DOI: 10.1002/mbo3.1101

ORIGINAL ARTICLE

WILEY

Pseudomonas glycinae sp. nov. isolated from the soybean rhizosphere

Jiayuan Jia¹ | Xiaoqiang Wang^{1,2} | Peng Deng¹ | Lin Ma^{1,3} | Sonya M. Baird¹ | Xiangdong Li⁴ | Shi-En Lu¹

¹Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, USA

²Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China

³Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China

⁴Department of Plant Pathology, Shandong Agricultural University, Taian, China

Correspondence

Shi-En Lu, Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mail Stop 9655, Mississippi State, MS 39762, USA. Email: sl332@msstate.edu

Funding information

USDA NIFA, Grant/Award Number: MIS-401200

Abstract

Strains MS586^T and MS82, which are aerobic, Gram-negative, rod-shaped, and polar-flagellated bacteria, were isolated from the soybean rhizosphere in Mississippi. Taxonomic positions of MS586^T and MS82 were determined using a polyphasic approach. 16S rRNA gene sequence analyses of the two strains showed high pairwise sequence similarities (>98%) to some Pseudomonas species. Analysis of the concatenated 16S rRNA, rpoB, rpoD, and gyrB gene sequences indicated that the strains belonging to the Pseudomonas koreensis subgroup (SG) shared the highest similarity with *Pseudomonas kribbensis* strain 46-2^T. Analyses of average nucleotide identity (ANI), genome-to-genome distance, delineated MS586^T and MS82 from other species within the genus Pseudomonas. The predominant quinone system of the strain was ubiquinone 9 (Q-9), and the DNA G+C content was 60.48 mol%. The major fatty acids were $C_{16:0}$, $C_{17:0}$ cyclo, and the summed features 3 and 8 consisting of $C_{16:1}$ ω 7c/ $C_{16:1}$ ω 6c and $C_{18:1}$ ω 7c/ $C_{18:1}$ ω 6c, respectively. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, and diphosphatidylglycerol. Based on these data, it is proposed that strains MS586^T and MS82 represent a novel species within the genus Pseudomonas. The proposed name for the new species is Pseudomonas glycinae, and the type strain is $MS586^{T}$ (accession NRRL B-65441 = accession LMG 30275).

KEYWORDS

average nucleotide identity, Pseudomonas glycinae, rhizosphere, soybean

1 | INTRODUCTION

The genus Pseudomonas was first described by Migula (1894). Strains of this genus have been found in natural habitats including plants, soil, animals, and water (Palleroni, 1994). Members of the genus Pseudomonas are known to be Gram-negative, rod-shaped, cream-colored, and polar-flagellated. Pseudomonas spp. have great metabolic and nutritional versatility. Some strains of Pseudomonas spp. play potential

roles as bioremediation agents to alleviate various hazardous organic substrates, such as sodium dodecyl sulfate (Furmanczyk, Kaminski, Lipinski, Dziembowski, & Sobczak, 2018). Some strains of Pseudomonas spp. promote plant growth directly by facilitating resource acquisition or indirectly by decreasing the inhibitory effects of various pathogenic agents on plant growth and development; however, some other strains of Pseudomonas can act as pathogens inciting plant diseases (Moore et al., 1996; Oueslati et al., 2019; Ye et al., 2019).

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2020 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

I FY_MicrobiologyOpen

Over 200 species of Pseudomonas are included in the Bacterial Names with Standing in Nomenclature (http://www.bacterio. net). Numerous methods, including physiological, molecular, and phenotypic distinctions (Sneath, Stevens, & Sackin, 1981); 16S rDNA gene sequencing; and multilocus sequence analysis (MLSA) (Pascual, Macián, Arahal, Garay, & Pujalte, 2010), have been used to identify the taxonomic status of Pseudomonas species. With the accumulation of genomic data, the analysis of complete genomes is very useful in Pseudomonas taxonomy (Hesse et al., 2018; Peix, Ramirez-Bahena, & Velazquez, 2018). Average nucleotide identity (ANI) values calculated from genome assemblies have been widely used for the taxonomy of bacteria (Konstantinidis & Tiedje, 2005). ANI evaluates a large number of nucleic acid sequences, including some that evolve guickly and others that evolve slowly, in its calculation and reduces the influence of horizontal gene transfer events or variable evolutionary rates. It has been suggested that species descriptions of bacteria and archaea should include a high-guality genome sequence of at least the type strain as an obligatory requirement (Rosselló-Móra & Amann, 2015). The current metagenome databases have shown evidence for approximately 8000 sequence-discrete natural populations, which is roughly equivalent to species at the 95% ANI level (Rosselló-Móra & Whitman, 2018). Genome-to-genome distance (GGDC 2.0) is another highly effective method for inferring whole-genome distances. GGDC effectively mimics DNA-DNA hybridization for genome-based species delineation and subspecies delineation (Meier-Kolthoff, Auch, Klenk, & Göker, 2013). Therefore, ANI and GGDC are highly effective ways to evaluate the genetic relatedness between genomes. Strains MS586^T and MS82 were isolated from the rhizosphere soybean plants growing in fields where most plants were infected by the charcoal rot pathogen Macrophomina phaseolina. Plate bioassay indicated both strains MS586^T and MS82 exhibited striking antimicrobial activity (Ma et al., 2017). This research is focused on the characterization of the taxonomic position of the two strains.

2 | MATERIALS AND METHODS

2.1 | Bacterial strains and growth conditions

 $MS586^{T}$ and MS82 were isolated from a soybean rhizosphere sample by standard dilution plating on nutrient broth yeast extract (NBY) agar medium (Vidaver, 1967) at 28°C. Antimicrobial activity against multiple plant pathogens was detected with an antifungal plate assay as previously described (Gu, Wang, Chaney, Smith, & Lu, 2009). Following purification, the bacterium was preserved in 20% glycerol at -80°C. *Pseudomonas* spp. type strains and reference strains were provided by the Leibniz Institute DSMZ–German Collection of Microorganisms and Cell Cultures (DSMZ, Braunschweig, Germany). All strains used in this study are summarized in Table A1.

2.2 | Cell morphology and physiological tests

Colony morphology of the strains MS586^T and MS82 was determined after growth on NBY agar plates. Gram staining was performed as described previously (Murray, Doetsch, & Robinow, 1994); cell morphology and flagellation types were observed with a transmission electron microscope (TEM) using routine negative glutaraldehyde staining; and the production of fluorescent pigments was tested on King B medium (King, Ward, & Raney, 1954). Optical density (OD600) metrics recorded for NBY liquid cultures were used to evaluate optimal growth and pH, at temperatures from 4°C to 40°C, with an interval of 4°C for 24 hr, and at pH 4.0–10.0.

Physiological and biochemical tests were conducted as described previously (Peix, Berge, Rivas, Abril, & Velázquez, 2005). Cellular fatty acids were identified using the Sherlock 6.1 system (Microbial IDentification Inc.) and the library RTSBA6 (Sasser, 1990). Biochemical features and enzyme activities were determined using API 20 NE and API 50 CH strips with API 50 CHB/E medium (bio-Merieux), as well as Biology GENIII Microplates (Biolog) as directed in the manufacturer's instructions; results were recorded after incubation for 48 hr at 28°C.

2.3 | Phylogenetic analysis

Bacterial genomic DNA was extracted using the cetyltrimethylammonium bromide (CTAB) protocol (Doyle, 1987) and used as a template to amplify the nearly full-length 16S rRNA gene. PCR was performed with the 16S rRNA universal prim-27F (5'-AGAGTTTGATCMTGGCTCAG-3') and 1492R ers (5'-TACGGHTACCTTGTTACGACTT-3') (Chelius & Triplett. 2000; Lane, 1991). Amplification and partial sequencing of rpoB (Tayeb, Ageron, Grimont, & Grimont, 2005), rpoD (Mulet, Bennasar, Lalucat, & García-Valdés, 2009), and gyrB (Yamamoto et al., 2000) housekeeping genes were performed following previously described methods (Mulet et al., 2009) using primers LAPS (5'-TGGCCGAGAACCAGTTCCGCGT-3')/LAPS27 (5'-CGGCTTCGTCCAGCTTGTTCAG-3') for ropB, PsEG30F (5'-CGGTTGATKT (5'-ATYGAAATCGCCAARCG-3')/PsEG790R CCTTGA-3') for rpoD, and APrU (5'-TGTAAACGACGGCCAGTGCN GGRTCYTTYTCYTGRCA-3')/UP1E (5'-CAGGAAACAGCTATGACC AYGSNGGNGGNAARTTYRA-3) for gyrB. All PCR was performed with a PTC-200 Peltier Thermal Cycler (MJ Research), and products were purified using a Wizard SV Gel and PCR Clean-Up System (Promega). Sanger sequencing reactions were performed using the Eurofins MWG Operon.

Phylogenetic analysis of the multilocus sequence analysis (MLSA) was performed in MEGA 7 software using the maximum-likelihood algorithm (Kumar, Stecher, & Tamura, 2016). The sequence fragments of the four genes (16s rRNA, *rpoB*, *rpoD*, and *gyrB*) were concatenated in the following order: 16s rRNA, *rpoB*, *rpoD*, and *gyrB*. Sequences of type strains used in the MLSA were downloaded from

WILEY

TABLE 1 Differentiating characteristics of strain MS586^T from other related species of *Pseudomonas*

Characteristics	1	2 ^a	3 ^b	4 ^c	5 ^c	6 ^d	7 ^e	8 ^e	9 ^e	10 ^e
Flagellation	Polar, multiple	Polar, multiple	Polar, two	Polar, two	Polar, multiple	ND	ND	Polar, single	ND	ND
Fluorescence	+	-	-	+	+	+	+	+	-	-
Growth at:										
4°C	+	+	+	+	+	+	ND	+	ND	ND
Tolerance of NaCl at										
5%	+	-	+	+	-	+	-	-	-	-
Nitrate reduction	-	-	-	-	-	-	+	+	-	-
Arginine dihydrolase	+	+	+	+	+	+	-	+	-	+
Hydrolysis of gelatin	+	-	+	-	-	+	-	-	-	-
Citrate utilization	+	+	+	+	+	+	+	+	-	+
Urease	-	-	-	-	ND	-	-	-	-	-
Assimilation of										
L-Arabinose	+	+	+	+	+	+	-	+	+	+
N-Acetyl-D-glucosamine	+	+	+	+	+	+	+	+	-	-
Phenylacetic acid	-	-	-	-	-	-	+	+	+	+
D-Mannose	+	+	+	+	+	+	-	+	-	-
Dextrin	-	+	w	+	+	-	+	+	+	-
Tween-40	-	+	+	+	+	+	-	+	+	-
D-Cellobiose	-	+	-	+	+	-	+	+	-	-
D-Trehalose	-	-	+	+	-	-	w	-	-	-
L-Arabinose	+	+	+	+	+	+	-	+	+	+
D-Fructose	+	+	+	+	+	+	ND	+	-	-
D-Mannitol	+	+	+	+	+	+	+	+	-	+
D-Arabitol	-	+	+	+	+	+	-	-	+	-
L-Alanine	+	+	+	+	+	+	+	+	w	ND
L-Serine	+	+	-	+	+	+	+	+	W	+
α-Ketobutyric acid	-	-	w	+	+	-	-	+	+	-
α-Ketoglutaric acid	+	+	+	+	-	+	+	+	-	+
Glucuronamide	-	+	+	+	+	-	-	-	-	-
L-Histidine	-	+	-	+	+	-	+	+	-	+
D-Serine	-	+	w	+	+	-	-	+	-	-
D-Galactose	+	+	+	+	+	+	-	+	+	+
D-Galacturonic acid	-	ND	-	-	ND	-	-	-	+	+
D-Glucuronic acid	-	-	-	-	-	-	-	-	-	+
Glucuronamide	-	+	+	ND	+	-	-	-	-	ND
p-Hydroxy phenylacetic acid	-	-	-	-	-	-	-	+	-	-
Quinic acid	+	+	+	+	+	+	-	+	+	+
D-Saccharic acid	+	+	+	+	+	+	-	+	+	+
Glycyl-L-proline	-	ND	+	+	+	-	+	+	+	+
L-Pyroglutamic acid	+	+	+	+	ND	+	-	+	+	+
Inosine	-	+	+	+	+	+	+	-	+	-
Propionic acid	+	+	+	+	+	+	+	+	W	-
Formic acid	-	+	-	+	-	-	-	+	+	-
Acetic acid	+	+	W	+	-	+	+	+	+	-

 4 of 16
 JIA ET AL.

 WILEY_MicrobiologyOpen
 JIA ET AL.

 TABLE 1 (Continued)
 Characteristics
 1
 2^a
 3^b
 4^c
 5^c
 6^d
 7^e
 8^e
 9^e
 10^e

Characteristics	1	2 ^a	3 ^b	4 ^c	5°	6 ^d	7 ^e	8 ^e	9 ^e	10 ^e
Methyl pyruvate	-	+	+	+	+	+	+	+	+	+
GC content (%)	60.5	60.5	59.9	60.3	59.1	58.7	67.2	62.2	59.1	59.4

Note: Strains. 1, MS586^T; 2, P. kribbensis 46-2^T; 3, P. granadensis F-278,770^T; 4, P. moraviensis 1B4^T; 5, P. koreensis Ps9-14^T; 6, P. baetica a390^T; 7, P. vancouverensis DhA-51^T; 8, P. jessenii DSM 17150^T; 9, P. reinekei MT1^T; 10, P. moorei RW10^T. Data for strain MS586^T were obtained in this study. Data for other type strains were obtained from references. a, (Chang et al., 2016); b, (Pascual, García-López, Bills, & Genilloud, 2015); c, (Tvrzova et al., 2006); and d, (Lopez et al., 2012); e, (Camara et al., 2007).

Abbreviations: -, negative; +, positive; ND, not determined; W, weak.

NCBI (accession numbers in Table A2). The maximum-likelihood method was used to construct the phylogenetic tree with 1000 bootstrap replicates.

2.4 | DNA fingerprinting

DNA fingerprinting has been evaluated and proposed as a reliable method for distinguishing different strains in the same taxon, which are not clonal varieties. Thus, the primer sequence corresponding to BOX elements (BoxA1R: 5'-CTACGGCAAGGCGACGCTGACG-3') was used for DNA fingerprinting (Koeuth, Versalovic, & Lupski, 1995). PCR amplification was conducted as follows: initial denaturation at 94°C for 5 min, followed by 30 cycles (94°C for 1 min, 52°C or 53°C for 1 min, and 72°C for 2 min), and finally 72°C for 8 min. The DNA fragments were analyzed in a 2% agarose gel.

2.5 | Genome sequencing and analysis

Genomic DNA of strain MS586^T was extracted using the Wizard Genomic DNA Purification Kit (Promega Corporation). The extracted genomic DNA was used for library construction with an average insert size of 400 bp, and three mate-pair libraries with an average insert size of 2000 bp, 5000 bp, and 8000 bp were prepared and sequenced on the Illumina MiSeq instrument according to the manufacturer's instructions (Illumina). The standard library and 2000-bp mate-pair library were selected for *de novo* assembly using a method described by Durfee et al. (2008) using DNASTAR Lasergene software (DNASTAR, Inc.). The genome was annotated using the NCBI Prokaryotic Genome Annotation Pipeline (Angiuoli et al., 2008). The complete genome sequence was deposited in GenBank under accession number CP014205, and the genome project was deposited in the Genomes OnLine Database under GP0128017.

Similarity analyses (ANI and GGDC) of the sequenced genome of strain MS586^T to other 40 genomes of the closely related *Pseudomonas* species were determined as briefed below. ANI based on pairwise comparison was calculated using the software JSpecies with the ANIb algorithm (Richter & Rosselló-Móra, 2009). GGDC was calculated using the web service http://ggdc.dsmz.de and using the recommended BLAST+method (Meier-Kolthoff et al., 2013). The GGDC results shown are based on the recommended formula 2 (sum of all identities found in HSPs divided by the overall HSP length), which is independent of the genome length and is thus robust against the use of incomplete draft genomes. The Type (Strain) Genome Server (https://www.dsmz.de/services/online-tools/tygs) with the recommended settings was used to clarify species delineation (Meier-Kolthoff & Göker, 2019). The phylogenomic tree based on whole-genome sequences was reconstructed by Genome Blast Distance Phylogeny (GBDP). Accession numbers of sequences used in the whole-genome phylogenetic analysis are summarized in Table A3. The clustering of the type-based species using a 70% dDDH radius around each type strain was conducted as previously described (Meier-Kolthoff & Göker, 2019).

2.6 | Chemotaxonomic analysis

As important chemical characteristics for bacterial identification, the cellular fatty acid profile of the strain MS586^T was analyzed. Cellular fatty acids were harvested after 2 days of growth at 28°C on TSA. Fatty acids extracted from the bacteria were methylated and analyzed following the protocol of the Sherlock 6.1 Microbial Identification (MIDI) system (Microbial IDentification Inc.) using the library RTSBA6 (Sasser, 1990). Analyses of respiratory quinones and polar lipids were carried out by the Identification Service of the DSMZ (Braunschweig, Germany).

3 | RESULTS AND DISCUSSION

3.1 | Phenotype analysis

Both strains MS586^T and MS82 were observed to be Gram-negative, rod-shaped (0.6–0.8 × 2.0–3.0 μ m), and motile utilizing polar flagella (Figure A1). Colonies of the two strains were 3–5 mm in diameter and light yellow after 2 days of incubation on NBY at 28°C. No growth was detected at 40°C or with 7% NaCl. The optimum growth occurred at 28–30°C. The bacteria tolerated pH values ranging from 4 to 10. The two strains could produce fluorescent pigments when cultured for 24–48 hr at 28°C on King B medium, whereas *Pseudomonas kribbensis* 46-2^T, which is the closest species of strains MS586^T and MS82, could not produce fluorescent (Table 1). Strain MS586^T showed negative for assimilation of dextrin, formic acid, MS586^T, but it was negative by *P. kribbensis* 46-2^T. The physiological, morphological, and phenotypic characteristics in the API 20 NE, API 50 CH, and Biology GEN III tests, which allowed differentiation of strains MS586^T from other closely related *Pseudomonas* species, are listed in Table 1.

3.2 | Phylogenetic analysis

Sequence analysis revealed that the 16S rRNA genes of MS586^T and MS82 shared significant identities (>98%) to some Pseudomonas species of the P. koreensis subgroup in the Pseudomonas fluorescens group. The closely related strains include P. kribbensis $46-2^{T}$ (99.94%), P. granadensis F-278,770^T (99.55%), P. koreensis Ps 9-14^T (99.52%), P. reinekei MT1^T (99.46%), P. moraviensis 1B4^T (99.41%), P. vancouverensis DhA- 51^{T} (99.33%), P. baetica a390^T (99.20%), P. jessenii DSM 17150^T (98.94%), and P. fluorescens Pf0-1 (99.87%). However, analysis of the 16S rRNA gene sequence alone is insufficient to define the relative taxonomic positions of Pseudomonas species (Rosselló-Móra & Whitman, 2018). Therefore, MLSA was conducted based on previously described methods using four gene sequences for the studies: 16S rRNA (1326 bp), rpoB (905 bp), rpoD (802 bp), and gyrB (663 bp). According to Hesse et al. (2018), the genus Pseudomonas has been phylogenetically divided into 13 groups (G) and 10 subgroups (SG). The closely related species of P. fluorescens subgroup and representative species of each group were selected to reconstruct the phylogenetic tree. The maximum-likelihood tree illustrates the phylogenetic position of strain MS586^T and 61 related members of the genus *Pseudomonas* based on four concatenated gene sequences (3696 bp); Acinetobacter baumannii strain ATCC 19606^T was used as an outgroup. As shown in Figure 1, strains MS586^T and MS82 were clustered with P. fluorescens Pf0-1 with 100% bootstrap values. Strains MS586^T and MS82 belong to the P. koreensis subgroup in the P. fluorescens group. It has been noted that, as reported by Gomila, Peña, Mulet, Lalucat, and García-Valdés (2015), 30% of the genus Pseudomonas sequenced genomes of non-type strains were not correctly assigned at the species level in the accepted taxonomy of the genus and 20% of the strains were not identified at the species level. Therefore, further extensive research is needed to update the Pseudomonas taxonomy.

3.3 | DNA fingerprinting

DNA fingerprinting by BOX-PCR revealed that strains MS586^T and MS82 were different representatives of the proposed novel species. As shown in Figure A2, two strains have the two common bands (490 bp and 900 bp) in the BOX-PCR profiles; however, each of them

MicrobiologyOpen

WILEY

produced unique bands (125 bp, 300 bp, 750 bp, and 1350 bp for MS586^T; 700 bp, 750 bp, 1100 bp, and 1350 bp for MS82), which suggests the two strains are not identical isolates.

3.4 | General taxonomic genome features of strain MS586^T

The main characteristics of the whole-genome sequence of strain $MS586^{T}$ are depicted in Table 2. No plasmid was detected. The DNA G+C content of strain $MS586^{T}$ was 60.48 mol%. This value is in the range (48–68 mol%) of those reported within the genus *Pseudomonas* (Hesse et al., 2018).

All genome-relatedness values of strain MS586^T were calculated by the algorithms ANIb and GGDC. The MS586^T genome was compared with the complete genome assemblies downloaded from NCBI for the strains shown in Table 3. ANI 95%-96% is equivalent to a DNA-DNA hybridization of 70% (Kim, Oh, Park, & Chun, 2014). The species demarcations ANI ≥ 95% or GGDC ≥ 70% were used as a benchmark (Richter & Rosselló-Móra, 2009). ANI values and GGDC values ranged from 75.28% to 98.24% and 21.00% to 84.10%, respectively, with the highest value between MS82 and MS586^T. As shown in Table 3, strain MS586^T shared less than 91% ANI and 35% GGDC with any of the other type strain of bacteria, but it had ANI value of 98.24% and GGDC value of 84.10% with strain MS82, which are higher than the species boundary cutoff values. Additionally, the two strains share 95.59% ANI and 65.30% GGDC with P. fluorescens Pf0-1, which is the closest relative outside to the novel species. As reported by Lopes et al. (Lopes et al., 2018), three strains isolated from tropical soils, which share ≥95% ANI values with strain MS586^T, are the potential strains for the novel species. As shown in Figure 2, the whole-genome-based phylogenetic tree obtained with TYGS automated pipeline shows that both MS586^T and MS82 were grouped into the same species cluster and confirmed that P. kribbensis 46-2^T is the closely related type strain. P. fluorescens Pf0-1 was clustered to independent branch, which indicates its distinct phylogenetic position and potential as a separate species. Collectively, the ANI, GGDC, and whole-genome phylogenetic tree data support that strains MS586^T and MS82 represent a unique species.

Furthermore, strains MS586^T and MS82 were noteworthy, which were isolated from the rhizosphere of soybean plants associated with fungal pathogen infections. Strain MS586^T has shown remarkable antifungal activities against a broad range of plant fungal pathogens (Jia and Lu, unpublished). Similarly, our study has demonstrated that strain MS82 possesses antifungal activities against the mushroom fungal pathogen *Mycogone perniciosa*, but not the mushroom fungus (Ma et al., 2019). Furthermore, it has been reported that *PafR* gene confers resistance to the mushroom pathogenic fungus (Ma et al., 2017). As expected, the *PafR* gene was also found in strains MS586^T. Therefore, it is not surprising

0.05

JIA ET AL.

WILEY

FIGURE 1 Maximum-likelihood tree illustrating the phylogenetic position of strain MS586^T and related members of the genus *Pseudomonas* using four concatenated gene sequences (3696 bp): 16S rRNA (1326 bp), *rpoB* (905 bp), *rpoD* (802 bp), and *gyrB* (663 bp). The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. *A. baumannii* strain ATCC 19606^T was used as the outgroup. Only bootstrap values above 50% are indicated. The colored bar designates groups of *Pseudomonas* spp. Accession numbers of sequences used in this study are summarized in Table A2

TABLE 2	Chromosome statistics for strain MS586 ^T

Feature	Total
Size	6,396,728 bp
Genes	5893
CDs	5805
Pseudogenes	131
rRNAs	17
tRNAs	67
ncRNA	4
G+C content	60.48%

that multiple nonribosomal peptide synthetase gene clusters, which are frequently associated with the production of antimicrobial compounds (Mootz & Marahiel, 1997), have been predicted from the genomes of the bacterial strains.

3.5 | Chemotaxonomic analysis

Cellular fatty acids were identified using the Sherlock 6.1 system (Microbial IDentification Inc.) and the library RTSBA6 (Sasser, 1990). The majority of fatty acids for strain $MS586^{T}$ were $C_{16:0}$ (22.9%), summed feature 3 ($C_{16:1}$ ω 7c/ $C_{16:1}$ ω 6c) (23.57%), summed feature 8 (C_{18·1}ω7c/C_{18·1}ω6c) (13.37%), and C_{17·0} cyclo (10.28%). The similarity of the fatty acid profiles supports the affiliation of strain MS586^T with the genus *Pseudomonas*. The three fatty acids typical of the genus Pseudomonas (C $_{\rm 10:0}$ 3-OH, C $_{\rm 12:0}$ and C $_{\rm 12:0}$ 3-OH) were also identified in strain MS586^T (Palleroni, 2005). Besides, the lowest amounts of fatty acid $C_{16:0}$ (22.9%) were observed in strain MS586^T than in the strains of closely related species (29.4-36.5%). Strain $MS586^{T}$ also contains the highest amounts of $C_{10:0}$ 3-OH (6.6%) when compared to the reference strains (2.2%-5.4%). The detailed fatty acid profiles of strain MS586^T and the type strains of closely related species are provided in Table 4. Two-dimensional TLC analysis revealed that the polar lipids of strain MS586^T were phosphatidylethanolamine (PE), diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), three unidentified phospholipids (PL), and one unidentified lipid (L) (Figure A3). Strain MS586^T contains higher amounts of PL and L as compared with those of the closest relative of P. kribbensis 46-2^T. As expected, the major polar lipid components of strain MS586^T were PE, DPG, and PG, which agrees with data published previously for the genus Pseudomonas (Moore et al., 2006). Also, the major respiratory guinone of strain MS586^T was Q-9, which is consistent with other species in the genus Pseudomonas (Moore et al., 2006).

4 | CONCLUSIONS

Analyses of molecular, phenotypic, physiological, and biochemical characteristics are needed to discriminate between members of the genus *Pseudomonas* and other rRNA groups of aerobic "pseudomonads" (Palleroni, 2005). These analyses of strains MS586^T and MS82 revealed its distinct characteristics of 16S rRNA and housekeeping gene sequences, ANI values, GGDC values, and phenotypic and chemotaxonomic assays as compared with those of other species and strains of the genus *Pseudomonas*. Collectively, these results demonstrate that strain MS586^T and strain MS82 represent a novel species of the genus *Pseudomonas*. The name *Pseudomonas glycinae* sp. nov. is proposed with strain MS586^T as the type strain. Strain MS586^T is a motile Gram-negative, rod-shaped, strictly aerobic, catalase- and oxidase-positive, fluorescent strain. These findings support the placement of strain MS586^T in the genus *Pseudomonas* (Hildebrand, Palleroni, Hendson, Toth, & Johnson, 1994).

4.1 | Description of Pseudomonas glycinae sp. nov.

Pseudomonas glycinae (gly.ci'nae. N.L. gen. n. glycinae of Glycine max, soybean) is an aerobic, Gram-negative, rod-shaped bacterium, with motility through polar flagella. When cultured on NBY agar plates, it produces fluorescence and forms fresh light-yellow colonies. The colony is raised from the side view, the shape is circular, and it is usually 3.0-5.0 mm in diameter within 2 days of growth at 28°C. Cells are 0.6–0.8 \times 2.0–3.0 $\mu m.$ Growth occurs between 4°C and 36°C (optimum growth temperature is 28-30°C). Growth occurs between pH 4 and 10 (optimum pH 6-7). The organism tolerates up to 6% (w/v) NaCl. The results obtained with Biology GENIII Microplates indicate the following substrates can be utilized: α -Dglucose, D-mannose, D-fructose, D-fucose, D-galactose, D-mannitol, L-alanine, L-arginine, L-aspartic acid, L-glutamic acid, L-pyroglutamic acid, L-serine, D-gluconic acid, mucic acid, quinic acid, D-saccharic acid, L-lactic acid, citric acid, α-ketoglutaric acid, L-malic acid, γ -aminobutyric acid, β -hydroxy-D,L-butyric acid, propionic acid, acetic acid, and N-acetyl-D-glucosamine, but negative for dextrin, D-maltose, D-trehalose, D-cellobiose, gentiobiose, sucrose, stachyose, D-raffinose, α -D-lactose, D-melibiose, β -methyl-D-glucoside, D-salicin, N-acetyl-β-D-mannosamine, N-acetyl-D-galactosamine, N-acetyl neuraminic acid, 3-methyl glucose, L-rhamnose, inosine, D-sorbitol, D-arabitol, myo-inositol, D-glucose-6-PO4, D-fructose-6-PO4, D-aspartic acid, D-serine, gelatin, glycyl-L-proline, L-histidine, pectin, D-galacturonic acid, L-galactonic acid lactone, Dglucuronic acid, glucuronamide, p-hydroxy-phenylacetic acid, methyl pyruvate, D-lactic acid methyl ester, D-malic acid, Tween-40,

Perudomones specieswww.bilac.ut/kmaANI (%)CGCC%P. agarki LMG 2112 ^T GCA.90010975579.87%24.30%P. arenic.oxydant CECT 75.43GCA.90010387584.36%28.00%P. actor of the construction		Genome accession number at https://		
P. agarici LMG 2112 ¹ GCA. 900109755 79.87% 24.30% P. arsenicanydams CECT 7543 ^T GCA. 900103345 80.75% 25.10% P. acatoformans LMG 21511 ^T GCA. 900103455 80.58% 33.30% P. acatoformans LMG 21511 ^T GCA. 900103455 80.58% 24.00% P. Intercensers ATCC 13252 ^T GCA. 900125455 80.64% 24.00% P. fucaresceprents LMG 21851 ^T GCA. 900125455 80.64% 24.00% P. fucaresceprents LMG 21851 ^T GCA. 900125455 80.64% 24.00% P. greanderins LMG 21951 ^T GCA. 900125455 80.64% 25.00% P. greanderins LMG 2740 ¹ GCA. 90015455 80.81% 25.00% P. greanderins LMG 2740 ¹ GCA. 90012735 77.72% 22.70% P. greanderins LMG 21318 ^T GCA. 00023615 81.440% 29.70% P. kanchemssi B13 ^T GCA. 000236155 87.32% 22.63% P. kanchemssi B13 ^T GCA. 000236155 84.41% 29.00% P. kanchemssi B11 ^T GCA. 900104055 87.41% 29.05% P. kanchemssi B1 ^T <th>Pseudomonas species</th> <th>www.ebi.ac.uk/ena</th> <th>ANI (%)</th> <th>GGDC%</th>	Pseudomonas species	www.ebi.ac.uk/ena	ANI (%)	GGDC%
P. arsenicoxydano CECT 7543 ^T GCA. 900103375 94.36% 26.06% P. azotoformans LMG 21611 GCA. 900103345 80.75% 25.10% P. atota G25740 ^T GCA. 900213455 86.58% 33.30% P. nitomophilo L48 ^T GCA. 900213455 80.84% 24.40% P. fractoragina LMG 2358 ^T GCA. 90015495 80.44% 29.10% P. fractoragina LMG 2358 ^T GCA. 90015495 80.64% 24.60% P. gracongina LMG 2358 ^T GCA. 90015495 80.64% 24.60% P. gracongina LMG 2358 ^T GCA. 90015495 80.64% 24.60% P. gracongina LMG 23764 ^T GCA. 90015485 85.85% 31.60% P. gracongina LMG 23764 ^T GCA. 90015485 75.51% 21.00% P. gracongina LMG 23764 ^T GCA. 90014115 75.51% 21.00% P. koreenist LMG 21316 ^T GCA. 900352185 94.44% 29.70% P. koreenist LMG 21316 ^T GCA. 900294655 84.41% 29.70% P. koreenist LMG 21316 ^T GCA. 9001795 70.69% 19.50% P. lancykultaritorina FA-3_2 Z ^T	P. agarici LMG 2112 ^T	GCA_900109755	79.87%	24.30%
P astatisformanic LMG 21411GCA. 90010345B0.75%25.10%A bactica LMG 25716TGCA. 0002110577.45%23.00%P etratomphile LMSTGCA. 90012545B0.84%24.40%P fuborescens ATCC 13525TGCA. 90015545B0.84%24.60%P (facoraginae LMG 2159TGCA. 90015895B0.04%24.60%P (facoraginae LMG 2159TGCA. 90018955B0.81%25.00%P granniki DSM 17152TGCA. 90018355B0.81%25.00%P granniki DSM 17152TGCA. 9001173577.72%22.70%P grandensis LMG 21940TGCA. 9001173577.72%22.70%P grandensis LMG 21941TGCA. 9001041567.32%26.83%P koressis LMG 21314TGCA. 9001041575.51%21.00%P koressis LMG 21314TGCA. 0029466584.44%29.70%P koressis LMG 21314TGCA. 0029466584.44%29.70%P koressis LMG 21314TGCA. 0029466584.44%29.70%P koressis DMS 11740TGCA. 001047570.69%19.50%P koressis DMS 11740TGCA. 9001047570.69%29.70%P koressis DMS 116761TGCA. 9001045584.44%29.70%P koressis DMS 116761GCA. 90010605584.45%29.70%P more list DM 14642TGCA. 90010605584.75%29.70%P more list DM 24280TGCA. 90010605584.75%29.70%P more list DM 24280TGCA. 90010605584.75%29.70%P more list DM 24280TGCA. 90010505577.78%29.70%P more	P. arsenicoxydans CECT 7543 ^T	GCA_900103875	84.36%	28.60%
P. beetrica LMG 25714 ¹ GCA_00026105 77.45% 22.40% P. entomophila LAB ^T GCA_00026105 77.45% 22.40% P. funcescens ACC 13525 ¹ GCA_00015495 80.84% 24.00% P. fraderiksbergensk LMG19851 ^T GCA_00015495 80.84% 24.00% P. grassnill DSM 1152 ^T GCA_001983165 80.81% 22.00% P. grassnill DSM 1153 ^T GCA_00198165 80.81% 22.00% P. grassnill DSM 1153 ^T GCA_00198165 85.88% 31.00% P. grassnill DSM 1153 ^T GCA_00028415 75.51% 22.00% P. grassnill DSM 11750 ^T GCA_00028415 75.51% 22.00% P. knackmussil BJ ¹ GCA_0002904155 84.01% 29.00% P. knackmussil BJ ¹ GCA_0002904155 84.01% 29.00% P. langr/sulfuturing AP2.10 ^T GCA_001439485 80.41% 29.00% P. langr/sulfuturing AP2.10 ^T GCA_0011075 70.46% 29.00% P. langr/sulfuturing AP2.10 ^T GCA_001439485 80.41% 29.00% P. langr/sulfuturing AP2.10 ^T GCA_0	P. azotoformans LMG 21611^{T}	GCA_900103345	80.75%	25.10%
P. entomophile L48 ¹ CCA_00025105 77.45% 22.40% P. fluorescens ATC 13525 ¹ CCA_00015435 80.84% 24.40% P. inderiksbergensis LMG 19831 ¹ CCA_00016895 80.64% 23.10% P. inderiksbergensis LMG 19831 ¹ CCA_001783165 80.81% 25.00% P. granndensis LMG 2740 ¹ CCA_0015436 85.88% 31.60% P. granndensis LMG 2740 ¹ CCA_00015418 87.32% 22.70% P. knochnussis B13 ⁷ CCA_000284115 75.1% 21.00% P. knochnussis B13 ⁷ CCA_000382185 90.22% 42.20% P. karobensis KCG 32541 ¹ CCA_002394655 84.74% 29.70% P. karobensis KCG 32541 ¹ CCA_002394655 84.74% 29.70% P. laurylsulfatiphila AP3.16 ¹ CCA_00143968 80.41% 45.05% P. laurylsulfatiphila AP3.	P. baetica LMG 25716^{T}	GCA_002813455	86.58%	33.30%
P. fluorescens ATCC 13325 ^T GCA. 900215245 80.84% 24.40% P. fredicikbergensis LIKG1981 ^{II} GCA. 900215245 84.04% 29.10% P. fuscovaginae LIKG 2158 ^{II} GCA. 900108595 80.04% 24.60% P. gesondii DSM 17152 ^{II} GCA. 900118735 77.72% 22.70% P. granninb DSM 11363 ^{II} GCA. 90011735 77.72% 22.70% P. granninb DSM 11363 ^{II} GCA. 900215415 84.40% 29.70% P. granninb DSM 1150 ^{II} GCA. 000234115 84.40% 29.70% P. kanckmussii B13 ^T GCA. 00012415 87.32% 32.63% P. koncensis LIKG 21318 ^{II} GCA. 000332185 90.22% 42.20% P. lauryskiifativorans AP3.22 ^{II} GCA. 00293665 84.41% 29.20% P. lauryskiifativorans AP3.22 ^{II} GCA. 00140735 84.41% 29.20% P. libar DSM 17149 ^{TI} GCA. 900110755 70.67% 29.20% P. libar DSM 12647 ^{II} GCA. 900110755 84.41% 29.20% P. libar DSM 12647 ^{II} GCA. 900110755 84.41% 29.20% P. libar DSM 12647 ^I	P. entomophila $L48^{T}$	GCA_000026105	77.45%	22.40%
P. frederiksbergensis LMG19851 [*] GCA.900105495 84.64% 29.10% R fuscowaginae LMG 2158 ^{-T} GCA.900108395 80.04% 24.60% P. gresserdii DSM 11363 ^{-T} GCA.90011725 77.72% 22.70% R grannin DSM 11363 ^{-T} GCA.900105485 85.88% 31.60% P. greandensis LMG 27940 ^{-T} GCA.900105485 85.88% 31.60% P. greandensis LMG 27181 ^{-T} GCA.00228115 84.40% 29.70% P. koreensis LMG 21318 ^{-T} GCA.00089415 75.51% 21.00% P. koreensis LMG 21318 ^{-T} GCA.000238465 84.44% 29.70% P. koreensis LMG 21318 ^{-T} GCA.00294645 84.44% 29.70% P. lawryskulfativorans AP3.22 ^{-T} GCA.00294645 84.44% 29.50% P. lawryskulfativorans AP3.22 ^{-T} GCA.900104735 84.44% 29.20% P. libanensis DSM 17149 ^{-T} GCA.900104735 84.44% 29.20% P. libanensis DSM 17149 ^{-T} GCA.90010605 84.11% 28.90% P. libanensis DSM 17149 ^{-T} GCA.90010515 84.24% 29.20% P. mordelil LMG	P. fluorescens ATCC 13525^{T}	GCA_900215245	80.84%	24.40%
P. fuscovaginae LMG 218a ^T GCA .900108595 80.04% 24.60% P. gesandii DSM 17152 ^T GCA .001981165 80.81% 25.00% P. grandinis DSM 11363 ^T GCA .0010445 85.88% 31.60% P. grandenis LMG 27940 ^T GCA .000230115 84.40% 29.70% P. koreenis LMG 21318 ^T GCA .000239115 84.40% 29.70% P. koreenis LMG 21318 ^T GCA .0002391465 87.32% 32.63% P. koreenis LMG 21318 ^T GCA .002392185 90.22% 42.63% P. kinbenis KTC 32541 ^T GCA .002934665 84.44% 29.70% P. laurylsulfatiophila AP3.16 ^T GCA .002934665 84.41% 29.50% P. laurylsulfatiophila AP3.16 ^T GCA .002934665 84.41% 29.50% P. lin DSM 1140 ^{T1} GCA .0014735 84.41% 29.50% P. lin DSM 16768 ^T GCA .900110795 70.69% 19.50% P. madelli LMG 2217 ^T GCA .90010605 84.41% 29.90% P. madelli LMG 2217 ^T GCA .90010605 84.15% 29.30% P. montelli DSM 14164 ^T GCA .	P. frederiksbergensis $LMG19851^T$	GCA_900105495	84.64%	29.10%
P. gessardii DSM 17152 ^T GCA. 001983165 80.81% 25.00% P. granadenis LMG 27940 ^T GCA. 90011775 77.72% 22.70% P. granadenis LMG 27940 ^T GCA. 900105485 85.88% 31.60% P. granadenis LMG 27940 ^T GCA. 002236115 84.40% 229.70% P. knackmussii B13 ^T GCA. 000236115 87.32% 32.63% P. knackmussii B13 ^T GCA. 000352185 90.22% 42.20% P. knackmussii B13 ^T GCA. 00239465 84.74% 29.70% P. laurylsulfatiphin AP3_16 ^T GCA. 00294655 84.61% 29.70% P. laurylsulfatiphin AP3_12 ^T GCA. 00147955 84.41% 29.50% P. libonensis DSM 17149 ^T GCA. 90011075 70.69% 19.50% P. libonensis LMG 2210 ^T GCA. 90010055 84.41% 29.20% P. madelii LMG 2210 ^T GCA. 90010055 84.24% 29.20% P. morei DSM 1832 ^T GCA. 90010215 84.24% 29.20% P. morei DSM 1832 ^T GCA. 90010205 85.75% 31.70% P. morei DSM 1812 ^T GCA. 90010515 <td>P. fuscovaginae LMG 2158^T</td> <td>GCA_900108595</td> <td>80.04%</td> <td>24.60%</td>	P. fuscovaginae LMG 2158 ^T	GCA_900108595	80.04%	24.60%
P. graminis DSM 11363 ^T GCA. 900111735 77.72% 22.70% P. graminis DSM 11363 ^T GCA. 90015485 85.88% 31.60% P. jessenii DSM 11350 ^T GCA. 002236115 84.40% 29.70% P. knackmussi B13 ^T GCA. 000689415 75.51% 21.00% P. knackmussi BIA ^T GCA. 000332185 90.22% 42.20% P. knibbensis KCTC 32541 ^T GCA. 00234655 84.74% 29.70% P. knarykulatiphila AP3_16 ^T GCA. 00293465 84.41% 29.50% P. laurykulatiphila AP3_12 ^T GCA. 001439685 80.41% 29.50% P. laurykulatiphila AP3_12 ^T GCA. 90010475 84.44% 29.20% P. laurykulatiphila AP3_12 ^T GCA. 90010475 84.44% 29.20% P. laurykulatiphila AP3_12 ^T GCA. 90010605 84.41% 29.00% P. markelli LMG 2210 ^T GCA. 90010605 84.41% 29.00% P. monteili DSM 11464 ^T GCA. 90010605 84.41% 29.00% P. monteili DSM 14164 ^T GCA. 90010605 85.75% 31.70% P. monteili DSM 14164 ^T <	P. gessardii DSM 17152 ^{T}	GCA_001983165	80.81%	25.00%
P. granadensis LMG 27940 ¹ GCA_0023645 85.88% 31.60% P. jessenii DSM 17150 ¹ GCA_00236415 84.40% 29.70% P. koreensis LMG 21318 ¹ GCA_000689415 75.51% 21.00% P. koreensis LMG 21318 ¹ GCA_000352185 90.22% 42.20% P. koreensis LMG 21318 ¹ GCA_002934665 84.74% 29.70% P. laurykulfatiphila AP3_16 ¹ GCA_002904155 84.61% 29.50% P. laurykulfatiphila AP3_22 ²¹ GCA_001439685 80.41% 29.20% P. lini DSM 1749 ^T GCA_90010795 70.69% 19.50% P. lini DSM 1764 ^T GCA_90016025 84.41% 29.20% P. mandelii LMG 2100 ^T GCA_90016025 84.24% 29.20% P. mandelii DSM 18327 ^T GCA_90016025 84.76% 29.20% P. morei DSM 14164 ^T GCA_90016025 84.76% 29.20% P. morei DSM 14164 ^T GCA_90016045 80.17% 29.20% P. morei DSM 12647 ^T GCA_90016045 80.17% 29.20% P. morei DSM 12647 ^T GCA_90016045 80.17	P. graminis DSM 11363^{T}	GCA_900111735	77.72%	22.70%
P. jessenii DSM 17150 ^T GCA_002236115 84.40% 29.70% P. knackmussii B13 ^T GCA_000689415 75.51% 21.00% P. knackmussii B13 ^T GCA_000352185 90.22% 42.20% P. kribbensis KCT 232541 ^T GCA_003352185 90.22% 42.20% P. kurylsulfatibhila AP3_16 ^T GCA_00294665 84.41% 29.70% P. laurylsulfatibhila AP3_16 ^T GCA_001439685 80.41% 24.50% P. liabra ISM 17149 ^T GCA_0014795 84.44% 29.20% P. liabra ISM 16768 ^T GCA_90010605 84.41% 28.90% P. mandelli LMG 2101 ^T GCA_90010605 84.51% 29.40% P. mandelli LMG 2108 ^T GCA_90010605 84.51% 29.20% P. mandelli LMG 2108 ^T GCA_90010605 84.51% 29.20% P. mandelli LMG 2108 ^T GCA_90010245 87.70% 21.80% P. mandelli LMG 24080 ^T GCA_90010245 80.17% 22.50% P. mandelli LMG 24080 ^T GCA_90010245 80.75% 21.80% P. mononei DSM 12647 ^T GCA_900105155 <td< td=""><td>P. granadensis LMG 27940[™]</td><td>GCA_900105485</td><td>85.88%</td><td>31.60%</td></td<>	P. granadensis LMG 27940 [™]	GCA_900105485	85.88%	31.60%
P. knackmussil B13 ^T GCA_000689415 75.51% 21.00% P. koreensis LMG 21318 ^T GCA_00014115 87.32% 32.63% P. kribbensis KCTG 23241 ^T GCA_003352185 90.22% 42.20% P. kaurylsulfatiphila AP3_16 ^T GCA_00294665 84.61% 29.70% P. laurylsulfatiphila AP3_16 ^T GCA_002906155 84.61% 29.70% P. laurylsulfatiphila AP3_16 ^T GCA_001439685 80.41% 24.50% P. libanensis DSM 17149 ^T GCA_00104735 84.44% 29.20% P. lind LMG 21074 ^T GCA_000106025 84.41% 29.20% P. mandelli LMG 2210 ^T GCA_000106025 84.41% 29.20% P. montelli LMG 2210 ^T GCA_00106025 84.51% 29.20% P. montelli DSM 18227 ^T GCA_0010625 84.76% 29.20% P. montelli DSM 18227 ^T GCA_0010245 87.75% 21.80% P. moorel DSM 12649 ^T GCA_0010245 87.75% 21.80% P. moreli DSM 126427 ^T GCA_00016025 84.76% 29.30% P. parofuku DSM 17004 ^T GCA_00105055	P. jessenii DSM 17150 ^T	GCA_002236115	84.40%	29.70%
P. koreensis LMG 21318 ^T GCA 900101415 87.32% 32.63% P. kiribbensis KCTC 32541 ^T GCA_003352185 90.22% 42.00% P. kurylsulfatiphila AP3_16 ^T GCA_002934665 84.74% 29.70% P. kurylsulfativorans AP3_22 ^T GCA_002906155 84.61% 29.50% P. kurylsulfativorans AP3_22 ^T GCA_001439685 80.41% 29.20% P. kursensis DSM 17149 ^T GCA_00104735 84.41% 29.20% P. lint DSM 16768 ^T GCA_900106055 84.41% 28.90% P. mandelii LMG 210 ^T GCA_900106025 84.51% 29.40% P. mandelii LMG 2108 ^T GCA_900106025 84.51% 29.40% P. moribi DSM 18327 ^T GCA_900102045 84.76% 29.20% P. morielii LMG 24280 ^T GCA_900102045 80.75% 21.50% P. morei DSM 12647 ^T GCA_900102045 80.75% 21.50% P. morei DSM 12647 ^T GCA_000425765 76.47% 21.50% P. prosekii LMG 26867 ^T GCA_00073065 77.84% 22.50% P. prosekii LMG 26867 ^T GCA_00073065	P. knackmussii B13 ^T	GCA_000689415	75.51%	21.00%
P. kribbensis KCTC 32541 ^T GCA_003352185 90.22% 42.20% P. laurylsulfatiphila AP3_16 ^T GCA_002934665 84.47% 29.70% P. laurylsulfatiphila AP3_12 ^T GCA_002906155 84.61% 29.50% P. libanensis DSM 17149 ^T GCA_001439685 80.41% 29.50% P. libanensis DSM 17149 ^T GCA_00104735 84.41% 29.00% P. linde LMG 2210 ^T GCA_900106055 84.41% 28.90% P. madelli LMG 2210 ^T GCA_900106025 84.51% 29.20% P. monkii DSM 18327 ^T GCA_90010245 84.76% 29.30% P. moncei DSM 12647 ^T GCA_90010245 84.76% 29.30% P. morei DSM 12647 ^T GCA_90010245 80.75% 31.70% P. moreidi DSM 14164 ^T GCA_90010245 80.75% 31.70% P. moreidolens LMG 2223 ^T GCA_900105155 80.47% 22.50% P. parafulva DSM 1508F GCA_00073665 77.84% 22.50% P. parafulva DSM 1508F GCA_90016455 73.46% 22.50% P. parafulva DSM 1508F GCA_90014555 75.28% 21.50% P. parafulva DSM 1508F GC	P. koreensis LMG 21318 ^T	GCA_900101415	87.32%	32.63%
P. laurylsulfatiphila AP3_16 ^T GCA_002934665 84.74% 29.70% P. laurylsulfativorans AP3_22 ^T GCA_002906155 84.61% 29.50% P. libanensis DSM 71149 ^T GCA_001439685 80.41% 29.20% P. lin DSM 16768 ^T GCA_900104735 84.44% 29.20% P. lint DSM 16768 ^T GCA_90010795 70.69% 19.50% P. mandelli LMG 2210 ^T GCA_900106025 84.51% 29.40% P. migulae LMG 21608 ^T GCA_900106025 84.51% 29.40% P. montellii DSM 14164 ^T GCA_900102045 84.76% 29.30% P. moraviensis LMG 24280 ^T GCA_900102045 84.76% 29.30% P. moraviensis LMG 24280 ^T GCA_900106045 80.17% 24.50% P. moraviensis LMG 24280 ^T GCA_000425765 76.47% 21.50% P. parafulva DSM 15088 ^T GCA_00016045 80.17% 22.50% P. parafulva DSM 15088 ^T GCA_00073065 77.84% 22.50% P. parafulva DSM 15088 ^T GCA_00073065 75.28% 21.50% P. parafulva DSM 15088 ^T GCA_0	P. kribbensis KCTC 32541^{T}	GCA_003352185	90.22%	42.20%
P. laurylsulfativorans AP3_22 ^T GCA_002906155 84.61% 29.50% P. libanensis DSM 17149 ^T GCA_001439685 80.41% 29.20% P. lini DSM 16768 ^T GCA_90010735 84.44% 29.20% P. lini DSM 16768 ^T GCA_90010795 70.69% 19.50% P. mandelii LMG 21974 ^T GCA_90010605 84.41% 28.90% P. mandelii LMG 2100 ^T GCA_900106025 84.51% 29.20% P. monteliii DSM 18327 ^T GCA_900105115 84.24% 29.20% P. monteliii DSM 14164 ^T GCA_900106025 84.76% 29.30% P. moraviensis LMG 24280 ^T GCA_900105015 84.76% 29.30% P. moraviensis LMG 24280 ^T GCA_900106045 80.17% 24.50% P. andrulva DSM 17004 ^T GCA_000730655 77.84% 22.50% P. parafulva DSM 15088 ^T GCA_900105155 84.28% 28.40% P. prosekii LMG 26867 ^T GCA_900142655 75.28% 21.50% P. prosekii LMG 26867 ^T GCA_00073065 77.34% 22.30% P. punonensis LMG 26837 ^T GCA_00142655<	P. laurylsulfatiphila AP3_16 ^T	GCA_002934665	84.74%	29.70%
P. libanensis DSM 17149 ^T GCA_001439685 80.41% 24.50% P. lini DSM 16768 ^T GCA_900104735 84.44% 29.20% P. lutea LMG 21974 ^T GCA_900106055 84.41% 28.90% P. mandelii LMG 2210 ^T GCA_900106025 84.51% 29.40% P. migulae LMG 21608 ^T GCA_900106025 84.51% 29.20% P. migulae LMG 21608 ^T GCA_900105115 84.24% 29.20% P. monteliii DSM 18327 ^T GCA_900102045 84.76% 29.20% P. monteliii DSM 14164 ^T GCA_900102045 84.76% 29.20% P. moroteliii DSM 14164 ^T GCA_900102045 85.75% 21.80% P. moroteliii DSM 14164 ^T GCA_900102045 80.17% 24.50% P. moroteliii DSM 14064 ^T GCA_900105805 85.75% 21.50% P. moroteliii DSM 1508 ^T GCA_000425765 76.47% 22.50% P. parafulva DSM 17004 ^T GCA_000730665 77.84% 22.50% P. parafulva DSM 15088 ^T GCA_000174555 75.28% 23.90% P. punonensis LMG 26837 ^T GCA_000195365 <td>P. laurylsulfativorans $AP3_22^T$</td> <td>GCA_002906155</td> <td>84.61%</td> <td>29.50%</td>	P. laurylsulfativorans $AP3_22^T$	GCA_002906155	84.61%	29.50%
P. lini DSM 16768 ^T GCA_900104735 84.44% 29.20% P. lutea LMG 21974 ^T GCA_900110795 70.69% 19.50% P. mandelli LMG 2210 ^T GCA_90016065 84.41% 28.90% P. migulae LMG 21608 ^T GCA_90016025 84.51% 29.20% P. mohnii DSM 18327 ^T GCA_90016025 84.24% 29.20% P. monci DSM 12647 ^T GCA_000621245 77.07% 21.80% P. moraviensis LMG 24280 ^T GCA_900105805 85.75% 31.70% P. moraviensis LMG 24280 ^T GCA_90016045 80.17% 24.50% P. maradulao LSM 1504 T GCA_000425765 76.47% 25.50% P. paceglossicida DSM 1508 T GCA_000425765 76.47% 25.50% P. paceglossicida DSM 1508 T GCA_00014555 75.86% 25.50% P. paceglossicida DSM 1508 T GCA_90014555 75.28% 21.50% P. puncensis LMG 2683 T GCA_000730665 71.34% 22.90% P. puncensis LMG 2683 T GCA_90014555 75.28% 21.50% P. puncensis LMG 2683 T GCA_000745155 75.28% 22.90% P. reinecki MT1 ^T GCA_0014	P. libanensis DSM 17149 ^{T}	GCA_001439685	80.41%	24.50%
P. lutea LMG 21974 ^T GCA_900110795 70.69% 19.50% P. mandelii LMG 2210 ^T GCA_900106055 84.41% 28.90% P. migulae LMG 21608 ^T GCA_900106025 84.51% 29.40% P. mohnii DSM 18327 ^T GCA_900105115 84.24% 29.20% P. monteilii DSM 14327 ^T GCA_90012045 84.76% 29.30% P. moorei DSM 12647 ^T GCA_90012045 84.76% 29.30% P. moraviensis LMG 24280 ^T GCA_900105805 85.75% 31.70% P. moraviensis LMG 2223 ^T GCA_900106045 80.17% 24.50% P. parafulva DSM 17004 ^T GCA_000425765 76.47% 21.50% P. parafulva DSM 15088 ^T GCA_000730665 77.84% 22.50% P. prosekii LMG 26867 ^T GCA_900142555 75.28% 21.50% P. punoensis LMG 26889 ^T GCA_900142655 77.34% 22.30% P. reineki MTI ^T GCA_000731155 77.34% 22.30% P. reineki MTI ^T GCA_00074155 77.99% 22.90% P. rinosopharene DSM 16299 ^T GCA_00075155 83.	P. lini DSM 16768^{T}	GCA_900104735	84.44%	29.20%
P. mandelii LMG 2210 ^T GCA_900106055 84.41% 28.90% P. migulae LMG 21608 ^T GCA_900106025 84.51% 29.40% P. mohnii DSM 18327 ^T GCA_900105115 84.24% 29.20% P. monteilii DSM 14164 ^T GCA_000621245 77.07% 21.80% P. morei DSM 12647 ^T GCA_900102045 84.76% 29.30% P. moraviensis LMG 24280 ^T GCA_900105805 85.75% 31.70% P. maraviensis LMG 2223 ^T GCA_900106045 80.17% 24.50% P. parafulva DSM 17004 ^T GCA_000425765 76.47% 21.50% P. parafulva DSM 15088 ^T GCA_000730665 77.84% 22.50% P. prosekii LMG 26867 ^T GCA_900105155 84.28% 28.40% P. punonensis LMG 26839 ^T GCA_900142655 75.28% 21.50% P. punonensis LMG 26839 ^T GCA_00124545 77.34% 22.30% P. reinekei MT1 ^T GCA_000761155 77.99% 22.90% P. reinekei MT1 ^T GCA_000761155 77.99% 22.90% P. synxantha NCTC 10696 ^T GCA_00236105 83.79% 28.60% P. vancouverensis DAA-51 ^T <td< td=""><td>P. lutea LMG 21974^T</td><td>GCA_900110795</td><td>70.69%</td><td>19.50%</td></td<>	P. lutea LMG 21974 ^T	GCA_900110795	70.69%	19.50%
P. migulae LMG 21608 ^T GCA_900106025 84.51% 29.40% P. mohnii DSM 18327 ^T GCA_900105115 84.24% 29.20% P. monteilii DSM 14164 ^T GCA_000621245 77.07% 21.80% P. morei DSM 12647 ^T GCA_900102045 84.76% 29.30% P. morei DSM 12647 ^T GCA_900102045 84.76% 29.30% P. moraviensis LMG 24280 ^T GCA_900106045 80.17% 24.50% P. mucidolens LMG 2223 ^T GCA_000425765 76.47% 21.50% P. parafulva DSM 17004 ^T GCA_000730665 77.84% 22.50% P. prosekii LMG 26867 ^T GCA_90015155 84.28% 28.40% P. punonensis LMG 26839 ^T GCA_900142655 75.28% 21.50% P. putida NCTC 10936 ^T GCA_001945365 84.16% 29.00% P. reinekei MT1 ^T GCA_000761155 77.99% 22.30% P. synxantha NCTC 10696 ^T GCA_001945365 83.17% 29.00% P. vancouverensis DSM 16611 ^T GCA_00236105 83.79% 29.00% P. vancouverensis DSM 16611 ^T GCA_000194535 <td>P. mandelii LMG 2210^T</td> <td>GCA_900106065</td> <td>84.41%</td> <td>28.90%</td>	P. mandelii LMG 2210 ^T	GCA_900106065	84.41%	28.90%
P. mohnii DSM 18327 ^T GCA_90015115 84.24% 29.20% P. montellii DSM 14164 ^T GCA_000621245 77.07% 21.80% P. moorei DSM 12647 ^T GCA_90102045 84.76% 29.30% P. moraviensis LMG 24280 ^T GCA_90010805 85.75% 31.70% P. mucidolens LMG 2223 ^T GCA_90010645 80.17% 24.50% P. parafulva DSM 17004 ^T GCA_00025765 76.47% 21.50% P. plecoglossicida DSM 15088 ^T GCA_00030665 77.84% 22.50% P. prosekii LMG 26837 ^T GCA_900142655 75.28% 21.50% P. punonensis LMG 26839 ^T GCA_00142655 77.34% 22.30% P. putida NCTC 10936 ^T GCA_00142655 77.97% 22.90% P. reinekei MT1 ^T GCA_00142655 77.97% 22.90% P. synxantha NCTC 10696 ^T GCA_0012455 80.31% 24.70% P. wancouverensis DNA 16611 ^T GCA_00236105 83.79% 29.00% P. vancouverensis DNA 16611 ^T GCA_00142455 80.67% 28.80% P. yamanorum LMG 27247 ^T GCA_00012455 80.67% 25.9% P. fluorescens Pf0-1	P. migulae LMG 21608 ^T	GCA_900106025	84.51%	29.40%
P. monteilii DSM 14164 ^T GCA_000621245 77.07% 21.80% P. moorei DSM 12647 ^T GCA_900102045 84.76% 29.30% P. moraviensis LMG 24280 ^T GCA_900105805 85.75% 31.70% P. mucidolens LMG 2223 ^T GCA_900106045 80.17% 24.50% P. parafulva DSM 17004 ^T GCA_000425765 76.47% 21.50% P. plecoglossicida DSM 15088 ^T GCA_000730665 77.84% 22.50% P. prosekii LMG 26867 ^T GCA_900105155 84.28% 28.40% P. punonensis LMG 26839 ^T GCA_900142655 75.28% 21.50% P. putida NCTC 10936 ^T GCA_00179455645 77.34% 22.30% P. reinekei MT1 ^T GCA_00761155 77.99% 22.90% P. synxantha NCTC 10696 ^T GCA_002236105 83.79% 29.00% P. vancouverensis DSM 16611 ^T GCA_002236105 83.79% 28.80% P. yamanorum LMG 27247 ^T GCA_90105735 80.67% 25.10% P. fluorescens Pf0-1 GCA_000355645 95.59% 65.30%	P. mohnii DSM 18327^{T}	GCA_900105115	84.24%	29.20%
P. moorei DSM 12647 ^T GCA_900102045 84.76% 29.30% P. moraviensis LMG 24280 ^T GCA_900105805 85.75% 31.70% P. mucidolens LMG 2223 ^T GCA_90016045 80.17% 24.50% P. parafulva DSM 17004 ^T GCA_000425765 76.47% 21.50% P. parosekii LMG 26807 ^T GCA_000730665 77.84% 22.50% P. prosekii LMG 26807 ^T GCA_900105155 84.28% 28.40% P. punonensis LMG 26839 ^T GCA_900142655 75.28% 21.50% P. putida NCTC 10936 ^T GCA_00142655 77.34% 22.30% P. reinekei MT1 ^T GCA_001455645 77.34% 22.90% P. reinekei MT1 ^T GCA_000761155 77.99% 22.90% P. synxantha NCTC 10696 ^T GCA_002236105 83.79% 29.00% P. vancouverensis DNA 16611 ^T GCA_00236105 83.79% 28.80% P. vancouverensis DNA-51 ^T GCA_0015735 80.67% 28.00% P. yamanorum LMG 27247 ^T GCA_00012445 95.59% 65.30% P. fluorescens Pf0-1 GCA_00305645 98.24% 84.10%	P. monteilii DSM 14164 ^{T}	GCA_000621245	77.07%	21.80%
P. moraviensis LMG 24280 ^T GCA_900105805 85.75% 31.70% P. mucidolens LMG 2223 ^T GCA_900106045 80.17% 24.50% P. parafulva DSM 17004 ^T GCA_000425765 76.47% 21.50% P. plecoglossicida DSM 15088 ^T GCA_000730665 77.84% 22.50% P. prosekii LMG 26867 ^T GCA_900105155 84.28% 28.40% P. punonensis LMG 26839 ^T GCA_900142655 75.28% 21.50% P. putida NCTC 10936 ^T GCA_900142655 77.34% 22.30% P. reinekei MT1 ^T GCA_001945365 84.16% 29.00% P. reinekei MT1 ^T GCA_000761155 77.9% 22.90% P. synxantha NCTC 10696 ^T GCA_002236105 83.79% 29.00% P. vancouverensis DhA 16611 ^T GCA_002236105 83.79% 28.00% P. vancouverensis DhA-51 ^T GCA_004348895 83.95% 28.00% P. yamanorum LMG 27247 ^T GCA_00012445 95.59% 65.30% P. fluorescens Pf0-1 GCA_003055645 98.24% 84.10%	P. moorei DSM 12647 ^T	GCA_900102045	84.76%	29.30%
P. mucidolens LMG 2223 ^T GCA_900106045 80.17% 24.50% P. parafulva DSM 17004 ^T GCA_000425765 76.47% 21.50% P. plecoglossicida DSM 15088 ^T GCA_000730665 77.84% 22.50% P. prosekii LMG26867 ^T GCA_90015155 84.28% 28.40% P. punonensis LMG 26839 ^T GCA_900142655 75.28% 21.50% P. putida NCTC 10936 ^T GCA_900455645 77.34% 22.30% P. reinekei MT1 ^T GCA_001945365 84.16% 29.00% P. reinekei MT1 ^T GCA_000761155 77.99% 22.90% P. synxantha NCTC 10696 ^T GCA_00236105 83.79% 29.00% P. vancouverensis DSM 16611 ^T GCA_004348895 83.95% 28.80% P. yamanorum LMG 27247 ^T GCA_00015735 80.67% 25.10% P. fluorescens Pf0-1 GCA_000355645 98.24% 84.10%	P. moraviensis LMG 24280 ^T	GCA_900105805	85.75%	31.70%
P. parafulva DSM 17004 ^T GCA_000425765 76.47% 21.50% P. plecoglossicida DSM 15088 ^T GCA_000730665 77.84% 22.50% P. prosekii LMG26867 ^T GCA_900105155 84.28% 28.40% P. punonensis LMG 26839 ^T GCA_900142655 75.28% 21.50% P. putida NCTC 10936 ^T GCA_900455645 77.34% 22.30% P. reinekei MT1 ^T GCA_001945365 84.16% 29.00% P. rhizosphaerae DSM 16299 ^T GCA_000761155 77.99% 22.90% P. synxantha NCTC 10696 ^T GCA_002236105 83.7% 29.00% P. vancouverensis DSM 16611 ^T GCA_002236105 83.7% 28.80% P. vancouverensis DhA-51 ^T GCA_00015735 80.67% 25.10% P. fluorescens Pf0-1 GCA_00012445 95.59% 65.30% MS82 GCA_003055645 98.24% 84.10%	P. mucidolens LMG 2223^{T}	GCA_900106045	80.17%	24.50%
P. plecoglossicida DSM 15088 ^T GCA_000730665 77.84% 22.50% P. prosekii LMG26867 ^T GCA_900105155 84.28% 28.40% P. punonensis LMG 26839 ^T GCA_900142655 75.28% 21.50% P. putida NCTC 10936 ^T GCA_900455645 77.34% 22.30% P. reinekei MT1 ^T GCA_001945365 84.16% 29.00% P. rhizosphaerae DSM 16299 ^T GCA_000761155 77.99% 22.90% P. synxantha NCTC 10696 ^T GCA_002236105 80.31% 24.70% P. vancouverensis DSM 16611 ^T GCA_004348895 83.95% 28.80% P. yamanorum LMG 27247 ^T GCA_900105735 80.67% 25.10% P. fluorescens Pf0-1 GCA_003055645 98.24% 84.10%	P. parafulva DSM 17004 ^T	GCA_000425765	76.47%	21.50%
P. prosekii LMG26867 ^T GCA_90015155 84.28% 28.40% P. punonensis LMG 26839 ^T GCA_900142655 75.28% 21.50% P. putida NCTC 10936 ^T GCA_900455645 77.34% 22.30% P. reinekei MT1 ^T GCA_001945365 84.16% 29.00% P. rhizosphaerae DSM 16299 ^T GCA_000761155 77.97% 22.90% P. synxantha NCTC 10696 ^T GCA_901482615 80.31% 24.70% P. umsongensis DSM 16611 ^T GCA_002236105 83.79% 29.00% P. vancouverensis DhA-51 ^T GCA_004348895 83.95% 28.80% P. yamanorum LMG 27247 ^T GCA_00012445 95.59% 65.30% MS82 GCA_003055645 98.24% 84.10%	P. plecoglossicida DSM 15088 ^T	GCA_000730665	77.84%	22.50%
P. punonensis LMG 26839 ^T GCA_900142655 75.28% 21.50% P. putida NCTC 10936 ^T GCA_900455645 77.34% 22.30% P. reinekei MT1 ^T GCA_001945365 84.16% 29.00% P. rhizosphaerae DSM 16299 ^T GCA_000761155 77.99% 22.90% P. synxantha NCTC 10696 ^T GCA_000761155 80.31% 24.70% P. umsongensis DSM 16611 ^T GCA_002236105 83.79% 29.00% P. vancouverensis DhA-51 ^T GCA_004348895 83.95% 28.80% P. yamanorum LMG 27247 ^T GCA_900105735 80.67% 25.10% MS82 GCA_003055645 98.24% 84.10%	P. prosekii LMG26867 ^T	GCA_900105155	84.28%	28.40%
P. putida NCTC 10936 ^T GCA_900455645 77.34% 22.30% P. reinekei MT1 ^T GCA_001945365 84.16% 29.00% P. rhizosphaerae DSM 16299 ^T GCA_000761155 77.99% 22.90% P. synxantha NCTC 10696 ^T GCA_901482615 80.31% 24.70% P. umsongensis DSM 16611 ^T GCA_002236105 83.79% 29.00% P. vancouverensis DhA-51 ^T GCA_004348895 83.95% 28.80% P. yamanorum LMG 27247 ^T GCA_900105735 80.67% 25.10% MS82 GCA_003055645 98.24% 84.10%	P. punonensis LMG 26839 ^T	GCA_900142655	75.28%	21.50%
P. reinekei MT1 ^T GCA_001945365 84.16% 29.00% P. rhizosphaerae DSM 16299 ^T GCA_000761155 77.99% 22.90% P. synxantha NCTC 10696 ^T GCA_901482615 80.31% 24.70% P. umsongensis DSM 16611 ^T GCA_002236105 83.79% 29.00% P. vancouverensis DhA-51 ^T GCA_004348895 83.95% 28.80% P. yamanorum LMG 27247 ^T GCA_900105735 80.67% 25.10% P. fluorescens Pf0-1 GCA_0002445 95.59% 65.30% MS82 GCA_003055645 98.24% 84.10%	P. putida NCTC 10936^{T}	GCA_900455645	77.34%	22.30%
P. rhizosphaerae DSM 16299 ^T GCA_000761155 77.99% 22.90% P. synxantha NCTC 10696 ^T GCA_901482615 80.31% 24.70% P. umsongensis DSM 16611 ^T GCA_002236105 83.79% 29.00% P. vancouverensis DhA-51 ^T GCA_004348895 83.95% 28.80% P. yamanorum LMG 27247 ^T GCA_900105735 80.67% 25.10% P. fluorescens Pf0-1 GCA_000012445 95.59% 65.30% MS82 GCA_003055645 98.24% 84.10%	P. reinekei MT1 ^T	GCA_001945365	84.16%	29.00%
P. synxantha NCTC 10696 ^T GCA_901482615 80.31% 24.70% P. umsongensis DSM 16611 ^T GCA_002236105 83.79% 29.00% P. vancouverensis DhA-51 ^T GCA_004348895 83.95% 28.80% P. yamanorum LMG 27247 ^T GCA_900105735 80.67% 25.10% P. fluorescens Pf0-1 GCA_000012445 95.59% 65.30% MS82 GCA_003055645 98.24% 84.10%	P. rhizosphaerae DSM 16299 ^T	GCA_000761155	77.99%	22.90%
P. umsongensis DSM 16611 ^T GCA_002236105 83.79% 29.00% P. vancouverensis DhA-51 ^T GCA_004348895 83.95% 28.80% P. yamanorum LMG 27247 ^T GCA_900105735 80.67% 25.10% P. fluorescens Pf0-1 GCA_000012445 95.59% 65.30% MS82 GCA_003055645 98.24% 84.10%	P. synxantha NCTC 10696 ^T	GCA_901482615	80.31%	24.70%
P. vancouverensis DhA-51 ^T GCA_004348895 83.95% 28.80% P. yamanorum LMG 27247 ^T GCA_900105735 80.67% 25.10% P. fluorescens Pf0-1 GCA_000012445 95.59% 65.30% MS82 GCA_003055645 98.24% 84.10%	P. umsongensis DSM 16611 ^T	GCA_002236105	83.79%	29.00%
P. yamanorum LMG 27247 ^T GCA_900105735 80.67% 25.10% P. fluorescens Pf0-1 GCA_000012445 95.59% 65.30% MS82 GCA_003055645 98.24% 84.10%	P. vancouverensis $DhA-51^{T}$	GCA_004348895	83.95%	28.80%
P. fluorescens Pf0-1 GCA_000012445 95.59% 65.30% MS82 GCA_003055645 98.24% 84.10%	P. yamanorum LMG 27247 ^T	GCA_900105735	80.67%	25.10%
MS82 GCA_003055645 98.24% 84.10%	P. fluorescens Pf0-1	GCA_000012445	95.59%	65.30%
	MS82	GCA_003055645	98.24%	84.10%

 α -hydroxybutyric acid, α -ketobutyric acid, acetoacetic acid, and formic acid. According to API 20 NE tests, the organism is positive for the hydrolysis of gelatin, arginine dihydrolase, and assimilation of glucose, arabinose, mannose, mannitol, N-acetyl-glucosamine, potassium gluconate, capric acid, malic acid, and trisodium citrate, but negative for the reduction of nitrate to nitrogen and nitrogen, indole production, glucose fermentation, urease, hydrolysis of esculin and β -galactosidase, and assimilation of maltose, adipic acid,

FIGURE 2 Whole-genome sequence tree generated with TYGS for strain MS586^T and its closely related species of the genus *Pseudomonas.* Tree inferred with FastME from GBDP distances was calculated from genome sequences. Branch lengths are scaled in terms of GBDP distance formula d5; numbers above branches are GBDP pseudo-bootstrap support values from 100 replications. The colored squares designate species cluster. Accession numbers of sequences used in this study are summarized in Table A3

TABLE 4	Cellular fatty a	cid profiles of strain	MS586 ¹	and strains of	closely re	lated species
---------	------------------	------------------------	--------------------	----------------	------------	---------------

Fatty acid	1	2 ^a	3 ^b	4 ^c	5°	6 ^d	7 ^e	8 ^e	9 ^e	10 ^e
С _{10:0} 3-ОН	6.6	5.4	3.2	2.6	2.2	3.4	4.8	2.8	3.3	2.9
С _{12:0} 2-ОН	5.5	6.8	4.7	4.9	5	5.5	3.8	5.5	4.3	3.5
C _{12:0} 3-OH	6.7	7.5	2.5	4.1	4	3.2	5.7	3.2	4.8	3.7
C _{10:0}	0.8	ND	ND	ND	ND	0.1	0.3	0.1	ND	ND
C _{12:0}	2.9	ND	1.5	2.1	1.6	1.7	3.8	4.7	3.6	2.8
C _{14:0}	0.6	1.2	ND	0.4	0.7	0.5	0.6	0.3	0.7	0.7
C _{16:0}	22.9	33.4	32	29	33	29.4	29.4	29.4	36.5	36
C _{17:0} cyclo	10.3	15.1	6.9	2.4	2	3.2	9.4	0.9	22.3	21
C _{18:0}	0.3	1.6	ND	0.5	0.7	0.3	0.2	0.7	0.8	0.9
C _{19:0} ω8c	1.2	ND	ND	0.2	ND	ND	ND	ND	0.7	1.2
Summed feature 3	23.6	16.8	36	36	37	39.5	30.8	38.1	28	23
Summed feature 8	13.4	8.9	12	17	13	12.2	8.5	17.2	8.6	10

Note: Strains. 1, MS586^T; 2, P. kribbensis 46-2^T; 3, P. granadensis F-278,770^T; 4, P. moraviensis 1B4^T; 5, P. koreensis Ps9-14^T; 6, P. baetica a390^T; 7, P. vancouverensis DhA-51^T; 8, P. jessenii DSM 17150^T; 9, P. reinekei MT1^T; and 10, P. moorei RW10^T. Data for strain MS586^T were obtained in this study. Data for other type strains were obtained from references. a, (Chang et al., 2016); b, (Pascual et al., 2015); c, (Tvrzova et al., 2006); d, (Lopez et al., 2012); and e, (Camara et al., 2007). Values are percentages of total fatty acids.

Summed features represent groups of two or three fatty acids that cannot be separated by GC with the MIDI system. Summed feature 3 consists of C16:1 ω 7c/C16:1 ω 7c/C16:1 ω 6c; summed feature 8 consists of C18:1 ω 7c/C18:1 ω 6c.

Abbreviation: ND, not detected/not reported.

and phenylacetic acid. According to API 50 CH tests, the organism is positive for acid production from L-arabinose, D-ribose, D-xylose, D-mannose, D-mannitol, and D-fucose, but negative for erythritol, D-arabinose, L-xylose, D-adonitol, methyl-β-D-xylopyranoside, D-galactose, D-fructose, D-sorbose, L-rhamnose, dulcitol, inositol, D-sorbitol, methyl-α-D-mannopyranoside, methyl-α-Dglucopyranoside, amygdalin, arbutin, esculin, salicin, D-cellobiose, D-maltose, D-melibiose, sucrose, D-trehalose, inulin, D-melezitose, I FV_MicrobiologyOpen

D-raffinose, starch, glycogen, xylitol, gentiobiose, D-turanose, Dlyxose, D-tagatose, L-fucose, D-arabitol, L-arabitol, potassium 2-ketogluconate, and potassium 5-ketogluconate. The predominant quinone system is Q-9. Polar lipids are diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, three unidentified phospholipids, and one unidentified lipid. The type strain is MS586^T (LMG 30275^T, NRRL B-65441^T), isolated from the rhizosphere of soybean grown in Mississippi. The DNA G+C content of the type strain is 60.48 mol%.

ACKNOWLEDGMENTS

This study was supported by the National Institute of Food and Agriculture, United States Department of Agriculture (MIS-401200). We appreciate Kate Phillips for English proofreading.

CONFLICT OF INTEREST

None declared.

AUTHOR CONTRIBUTIONS

Jiayuan Jia: Formal analysis (equal); visualization (equal); writing – original draft (equal). Xiaoqiang Wang: Formal analysis (equal); investigation (equal); writing – original draft (equal). Peng Deng: Formal analysis (equal). Lin Ma: Formal analysis (equal); resources (equal). Sonya M. Baird: Methodology (equal). Xiangdong Li: Formal analysis (equal); funding acquisition (equal). Shi-En Lu: Conceptualization (equal); formal analysis (equal); funding acquisition (equal); project administration (equal); writing – original draft (equal); writing – review & editing (equal).

ETHICS STATEMENT

None required.

DATA AVAILABILITY STATEMENT

The GenBank accession numbers for the complete genome of *Pseudomonas glycinae* MS586^T and the full-length sequence of 16S rDNA are CP014205 and MG692779, respectively. The type strain MS586^T was deposited in the ARS Culture Collection, National Center for Agricultural Utilization Research, Peoria, IL, USA (Culture collection 1 accession #NRRL B-6544: https://nrrl.ncaur.usda.gov/cgi-bin/usda/prokaryote/report.html?nrrlc odes=B-65441), and the BCCM/LMG Bacteria Collection, Laboratorium voor Microbiologie, Universiteit Gent, Belgium (Culture collection 2 accession #LMG 30275: https://bccm.belspo. be/catalogues/Img-strain-details?NUM=30275).

ORCID

Shi-En Lu D https://orcid.org/0000-0003-2255-1404

REFERENCES

 Angiuoli, S. V., Gussman, A., Klimke, W., Cochrane, G., Field, D., Garrity,
 G. M., ... White, O. (2008). Toward an online repository of standard operating procedures (SOPs) for (meta) genomic annotation. OMICS A Journal of Integrative Biology, 12(2), 137-141. https://doi. org/10.1089/omi.2008.0017

- Camara, B., Strömpl, C., Verbarg, S., Spröer, C., Pieper, D. H., & Tindall, B. J. (2007). Pseudomonas reinekei sp. nov., Pseudomonas moorei sp. nov. and Pseudomonas mohnii sp. nov., novel species capable of degrading chlorosalicylates or isopimaric acid. International Journal of Systematic and Evolutionary Microbiology, 57(5), 923–931. https://doi. org/10.1099/ijs.0.64703-0
- Chang, D.-H., Rhee, M.-S., Kim, J.-S., Lee, Y., Park, M. Y., Kim, H., ... Kim, B.-C. (2016). *Pseudomonas kribbensis* sp. nov., isolated from garden soils in Daejeon, Korea. *Antonie Van Leeuwenhoek*, 109(11), 1433– 1446. https://doi.org/10.1007/s10482-016-0743-0
- Chelius, M. K., & Triplett, E. W. (2000). Immunolocalization of dinitrogenase reductase produced by *Klebsiella pneumoniae* in association with *Zea mays* L. *Applied and Environmental Microbiology*, 66, 783–787. https://doi.org/10.1128/AEM.66.2.783-787.2000
- Doyle, J. J. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. *Phytochemical Bulletin*, *19*, 11–15.
- Durfee, T., Nelson, R., Baldwin, S., Plunkett, G., Burland, V., Mau, B., ... Blattner, F. R. (2008). The complete genome sequence of *Escherichia coli* DH10B: Insights into the biology of a laboratory workhorse. *Journal of Bacteriology*, 190(7), 2597–2606. https://doi.org/10.1128/ JB.01695-07
- Furmanczyk, E. M., Kaminski, M. A., Lipinski, L., Dziembowski, A., & Sobczak, A. (2018). *Pseudomonas laurylsulfatovorans* sp. nov., sodium dodecyl sulfate degrading bacteria, isolated from the peaty soil of a wastewater treatment plant. *Systematic and Applied Microbiology*, 41(4), 348–354. https://doi.org/10.1016/j.syapm.2018.03.009
- Gomila, M., Peña, A., Mulet, M., Lalucat, J., & García-Valdés, E. (2015). Phylogenomics and systematics in *Pseudomonas*. Frontiers in Microbiology, 6, 214. https://doi.org/10.3389/fmicb.2015.00214
- Gu, G., Wang, N., Chaney, N., Smith, L., & Lu, S.-E. (2009). AmbR1 is a key transcriptional regulator for production of antifungal activity of Burkholderia contaminans strain MS14. FEMS Microbiology Letters, 297(1), 54–60. https://doi.org/10.1111/j.1574-6968.2009.01653.x
- Hesse, C., Schulz, F., Bull, C. T., Shaffer, B. T., Yan, Q., Shapiro, N., ... Paulsen, I. T. (2018). Genome-based evolutionary history of *Pseudomonas* spp. *Environmental Microbiology*, 20(6), 2142–2159. https://doi.org/10.1111/1462-2920.14130
- Hildebrand, D., Palleroni, N., Hendson, M., Toth, J., & Johnson, J. (1994). Pseudomonas flavescens sp. nov., isolated from walnut blight cankers. International Journal of Systematic and Evolutionary Microbiology, 44, 410–415. https://doi.org/10.1099/00207 713-44-3-410
- Kim, M., Oh, H.-S., Park, S.-C., & Chun, J. (2014). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. *International Journal of Systematic and Evolutionary Microbiology*, 64, 346–351. https://doi.org/10.1099/ijs.0.059774-0
- King, E. O., Ward, M. K., & Raney, D. E. (1954). Two simple media for the demonstration of pyocyanin and fluorescein. *The Journal of Laboratory and Clinical Medicine*, 44(2), 301–307.
- Koeuth, T., Versalovic, J., & Lupski, J. R. (1995). Differential subsequence conservation of interspersed repetitive *Streptococcus pneumoniae* BOX elements in diverse bacteria. *Genome Research*, 5(4), 408–418. https://doi.org/10.1101/gr.5.4.408
- Konstantinidis, K. T., & Tiedje, J. M. (2005). Genomic insights that advance the species definition for prokaryotes. Proceedings of the National Academy of Sciences of the United States of America, 102(7), 2567–2572. https://doi.org/10.1073/pnas.0409727102
- Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. *Molecular Biology and Evolution*, 33(7), 1870–1874. https://doi.org/10.1093/ molbev/msw054

MicrobiologyOpen

-Wiley

- Lane, D. J. (1991). 16S/23S rRNA sequencing. In E. Stackebrandt, & M. Goodfellow (Eds.), Nucleic acid techniques in bacterial systematics (pp. 125–175). New York, NY: John Wiley & Sons.
- Lopes, L. D., Davis, E. W., Pereira e Silva, M. D. C., Weisberg, A. J., Bresciani, L., ... Andreote, F. D. (2018). Tropical soils are a reservoir for fluorescent *Pseudomonas* spp. biodiversity. *Environmental Microbiology*, 20(1), 62–74. https://doi.org/10.1111/1462-2920.13957
- López, J. R., Diéguez, A. L., Doce, A., De la Roca, E., De la Herran, R., Navas, J. I., ... Romalde, J. L. (2012). Pseudomonas baetica sp. nov., a fish pathogen isolated from wedge sole, Dicologlossa cuneata (Moreau). International Journal of Systematic and Evolutionary Microbiology, 62(4), 874-882. https://doi.org/10.1099/ijs.0.030601-0
- Ma, L., Qu, S., Lin, J., Jia, J., Baird, S. M., Jiang, N., ... Lu, S.-E. (2019). The complete genome of the antifungal bacterium *Pseudomonas* sp. strain MS82. *Journal of Plant Diseases and Protection*, 126(2), 153–160. https://doi.org/10.1007/s41348-019-00205-z
- Ma, L., Wang, X., Deng, P., Baird, S. M., Liu, Y., Qu, S., & Lu, S.-E. (2017). The PafR gene is required for antifungal activity of strain MS82 against Mycogone perniciosa. Advances in Microbiology, 7(4), 217–230. https://doi.org/10.4236/aim.2017.74018
- Meier-Kolthoff, J. P., Auch, A. F., Klenk, H.-P., & Göker, M. (2013). Genome sequence-based species delimitation with confidence intervals and improved distance functions. *BMC Bioinformatics*, 14(1), 60. https:// doi.org/10.1186/1471-2105-14-60
- Meier-Kolthoff, J. P., & Göker, M. (2019). TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. *Nature Communications*, 10(1), 1–10. https://doi.org/10.1038/ s41467-019-10210-3
- Migula, W. (1894). Über ein neues system der bakterien. Arb Bakteriol Inst Karlsruhe, 1, 235–238.
- Moore, E. R. B., Mau, M., Arnscheidt, A., Böttger, E. C., Hutson, R. A., Collins, M. D., ... Timmis, K. N. (1996). The determination and comparison of the 16S rRNA gene sequences of species of the genus *Pseudomonas* (sensu stricto) and estimation of the natural intrageneric relationships. *Systematic and Applied Microbiology*, *19*, 478–492. https://doi.org/10.1016/S0723-2020(96)80021-X
- Moore, E. R., Tindall, B. J., Martins Dos Santos, V., Pieper, D. H., Ramos, J.-L., & Palleroni, N. J. (2006). Nonmedical: *Pseudomonas. The Prokaryotes*, 6, 646–703.
- Mootz, H. D., & Marahiel, M. A. (1997). Biosynthetic systems for nonribosomal peptide antibiotic assembly. *Current Opinion in Chemical Biology*, 1(4), 543–551. https://doi.org/10.1016/S1367-5931(97)80051-8
- Mulet, M., Bennasar, A., Lalucat, J., & García-Valdés, E. (2009). An rpoDbased PCR procedure for the identification of *Pseudomonas* species and for their detection in environmental samples. *Molecular* and Cellular Probes, 23, 140–147. https://doi.org/10.1016/j. mcp.2009.02.001
- Murray, R. G. E., Doetsch, R. N., & Robinow, C. F. (1994). Determination and cytological light microscopy. In P. Gerhardt, R. G. E. Murray, W. A. Wood, & N. R. Krieg (Eds.), *Methods for general and molecular bacteriology* (pp. 32–34). Washington, DC: American Society for Microbiology.
- Oueslati, M., Mulet, M., Gomila, M., Berge, O., Hajlaoui, M. R., Lalucat, J., & García-Valdés, E. (2019). New species of pathogenic *Pseudomonas* isolated from citrus in Tunisia: Proposal of *Pseudomonas kairouanensis* sp. nov. and *Pseudomonas nabeulensis* sp. nov. *Systematic and Applied Microbiology*, 42(3), 348–359. https://doi.org/10.1016/j.syapm.2019.03.002
- Palleroni, N. J. (1994). Pseudomonas classification. A new case history in the taxonomy of gram-negative bacteria. Antonie Van Leeuwenhoek, 64, 231–251. https://doi.org/10.1007/BF00873084
- Palleroni, N. J. (2005). Genus I. Pseudomonas migula 1894, 237AL (Nom. Cons., Opin. 5 of the Jud. Comm. 1952, 121). In D. R. Boone, D. J. Brenner, R. W. Castenholz, G. M. Garrity, N. R. Krieg, & J. T. Staley (Eds.), Bergey's manual of systematic bacteriology (2nd ed., pp. 323– 379). New York, NY: Springer.

- Pascual, J., García-López, M., Bills, G. F., & Genilloud, O. (2015). Pseudomonas granadensis sp. nov., a new bacterial species isolated from the Tejeda, Almijara and Alhama Natural Park, Granada, Spain. International Journal of Systematic and Evolutionary Microbiology, 65(2), 625-632. https://doi.org/10.1099/ijs.0.069260-0
- Pascual, J., Macián, M. C., Arahal, D. R., Garay, E., & Pujalte, M. J. (2010). Multilocus sequence analysis of the central clade of the genus Vibrio by using the 16S rRNA, recA, pyrH, rpoD, gyrB, rctB and toxR genes. International Journal of Systematic and Evolutionary Microbiology, 60, 154–165. https://doi.org/10.1099/ijs.0.010702-0
- Peix, A., Berge, O., Rivas, R., Abril, A., & Velázquez, E. (2005). Pseudomonas argentinensis sp. nov., a novel yellow pigment-producing bacterial species, isolated from rhizospheric soil in Cordoba, Argentina. International Journal of Systematic and Evolutionary Microbiology, 55(3), 1107–1112. https://doi.org/10.1099/ijs.0.63445-0
- Peix, A., Ramirez-Bahena, M.-H., & Velazquez, E. (2018). The current status on the taxonomy of *Pseudomonas* revisited: An update. *Infection, Genetics and Evolution*, 57, 106–116. https://doi.org/10.1016/j. meegid.2017.10.026
- Richter, M., & Rosselló-Móra, R. (2009). Shifting the genomic gold standard for the prokaryotic species definition. Proceedings of the National Academy of Sciences of the United States of America, 106, 19126–19131. https://doi.org/10.1073/pnas.0906412106
- Rosselló-Móra, R., & Amann, R. (2015). Past and future species definitions for bacteria and Archaea. Systematic and Applied Microbiology, 38, 209–216. https://doi.org/10.1016/j.syapm.2015.02.001
- Rosselló-Móra, R., & Whitman, W. B. (2018). Dialogue on the nomenclature and classification of prokaryotes. Systematic and Applied Microbiology, 42(1), 5–14. https://doi.org/10.1016/j. syapm.2018.07.002
- Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note #101.
- Sneath, P. H. A., Stevens, M., & Sackin, M. J. (1981). Numerical taxonomy of *Pseudomonas* based on published records of substrate utilization. *Antonie Van Leeuwenhoek*, 47, 423–448. https://doi.org/10.1007/ BF00426004
- Tayeb, L. A., Ageron, E., Grimont, F., & Grimont, P. (2005). Molecular phylogeny of the genus *Pseudomonas* based on *rpoB* sequences and application for the identification of isolates. *Research in Microbiology*, 156, 763–773. https://doi.org/10.1016/j.resmic.2005.02.009
- Tvrzová, L., Schumann, P., Spröer, C., Sedláček, I., Páčová, Z., Šedo, O., ... Lang, E. (2006). Pseudomonas moraviensis sp. nov. and Pseudomonas vranovensis sp. nov., soil bacteria isolated on nitroaromatic compounds, and emended description of Pseudomonas asplenii. International Journal of Systematic and Evolutionary Microbiology, 56(11), 2657–2663. https://doi.org/10.1099/ijs.0.63988-0
- Vidaver, A. M. (1967). Synthetic and complex media for the rapid detection of fluorescence of phytopathogenic pseudomonads: Effect of the carbon source. *Papers in Plant Pathology*, *15*, 1523–1524.
- Yamamoto, S., Kasai, H., Arnold, D. L., Jackson, R. W., Vivian, A., & Harayama, S. (2000). Phylogeny of the genus *Pseudomonas*: Intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. *Microbiology*, 146, 2385–2394. https://doi. org/10.1099/00221287-146-10-2385
- Ye, Y., Chen, C., Ren, Y., Wang, R., Zhang, C., Han, S., ... Wu, M. (2019). Pseudomonas mangrovi sp. nov., isolated from mangrove soil. International Journal of Systematic and Evolutionary Microbiology, 69(2), 377–383. https://doi.org/10.1099/ijsem.0.003141

How to cite this article: Jia J, Wang X, Deng P, et al., *Pseudomonas glycinae* sp. nov. isolated from the soybean rhizosphere. *MicrobiologyOpen*. 2020;9:e1101. <u>https://doi. org/10.1002/mbo3.1101</u>

FIGURE A2 Fingerprinting analysis of strain MS586^T and strain MS82 based on analysis of BOX-PCR: 1, strain MS586^T; 2, strain MS82; Mk: 1-kb DNA ladder (GoldBio) was used with markers

FIGURE A3 Two-dimensional TLC of polar lipids of strain MS586^T. DPG, diphosphatidylglycerol; L, lipid; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PL, phospholipid

TABLE A1 List of strains used in this study

Species	Strain	Source collection
Pseudomonas glycinae	MS586	This study
Pseudomonas glycinae	MS82	Ma et al. (2017)
Pseudomonas moraviensis	1B4	DSMZ
Pseudomonas jessenii	CIP105274	DSMZ
Pseudomonas reinekei	MT1	DSMZ
Pseudomonas vancouverensis	DhA-51	DSMZ
Pseudomonas baetica	a390	DSMZ

Note: DSMZ: German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.

 TABLE A2
 Accession numbers of the sequences of different Pseudomonas spp. strains used in the MLSA phylogenetic analysis

Species	Gene name	Accession number	Strain designation	Species	Gene name	Accession number	Strain designation
P. glycinae	16S rRNA	MG692779	MS586 ^T	P. glycinae	16S rRNA	CP028826	MS82
	rpoB	CP014205	MS586 ^T		rpoB	CP028826	MS82
	rpoD	CP014205	MS586 ^T		rpoD	CP028826	MS82
	gyrB	CP014205	MS586 ^T		gyrB	CP028826	MS82
P. fluorescens	16S rRNA	CP000094	Pf0-1	P. aeruginosa	16S rRNA	CP012001	DSM 50071 ^T
	rpoB	CP000094	Pf0-1		rpoB	CP012001	DSM 50071 ^T
	rpoD	CP000094	Pf0-1		rpoD	CP012001	DSM 50071 ^T
	gyrB	CP000094	Pf0-1		gyrB	CP012001	DSM 50071 ^T
P. anguilliseptica	16S rRNA	FNSC00000000	DSM 12111 ^T	P. arsenicoxydans	16S rRNA	LT629705	CECT 7543 ^T
	rpoB	FNSC00000000	DSM 12111 ^T		rpoB	LT629705	CECT 7543 ^T
	rpoD	FNSC00000000	DSM 12111 ^T		rpoD	LT629705	CECT 7543 ^T
	gyrB	FNSC00000000	DSM 12111 ^T		gyrB	LT629705	CECT 7543 ^T
P. avellanae	16S rRNA	AKBS00000000	BPIC 631 ^T	P. baetica	16S rRNA	PKLC00000000	a390 [⊤]
	rpoB	AKBS00000000	BPIC 631 ^T		rpoB	PKLC00000000	a390 [⊤]
	rpoD	AKBS00000000	BPIC 631 ^T		rpoD	PKLC00000000	a390 ^T
	gyrB	AKBS00000000	BPIC 631 ^T		gyrB	PKLC00000000	a390 [⊤]
P. balearica	16S rRNA	CP007511	DSM 6083 ^T	P. bauzanensis	16S rRNA	FOGN0000000	DSM 22558 ^T
	rpoB	CP007511	DSM 6083 ^T		rpoB	FOGN0000000	DSM 22558 ^T
	rpoD	CP007511	DSM 6083 ^T		rpoD	FOGN0000000	DSM 22558 ^T
	gyrB	CP007511	DSM 6083 ^T		gyrB	FOGN0000000	DSM 22558 ^T
P. brassicacearum	16S rRNA	LT629713	LMG 21623 ^T	P. brenneri	16S rRNA	VFIL00000000	DSM 15294 ^T
	rpoB	LT629713	LMG 21623 ^T		rpoB	VFIL00000000	DSM 15294 ^T
	rpoD	LT629713	LMG 21623 ^T		rpoD	VFIL00000000	DSM 15294 ^T
	gyrB	LT629713	LMG 21623 ^T		gyrB	VFIL00000000	DSM 15294 ^T
P. capeferrum	16S rRNA	JMIT00000000	$WCS358^{T}$	P. corrugata	16S rRNA	LHVK00000000	DSM 7228 ^T
	rpoB	JMIT00000000	$WCS358^{T}$		rpoB	LHVK00000000	DSM 7228 ^T
	rpoD	JMIT00000000	WCS358 ^T		rpoD	LHVK00000000	DSM 7228 ^T
	gyrB	JMIT00000000	WCS358 ^T		gyrB	LHVK00000000	DSM 7228 ^T
P. fluorescens	16S rRNA	LT907842	ATCC 13525 ^T	P. frederiksbergensis	16S rRNA	FNTF00000000	LMG 19851 ^T
	rpoB	LT907842	ATCC 13525 ^T		rpoB	FNTF00000000	LMG 19851 ^T
	rpoD	LT907842	ATCC 13525 ^T		rpoD	FNTF00000000	LMG 19851 ^T
	gyrB	LT907842	ATCC 13525 ^T		gyrB	FNTF00000000	LMG 19851 ^T
P. fulva	16S rRNA	BBIQ00000000	NBRC 16637 ^T	P. gessardii	16S rRNA	VFEW00000000	DSM 17152 ^T
	rpoB	BBIQ00000000	NBRC 16637 ^T		rpoB	VFEW0000000	DSM 17152 ^T
	rpoD	BBIQ00000000	NBRC 16637 ^T		rpoD	VFEW00000000	DSM 17152 ^T
	gyrB	BBIQ00000000	NBRC 16637 ^T		gyrB	VFEW00000000	DSM 17152 ^T
P. graminis	16S rRNA	FOHW00000000	DSM 11363 ^T	P. granadensis	16S rRNA	LT629778	LMG 27940 ^T
	rpoB	FOHW00000000	DSM 11363 ^T		rpoB	LT629778	LMG 27940 ^T
	rpoD	FOHW00000000	DSM 11363 ^T		rpoD	LT629778	LMG 27940 ^T
	gyrB	FOHW00000000	DSM 11363 ^T		gyrB	LT629778	LMG 27940 ^T
P. helmanticensis	16S rRNA	HG940537	OHA11 ^T	P. jessenii	16S rRNA	NIWT0100000	DSM 17150 ^T
	rpoB	HG940518	OHA11 ^T		rpoB	NIWT0100000	DSM 17150 ^T
	rpoD	HG940517	OHA11 ^T		rpoD	NIWT0100000	DSM 17150 ^T
	gyrB	HG940516	OHA11 ^T		gyrB	NIWT0100000	DSM 17150 ^T

(Continues)

TABLE A2 (Continued)

Species	Gene name	Accession number	Strain designation	Species	Gene name	Accession number	Strain designation
P. koreensis	16S rRNA	LT629687	LMG 21318 ^T	P. kribbensis	16S rRNA	CP029608	46-2 ^T
	rpoB	LT629687	LMG 21318 ^T		rpoB	CP029608	46-2 ^T
	rpoD	LT629687	LMG 21318 ^T		rpoD	CP029608	46-2 ^T
	gyrB	LT629687	LMG 21318 ^T		gyrB	CP029608	46-2 ^T
Р.	16S rRNA	NIRS0000000	AP3_16 ^T	P. laurylsulfativorans	16S rRNA	MUJK00000000	AP3_22 [™]
laurylsulfatiphila	rpoB	NIRS0000000	AP3_16 ^T		rpoB	MUJK00000000	AP3_22 [™]
	rpoD	NIRS0000000	AP3_16 ^T		rpoD	MUJK00000000	AP3_22 ^T
	gyrB	NIRS0000000	AP3_16 ^T		gyrB	MUJK0000000	AP3_22 [™]
P. libanensis	16S rRNA	JYLH00000000	DSM 17149 ^T	P. lini	16S rRNA	JYLB00000000	DSM 16768 ^T
	rpoB	JYLH00000000	DSM 17149 ^T		rpoB	JYLB00000000	DSM 16768 ^T
	rpoD	JYLH00000000	DSM 17149 ^T		rpoD	JYLB00000000	DSM 16768 ^T
	gyrB	JYLH00000000	DSM 17149 ^T		gyrB	JYLB00000000	DSM 16768 ^T
P. linyingensis	16S rRNA	FNZE00000000	LMG 25967 ^T	P. litoralis	16S rRNA	LT629748	2SM5 [™]
	rpoB	FNZE00000000	LMG 25967 ^T		rpoB	LT629748	2SM5 [™]
	rpoD	FNZE00000000	LMG 25967 ^T		rpoD	LT629748	2SM5 [™]
	gyrB	FNZE00000000	LMG 25967 ^T		gyrB	LT629748	2SM5 [™]
P. lundensis	16S rRNA	JYKY00000000	DSM 6252 ^T	P. lutea	16S rRNA	JRMB00000000	DSM 17257 ^T
	rpoB	JYKY00000000	DSM 6252 ^T		rpoB	JRMB00000000	DSM 17257 ^T
	rpoD	JYKY00000000	DSM 6252 ^T		rpoD	JRMB00000000	DSM 17257 ^T
	gyrB	JYKY00000000	DSM 6252 ^T		gyrB	JRMB00000000	DSM 17257 ^T
P. mandelii	16S rRNA	LT629796	LMG 21607 ^T	P. migulae	16S rRNA	FNTY00000000	LMG 21608 ^T
	rpoB	LT629796	LMG 21607 ^T		rpoB	FNTY00000000	LMG 21608 ^T
	rpoD	LT629796	LMG 21607 ^T		rpoD	FNTY00000000	LMG 21608 ^T
	gyrB	LT629796	LMG 21607 ^T		gyrB	FNTY00000000	LMG 21608 ^T
P. mohnii	16S rRNA	FNRV01000000	DSM 18327 ^T	P. moorei	16S rRNA	VZPP00000000	CCUG 53114 ^T
	rpoB	FNRV01000000	DSM 18327 ^T		rpoB	VZPP00000000	CCUG 53114 ^T
	rpoD	FNRV01000000	DSM 18327 ^T		rpoD	VZPP00000000	CCUG 53114 ^T
	gyrB	FNRV01000000	DSM 18327 ^T		gyrB	VZPP00000000	CCUG 53114 ^T
P. moraviensis	16S rRNA	LT629788	LMG 24280 ^T	P. oleovorans	16S rRNA	UGUV00000000	NCTC10692 ^T
	rpoB	LT629788	LMG 24280 ^T		rpoB	UGUV00000000	NCTC10692 ^T
	rpoD	LT629788	LMG 24280 ^T		rpoD	UGUV00000000	NCTC10692 ^T
	gyrB	LT629788	LMG 24280 ^T		gyrB	UGUV00000000	NCTC10692 ^T
P. oryzihabitans	16S rRNA	BBIT00000000	NBRC 102199 [⊤]	P. otitidis	16S rRNA	FOJP00000000	DSM 17224 ^T
	rpoB	BBIT00000000	NBRC 102199 [⊤]		rpoB	FOJP00000000	DSM 17224 ^T
	rpoD	BBIT00000000	NBRC 102199 ^T		rpoD	FOJP00000000	DSM 17224 ^T
	gyrB	BBIT00000000	NBRC 102199 [⊤]		gyrB	FOJP00000000	DSM 17224 ^T

TABLE A2 (Continued)

15 of 16

WILEY

Species	Gene name	Accession number	Strain designation	Species	Gene name	Accession number	Strain designation
P. panipatensis	16S rRNA	FNDS0000000	ССМ 7469 ^т	P. peli	16S rRNA	FMTL00000000	DSM 17833 ^T
	rpoB	FNDS0000000	ССМ 7469 ^т		rpoB	FMTL00000000	DSM 17833 ^T
	rpoD	FNDS0000000	ССМ 7469 ^т		rpoD	FMTL00000000	DSM 17833 ^T
	gyrB	FNDS0000000	ССМ 7469 ^т		gyrB	FMTL00000000	DSM 17833 ^T
P. pertucinogena	16S rRNA	AB021380	IFO 14163 ^T	P. prosekii	16S rRNA	LT629762	LMG 26867 ^T
	rpoB	AJ717441	LMG 1874 ^T		rpoB	LT629762	LMG 26867 ^T
	rpoD	FN554502	LMG 1874 ^T		rpoD	LT629762	LMG 26867 ^T
	gyrB	DQ350613	JCM 11950 ^T		gyrB	LT629762	LMG 26867 ^T
P. psychrotolerans	16S rRNA	FMWB0000000	DSM 15758 ^T	P. punonensis	16S rRNA	FRBQ00000000	CECT 8089 ^T
	rpoB	FMWB0000000	DSM 15758 ^T		rpoB	FRBQ00000000	CECT 8089 ^T
	rpoD	FMWB0000000	DSM 15758 ^T		rpoD	FRBQ00000000	CECT 8089 ^T
	gyrB	FMWB0000000	DSM 15758 ^T		gyrB	FRBQ00000000	CECT 8089 ^T
P. putida	16S rRNA	AP013070	NBRC 14164 ^T	P. reinekei	16S rRNA	MSTQ00000000	MT1 ^T
	rpoB	AP013070	NBRC 14164 ^T		rpoB	MSTQ0000000	MT1 ^T
	rpoD	AP013070	NBRC 14164 ^T		rpoD	MSTQ00000000	MT1 ^T
	gyrB	AP013070	NBRC 14164 ^T		gyrB	MSTQ00000000	MT1 ^T
P. resinovorans	16S rRNA	AUIE00000000	DSM 21078 ^T	P. sagittaria	16S rRNA	FOXM00000000	JCM 18195 ^T
	rpoB	AUIE00000000	DSM 21078 ^T		rpoB	FOXM00000000	JCM 18195 ^T
	rpoD	AUIE00000000	DSM 21078 ^T		rpoD	FOXM00000000	JCM 18195 ^T
	gyrB	AUIE00000000	DSM 21078 ^T		gyrB	FOXM00000000	JCM 18195 ^T
P. straminea	16S rRNA	FOMO01000000	JCM 2783 [™]	P. stutzeri	16S rRNA	CP002881	CGMCC 1.1803 ^T
	rpoB	FOMO01000000	JCM 2783 [™]		rpoB	CP002881	CGMCC 1.1803 ^T
	rpoD	FOMO01000000	JCM 2783 [™]		rpoD	CP002881	CGMCC 1.1803 ^T
	gyrB	FOMO01000000	JCM 2783 [™]		gyrB	CP002881	CGMCC 1.1803 ^T
P. synxantha	16S rRNA	LR590482	NCTC10696 ^T	P. syringae	16S rRNA	JALK00000000	DSM 10604 ^T
	rpoB	LR590482	NCTC10696 ^T		rpoB	JALK00000000	DSM 10604 ^T
	rpoD	LR590482	NCTC10696 ^T		rpoD	JALK00000000	DSM 10604 ^T
	gyrB	LR590482	NCTC10696 ^T		gyrB	JALK00000000	DSM 10604 ^T
P. taeanensis	16S rRNA	AWSQ00000000	MS-3 ^T	P. taetrolens	16S rRNA	LS483370	NCTC 10697 ^T
	rpoB	AWSQ00000000	MS-3 ^T		rpoB	LS483370	NCTC 10697 ^T
	rpoD	AWSQ00000000	MS-3 ^T		rpoD	LS483370	NCTC 10697 ^T
	gyrB	AWSQ00000000	MS-3 ^T		gyrB	LS483370	NCTC 10697 ^T
P. tolaasii	16S rRNA	PHHD00000000	NCPPB 2192 ^T	P. toyotomiensis	16S rRNA	NIQV0000000	DSM 26169 ^T
	rpoB	PHHD00000000	NCPPB 2192 ^T		rpoB	NIQV0000000	DSM 26169 ^T
	rpoD	PHHD00000000	NCPPB 2192 ^T		rpoD	NIQV0000000	DSM 26169 ^T
	gyrB	PHHD00000000	NCPPB 2192 ^T		gyrB	NIQV0000000	DSM 26169 ^T

TABLE A2 (Continued)

Species	Gene name	Accession number	Strain designation	Species	Gene name	Accession number	Strain designation
P. tremae	16S rRNA	LJRO00000000	ICMP9151 ^T	P. umsongensis	16S rRNA	NIWU0000000	DSM 16611 ^T
	rpoB	LJRO00000000	ICMP9151 ^T		rpoB	NIWU0000000	DSM 16611 ^T
	rpoD	LJRO00000000	ICMP9151 ^T		rpoD	NIWU0000000	DSM 16611 ^T
	gyrB	LJRO00000000	ICMP9151 ^T		gyrB	NIWU0000000	DSM 16611 ^T
P. vancouverensis	16S rRNA	RRZK00000000	$Dha-51^{T}$	Acinetobacter baumannii	16S rRNA	MJHA00000000	ATCC 19606 ^T
	rpoB	RRZK00000000	Dha-51 ^T		rpoB	MJHA00000000	ATCC 19606 ^T
	rpoD	RRZK00000000	$Dha-51^{T}$		rpoD	MJHA00000000	ATCC 19606 ^T
	gyrB	RRZK00000000	$Dha-51^{T}$		gyrB	MJHA00000000	ATCC 19606 ^T

TABLE A3 Accession numbers of the sequences of different *Pseudomonas* spp. strains used in the whole-genome phylogenetic analysis

Species	Accession number	Strain designation
P. glycinae	GCA_001594225	MS586 ^T
P. glycinae	GCA_003055645	MS82
P. fluorescens	GCA_000012445	Pf0-1
P. arsenicoxydans	GCA_900103875	$CECT 7543^{T}$
P. baetica	GCA_002813455	LMG 25716 ^T
P. batumici	GCA_000820515	UCM B-321 ^T
P. chlororaphis	GCA_001269625	$LMG 5004^{T}$
P. frederiksbergensis	GCA_900105495	LMG 19851 ^T
P. granadensis	GCA_900105485	LMG 27940 ^T
P. jessenii	GCA_002236115	DSM 17150 ^T
P. koreensis	GCA_900101415	LMG 21318 ^T
P. kribbensis	GCA_003352185	46-2 ^T
P. laurylsulfatiphila	GCA_002934665	AP3_16 ^T
P. laurylsulfativorans	GCA_002906155	AP3_22 ^T
P. lini	GCA_001042905	DSM 16768 ^T
P. moorei	GCA_900102045	DSM 12647 ^T
P. moraviensis	GCA_900105805	LMG 24280 ^T
P. prosekii	GCA_900105155	LMG 26867 ^T
P. reinekei	GCA_001945365	MT1 ^T
P. vancouverensis	GCA_900105825	LMG 202221 ^T