru-

ence, relinquishing later, more fine-grained analysis to the speech-specialized left hemisphere

[123].
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5. General discussion

While results from left and right hemispheres have been discussed individually, it remains nec-

essary to consider how they inform regarding sensorimotor contributions to the multi-stage

processing hierarchy [49, 99] underlying the elicitation of the McGurk Effect. Contemporary

accounts of the McGurk effect propose three distinct processing stages [49]; early influence of

visual content, incongruence detection, and incongruence resolution/integration. Early visual

influences on sensorimotor processing emerged bilaterally across conditions, and are reflected

in the presence of alpha ERS prior to the onset of auditory information. Early alpha ERS has

been observed in a number of perceptual studies [20, 28, 91], and is considered a marker of

active sensing [124] which sharpens neural processing by inhibiting information inconsistent

with expected stimulus features [125]. Its presence in the current study may suggest that early

visual information imposes motor-based inhibitory constraints on later stimulus processing

[23]. Additionally, following extraction of an articulatory representation from the visual signal,

it can then be used for latter stages of congruence/incongruence detection.

Results of the current study suggest that while both left and right hemispheres support the

integration of divergent sensory streams, their contributions are distinct. Specifically, stronger

right hemisphere alpha and beta ERD only in the presence of audiovisual congruence suggests

a coarser level of analysis, in which synergistic activity elicited by congruent sensory streams

[105] emerges only in the presence of perfect congruence. In contrast, data from the left hemi-

sphere suggests a more nuanced role in which further processing (possibly via hypothesis-test

loops) is employed to support the integration of discordant sensory streams onto a unified

phonological representation [30]. A similar functional dissociation has been observed in the

visual domain, with the right hemisphere detecting anomalies/incongruence and the left hemi-

sphere engaging in further processing to resolve detected incongruities [126–128], and the

results of the current study suggest that a similar hemispheric dissociation is present in the sen-

sorimotor system. To the best of our knowledge, this is the first study to demonstrate a clear

left/right hemispheric dissociation between general incongruence detection and resolution in

sensorimotor oscillations during audiovisual speech perception.

While the current study employed perceptual tasks, findings also hold relevance for speech

production. Specifically, as the internal model transformations reflected by mu oscillations

[11, 22] are active during both speech perception and production [20, 129, 130], results may be

interpreted to clarify the functional role of sensorimotor processes during speech. However, it

is critical to consider how the sensorimotor dynamics revealed in the current study may be

mapped onto speech production. During production, sensory hypotheses against which reaf-

ference is compared are based on an efference copy (i.e., corollary discharge) of the motor plan

[131, 132], with no sensory mismatch anticipated during accurate speech production. As the

Match trials in the current study did not elicit any sensory mismatch and were characterized

by a short burst of alpha/beta ERD following stimulus presentation, it may be proposed that an

abbreviated time course of concurrent alpha and beta ERD constitutes an oscillatory marker of

confirmed sensorimotor predictions. This interpretation is consistent with current conceptual-

izations of mu rhythms [22] as well as findings from speech production studies in which alpha

and beta ERD are temporally aligned to the motoric act [21, 133]. A different patterns of

results, however, is observed in the absence of sensory congruence.

In perturbations studies, the unimodal alterations to sensory feedback give rise to incongru-

ence (i.e., error) signals which must be resolved, similar to the those arising from audiovisual

mismatch in the current study. The presence of reduced right mu activity in both McGurk and

Mismatch trials in the current study suggests a right hemisphere contribution to incongruence

detection, similar to the tenets of DIVA in which right PMC integrates multimodal sensory
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error signals [2]. The observed reduction in magnitude of right hemisphere alpha and beta

ERD may be interpreted as either the absence of synergistic interaction of sensory streams

[105], or as evidence of reduced confidence resulting from failure to confirm initial hypothe-

ses. Interpretations of reduced confidence are tenable given that elevated levels of uncertainty

have been associated with reductions to beta activity [112, 134] and weaker responses to sen-

sory feedback signals reflected by alpha activity [135]. Nonetheless, regardless of the underly-

ing cause, right hemisphere sensorimotor contributions to multisensory integration appear

consistent with a basic role of incongruence detection in both perception and production.

Left hemisphere results in the current study were tentatively interpreted as evidence of

incongruence resolution processes via iterative hypothesis-test loops instantiated in paired for-

ward (beta) and inverse (alpha) models [22], though this assertion is made tentatively as there

were insufficient ‘unfused’ McGurk trials in the current study to conclusively associate results

with sensory fusion. While sensory mismatches requiring such resolution processes during

speech production typically arises from artificial manipulations such as acoustic [6, 136] or tac-

tile [7, 8] perturbations, they may arise naturally in sensorimotor-linked disorders such as stut-

tering. Stuttering in particular is thought to be associated with abnormal internal modeling

[12, 137] and may arise from a noisy comparison between prediction and reafference [138].

This noisy comparison is thought to give rise to inaccurate feedback signals, with attempts to

integrate this into ongoing motor planning potentially underlying the articulatory resets (i.e.,

repetitions) and postural fixations characteristic of the disorder [139, 140]. To clarify the phys-

iology underlying stuttering, it is thus essential to identify the typical sensorimotor dynamics

supporting incongruence resolution processes. The results of the current study suggest that

examination of right and left hemisphere mu oscillations during the McGurk paradigm may

constitute an effective means of probing the integrity of mismatch detection/resolution pro-

cesses in stuttering and other sensorimotor-linked disorders.

6. Limitations

While the current study identified robust effects of audiovisual congruence/incongruence on

sensorimotor processing, several limitations ought to be considered. First, not all subjects pro-

duced usable mu rhythms that could be localized to accepted generator sites. A reduced pro-

portion of contributing subjects is common in EEG studies [141], and in this study may have

arisen from the use of standardized, rather than subject-specific, head models. Second, sensori-

motor network activity was inferred from a single metric. While this interpretation is consis-

tent with the theoretical tenets of Analysis by Synthesis [24, 26] and current conceptualizations

of alpha and beta channels of the mu rhythm [11, 22], interpretations would be bolstered by

analysis of posterior sensorimotor activity as well as the use of connectivity metrics. Third,

while the McGurk paradigm and speech perturbation studies both give rise to sensory mis-

matches, they do so across different sensory modalities. Perturbation studies induce incongru-

ence between auditory and somatosensory streams, while the McGurk paradigm induces

incongruence between auditory and visual modalities. Further work is necessary to determine

whether the sensorimotor incongruence resolution processes identified in the current study

are consistent across modality pairs.

7. Conclusions and future directions

Herein we capitalized on the temporal sensitivity of EEG and the parity of sensorimotor pro-

cesses arising during speech perception and production [22, 130] to probe the sensorimotor

processes supporting the integration of discordant sensory streams onto a unified phonologi-

cal representation. Results were interpreted according to a multi-stage processing hierarchy

PLOS ONE Sensorimotor activity during the McGurk effect

PLOS ONE | https://doi.org/10.1371/journal.pone.0258335 October 7, 2021 19 / 28

https://doi.org/10.1371/journal.pone.0258335


[49, 99] identifying a previously unreported hemispheric dissociation of mu oscillations. Con-

sistent with previous reports from auditory [122, 142] and visual [126–128] domains, it is pro-

posed that the integration of discordant audiovisual signals is supported by distinct

contributions from left and right hemispheres. Specifically, right hemisphere mu activity sup-

ports a coarse estimate of multimodal sensory congruence/incongruence, while left hemi-

sphere mu activity supports a more granular phonological analysis. Within both hemispheres

an increase in magnitude of alpha and beta ERD may reflect the confirmation of early sensory

hypotheses by multimodal sensory congruence, while a protracted time course and attenuated

magnitude of alpha and beta ERD in the left hemisphere may support incongruence resolution

processes. Clarifying the dynamics of sensorimotor-based incongruence detection and resolu-

tion processes has the potential to elucidate the neural processing differences underlying stut-

tering and other sensorimotor-linked disorders [133, 143]. Results further suggest that the

McGurk paradigm holds promise for probing the integrity of multimodal integration pro-

cesses in clinical and non-clinical populations.
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