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del to predict the solubilizing
effect of drugs by inclusion with cucurbit[7]uril†

Enping Cheng,a Yangyan Zeng,a Yan Huang,a Tiezhu Su,a Yang Yang,a Li Peng*a

and Jun Li *abc

A large number of traditional drugs and the development of new drugs often encounter the problemof poor

water solubility. Cucurbit[7]uril, a novel macrocyclic host, has attracted great interest in this field.

Investigating the solubilizing effect of drugs by inclusion with cucurbit[7]uril could provide guidance for

drug solubilization. In this work, the interactions of drugs with cucurbit[7]uril, drugs with water and the

inclusion complexes with water, and the properties of drugs and inclusion complexes, are considered to

establish a linear solvation energy relationships (LSER)-based model. This model could be applied to

predicting the solubility of drugs with cucurbit[7]uril in water. Density functional theory (DFT) is

employed to obtain the properties and interaction parameters. The multi-parameter solubility model

obtained by stepwise regression shows good fitting and predicting results. And the surface area of

inclusion complexes (A3), the LUMO energy of inclusion complexes (E3LUMO), the polarity index of

inclusion complexes (I3), the electronegativity of drugs (c1), and the oil–water partition coefficient of

drugs (log p1w) are effective parameters related to the solubilization of drugs with cucurbit[7]uril.

Futhermore, the model could be extended to calculate the solubilizing effect of other macrocycles.
1. Introduction

The challenge for the pharmaceutical industry is that about
40% of the top 200 drugs in the US are poorly soluble in water;
and in the new chemical entity (NCE), the proportion of poorly
water soluble drugs reached 90%.1 Therefore, it is important to
develop methods for improving their solubility. Now, many
techniques have been employed to solve this problem, such as
solid dispersion technology, synthetic prodrug technology,
inclusion technology and so on. And the inclusion complexes
technology could not only maintain the original properties and
effects of drugs, but also improve their stability and bioavail-
ability.2 Although cyclodextrin is widely studied and used as
a complexing agent,3 it shows some shortcomings for practical
application. For example, it would be easily hydrolyzed under
acidic media, and the binding constant of cyclodextrin
(including hydroxypropyl-b-cyclodextrin and sulfobutylether-b-
cyclodextrin) is found to be lower than 105 M�1 in water.4,5

Cucurbit[n]uril (n ¼ 5–8, 10), another new macrocyclic host,
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shows good stability in both strong acid and weak alkaline
solution.6 In addition, cucurbit[n]uril exhibits much higher
binding constant up to 1015 M�1 in water.7 So cucurbit[n]uril
has attracted widespread attention due to its high selectivity
and affinity with guest.8,9

Cucurbit[n]uril (n ¼ 5–8, 10), the symmetrical macrocyclic
cage compounds, formed by a series of glycoluril through
methylene linkage, have a hydrophilic portal and hydrophobic
cavity. Compared with other cucurbit[n]uril host, cucurbit[7]uril
has relatively high solubility in water (20–30 mM or 23–35 g
L�1).10 Although the solubility of drugs by inclusion with
cucurbit[7]uril could be conrmed through experiment to
identify effective drug candidates,11 it has certain limitations in
terms of cost, time and resources. Instead of, theoretical
prediction method could quickly and efficiently screen out
drugs with good solubilizing effect by cucurbit[7]uril. However,
there is few theoretical study on the solubilizing effect of
cucurbit[7]uril on drugs, which hinders its extensive application
in the pharmaceutical industry. As an alternative, it was re-
ported that linear solvation energy relationships (LSER) could
be used to calculate the solubility of various compounds in
water.12–14 But there was no LSER-basedmodel for predicting the
solubility of drugs with cucurbit[7]uril in water.

Therefore, the purpose of this study is to establish a suitable
LSER-based model to predict the solubilizing effect of cucurbit
[7]uril on drugs with poor water solubility. In line with this, the
interactions of drugs with cucurbit[7]uril, drugs with water and
the inclusion complexes with water, the properties of drugs and
This journal is © The Royal Society of Chemistry 2020
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Table 1 Experimental solubility data of drugs by inclusion with
cucurbit[7]uril in water

Drug S/g L�1 S/mM log S/mM

Cinnarizine15 5.049 13 700.000 4.137
Allopurinol16 1.200 8816.000 3.945
MEABZ17 2.259 7300.000 3.863

1
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inclusion complexes, are analysed for the LSER-based model
establishment. Then DFT is applied for calculating all the
parameters. On one hand, this model could quickly screen out
drugs with good solubilizing effect by cucurbit[7]uril. On the
other hand, the model would provide guidance for the modi-
cation of cucurbit[n]uril aer clarifying the solubilizing
mechanism.
Albendazole 1.884 7100.000 3.851
Thiabendazole18 0.968 4810.000 3.682
6-Benzyladenine19 1.023 4540.000 3.657
Getiniba 1.734 3880.891 3.589
Kinetin20 0.820 3810.000 3.581
Nandrolone11 1.015 3700.000 3.568
Norharmane21 0.622 3700.000 3.568
Triamterenea 0.923 3643.070 3.561
2-Hydroxychalconea 0.405 1807.433 3.257
Vitamin B9 (VB9)

a 0.730 1654.000 3.219
Fuberidazole22 0.265 1440.000 3.158
10-Hydroxycamptothecine23 0.475 1303.000 3.115
Prednisolone11 0.458 1137.000 3.056
Clofazimine24 0.514 1085.000 3.035
b-Estradiol11 0.295 1083.000 3.035
Vitamin B2 (VB2)

a 0.353 937.862 2.972
3-Cyano-6-(2-thienyl)-
4-triuoromethyl pyridine (TFP)25

0.249 924.000 2.966

Progesterone11 0.223 708.000 2.850
Cholic acid11 0.287 702.000 2.846
Cortisol11 0.246 680.000 2.833
TPP26 0.357 580.018 2.763
Guaninea 0.082 540.489 2.733
Estriol11 0.149 516.000 2.713
Estrone11 0.136 504.000 2.702
TPPZn26 0.306 451.377 2.655
2. Materials and methods
2.1 Experiment and data set

To obtain the experimental solubility data of drugs, excess
drugs (VB2, triamterene, guanine, 2-hydroxychalcone, getinib)
were added to 10 mL of aqueous solutions containing various
concentrations of cucurbit[7]uril (0–15.0 mM or 0–17.4 g L�1).
The samples were vibrated for 1 h on an ultrasonic equipment
and then stirred at room temperature in dark until equilibrium
was reached (24 h). Aerwards, samples were ltered and
diluted with H2O for UV-vis spectroscopic measurement. The
ultraviolet absorption peaks (VB2, at 446 nm; triamterene, at
358 nm; guanine, at 295 nm; 2-hydroxychalcone, at 323 nm;
getinib, at 335 nm) were measured on a ThermoEvolution 220
spectrophotometer. The experimental solubility data of drugs
with cucurbit[7]uril in water and logarithm of solubility are
listed in Table 1. Note that the data for drugs signed with a was
measured by UV-vis spectroscopy approach in this work which
was shown in Fig. S1–S6.† The solubility data for the rest of
drugs are collected from publications.
Camptothecin1 0.139 400.000 2.602
Coumarin 6 (ref. 27) 0.131 375.000 2.574
Megestrol acetate11 0.137 369.000 2.567
Zaltoprofen28 0.076 254.000 2.405
Cholesterol11 0.017 45.000 1.653
Estradiol-3-benzoate11 0.014 36.000 1.556
17-Ethinyl estradiol11 0.009 30.000 1.477

a The data for drugs that was measured by UV-vis spectroscopy
approach.

Fig. 1 Design of parameters related to the solubility of drugs in
presence of cucurbit[7]uril ((a) interaction between the drugs and
cucurbit[7]uril; (b) interaction between the inclusion complexes and
water; (c) the drugs in water; 1: drugs; 2: cucurbit[7]uril; 3: inclusion
complexes; w: water).
2.2 Establishment of LSER-based model

The original model of LSER describes the linear relationship
between molecular property and the solubility of a solute–
solvent system; it could be expressed by eqn (1):29–32

log Y ¼ c + x1X1 + x2X2 + x3X3 (1)

where Y represents the physical and chemical properties of
molecules, such as solubility, toxicity, activity; X1, X2, X3 are the
properties-related parameters; x1, x2, x3 are the parameters-
related coefficients; c is a constant. The LSER model reported
in literature, studying the solubility of various molecules in
water, could be described as follows:33–38

log S ¼ c + vD + eE + iL (2)

where S is the solubility of molecules; D is the molecular
dimension; E is the molecular interaction; L represents the
macroscopic properties of molecules.

Generally, the solubility could be predicted by the solute–
solvent intermolecular forces, but it was not sufficient to
calculate the solubility of inclusion complexes. For the inclu-
sion system in water, with respect to the main molecular
parameters inuencing the solubility could be divided into
three categories as shown in Fig. 1. The rst is the molecular
interaction between the drugs and cucurbit[7]uril, where the
interaction energy should be considered, involving the van der
Waals' force, hydrogen bond and other forces. Cucurbit[7]uril
This journal is © The Royal Society of Chemistry 2020 RSC Adv., 2020, 10, 24542–24548 | 24543



RSC Advances Paper
mainly bonds with various organic molecules through the
hydrophobic interaction of the cavity and the hydrogen bonding
of the carbonyl groups at both ends.39 The second is the
molecular interaction between inclusion complexes and water.
For this the solvation energy is directly obtained instead of the
van der Waals' force and hydrogen bond should be also
considered.40 The third is the interaction between drugs and
water, where the oil–water partition coefficient of drugs directly
indicates the dissolution of drugs in water.33 Besides the main
parameters mentioned above, the molecular dimensions are
considered in model, such as the size of inclusion complexes
and the drug size. Accordingly, we propose a LSER-based model
for the drug–cucurbit[7]uril–water system:

log S ¼ c + d1D1 + d3D3 + e12DE12 + h12H12 + e3wDG3w

+ w3wW3w + h3wH3w + p1wlog p1w (3)

where subscript 1 represents drugs; 2 represents cucurbit[7]uril;
3 represents the drug–cucurbit[7]uril inclusion complexes; 12
represents the interaction between drug and cucurbit[7]uril; 3w
refers to the inclusion complexes in water. D1 is the size of
drugs; D3 is the size of inclusion complexes; DE12 represents the
interaction energy between drugs and cucurbit[7]uril; H12

indicates the hydrogen bond between drugs and cucurbit[7]uril;
DG3w is the solvation energy of inclusion complexes; W3w

represents the van der Waals' force between inclusion
complexes and water; H3w represents the hydrogen bond
between inclusion complexes and water; log p1w is the oil–water
distribution coefficient of drugs. d1, d3, e12, h12, e3w, w3w, h3w,
p1w are parameter-related coefficients; c is a constant.

The parameters in eqn (3) could be replaced by quantum
chemical parameters as shown in eqn (4):

log S ¼ c + v1V1 + a3A3 + e12DE12 + x1c1 + e3wDG3w

+ m3I3 + g3E3LUMO + p1wlog p1w (4)

where the volume of drugs (V1) is used to identify D1 in eqn (3).
The surface area of inclusion complexes (A3) is applied to D3 in
eqn (3). H12 in eqn (3) is replaced by the electronegativity of
drugs (c1). According to the HOMO/LUMO electron distribution
diagram of inclusion complexes, it is known that LUMO is
distributed on cucurbit[7]uril.41,42 The LUMO energy of inclu-
sion complexes (E3LUMO) is applied to H3w in eqn (3).43 Gener-
ally, water is electron donor, and E3LUMO is electron acceptor, so
E3LUMO describes the hydrogen bond between inclusion
complexes and water. The polarity of inclusion complexes (I3) is
applied to W3w in eqn (3).44
2.3 Calculation details

The chemical structures of all drug molecules are optimized
using the Gaussian soware (version 09, Gaussian, Inc., http://
gaussian.com, USA), in which the B3LYP functional method is
applicable to calculatingmolecular properties. The structures of
the inclusion complexes of cucurbit[7]uril with various drugs
are optimized at the B3LYP/6-311G* level. And frequency
calculations are performed on the same level for all possible
geometries to ensure they are minimal on the potential surface
24544 | RSC Adv., 2020, 10, 24542–24548
(Fig. S7†). Solvation effects were evaluated by employing the
solvation model based on density (SMD).

The interaction energy between drugs and cucurbit[7]uril
(DE12) and the solvation energy of inclusion complexes (DG3w)
are calculated respectively by eqn (5) and (6):

DE12 ¼ E3 � E2 � E1 + EBSSE (5)

DG3w ¼ E3sol � E3gas (6)

where E3 represents the total energy of inclusion complexes; E2
is the total energy of cucurbit[7]uril; E1 is the total energy of
drugs; EBSSE represents the basic set superposition error; E3sol
represents the single-point energy of inclusion complex calcu-
lated in water; E3gas represents the single-point energy of
inclusion complex calculated under the gas phase. The single
point energy is calculated at the M062X/6-311G* level. The
electronegativity of drugs (c1) is calculated by eqn (7)–(9):

c1 ¼
IPþ EA

2
(7)

IP ¼ EðN � 1Þ þ EðNÞ
2

(8)

EA ¼ EðNÞ þ EðN þ 1Þ
2

(9)

where IP is the ionization energy and EA is the electron affinity,
the single point energy is calculated using B3LYP/6-311G*, N is
the number of electrons when electrically neutral.

The E3LUMO parameter in eqn (4) is obtained from the opti-
mized structure. The parameter of log p1w is obtained from the
Material Studio soware (version 8.0, Accelrys Inc., http://
www.accelrys.com, USA). The parameters I3, A3 and V1 are ob-
tained in combination with the Multiwfn soware,44 where the
electron density is 0.001 a.u. (electrons per bohr3) contour surface.

The tting coefficient (R2), leave-one-out cross-validation
correlation coefficient (QLOO

2), F-test, t-test, ination factor
(VIF), and Durbin–Watson coefficient (DW) are employed to
validate the LSER-based model by using the SPSS soware
(version 25.0, SPSS Inc., http://www.spss.com).45 External test is
applied to the prediction effect and application domain of the
predication model, not used for building the LSER model. As
reported,46,47 when the predictive squared correlation coefficient
(QF1

2, QF3
2) is greater than 0.600, and the concordance corre-

lation coefficient (CCC) is greater than 0.850, it is a successful
model for prediction.

QF1
2 ¼ 1�

XnTE
i¼1

ð~yi � yiÞ2

XnTE
i¼1

ðyi � yTRÞ2
. 0:600 (10)

QF3
2 ¼ 1�

XnTE
i¼1

ð~yi � yiÞ2
.
nTE

XnTR
i¼1

ðyi � yTRÞ2
.
nTR

. 0:600 (11)
This journal is © The Royal Society of Chemistry 2020



Table 2 Various statistics parameters of the LSER-based model

ma nTR
b nTE

c R2d RMSETR
e QLOO

2f

5 30 5 0.852 0.254 0.763

RMSEcv
g Fh DWi QF1

2 QF3
2 CCC

0.322 2.678 1.402 0.710 0.890 0.863

a Number of descriptors applied for the model development. b Number
of molecules in training set. c Number of molecules in test set.
d Training correlation coefficient. e Training root mean square error.
f Leave-one-out cross-validation correlation coefficient. g Leave-one-out
cross-validation root-mean-square errors. h F-Test. i Durbin–Watson
coefficient.

Table 3 Standardized and unstandardized coefficients of the LSER-
based model (eqn (13)), and their t and p values

#
Unstandardized
coefficients

Standardized
coefficients t-Value p-Value

c �16.452 — �7.659 0.000
c1 14.301 0.659 5.160 0.000
log p1w �1.119 �0.399 �3.296 0.003
A3 22.859 1.513 10.003 0.000
E3LUMO 2.898 0.846 5.253 0.000
I3 20.347 0.823 5.927 0.000
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CCC ¼
2
PnTE
i¼1

ðyi � yÞð~y� ~yÞ
PnTE
i¼1

ðyi � yÞ2 þPnTE
i¼1

ð~y� ~yÞ2 þ nTEð~y� ~yÞ2
. 0:850 (12)

where yi and ~yi are the experimental and calculated values,
respectively; �yTR is the average of the experimental values of the
training set; ~y is the average of the calculated values; nTR and nTE
are the numbers of samples in the training and test sets,
respectively.

3. Results and discussion
3.1 Modelling results

From DFT, the parameters of drugs–cucurbit[7]uril inclusion
complexes are shown in Table S1.† In this study, the solubility of
drugs obtained from literature are applied as the training set to
build the LSERmodel, and the solubility of drugs (7, 11, 12, 19, 25)
experimentally measured in this work are used as the test set.

To select most informative parameters and exclude redun-
dant ones, the multiple linear stepwise regression was
employed with log S as the dependent variable (Table 1) and the
quantum-chemical parameters (Table S1†) as the independent
variables. The tting coefficient (R2) and the leave-one-out cross-
validation correlation coefficient (QLOO

2) are used to determine
the optimum number of parameters for the LSER-based model.
If both R2 and QLOO

2 are greater than 0.600,45 at the same time
with R2–QLOO

2 less than 0.300, this model would meet the
criterion of “good model” proposed by Eriksson et al.48 Fig. 2a
showed the performance of the model is not signicantly
improved when the parameters exceed six (the order of 1–8
parameter selection is based on the parameter's contribution
rate: A3, E3LUMO, log p1w, I3, c1, DE12, V1, DG3w). Five parameters
are randomly selected for tting. According to Fig. 2b, A3,
E3LUMO, log p1w, I3, c1 has the largest tting coefficient.

Therefore, the ve-parametric model (eqn (13)) is nally
determined as the optimum LSER-based model aer evaluating
the tting coefficient, cross-validation (Fig. 2), and correlation
of the parameters (Table 4).

log S ¼ �16:452þ 22:859

�
A3

10000

�
þ 14:301c1 þ 20:347ð10I3Þ

þ 2:898ð10E3LUMOÞ � 1:119

�
log p1w

10

�
(13)
Fig. 2 (a) The plot of model performance vs. number of variables
included in LSER model. (b) The plot of fitting coefficient vs. different
five parameters included in LSER model.

This journal is © The Royal Society of Chemistry 2020
The ve parameters includes the surface area of inclusion
complexes (A3), the electronegativity of drugs (c1), the polarity
index of inclusion complexes (I3), the LUMO energy of inclusion
complexes (E3LUMO), the oil–water partition coefficient of drugs
(log p1w).

This model conrmed an acceptable relationship between
the number (5) of variables and the number (30) of drugs, where
the ratio of the number of variables to the number of drugs is
greater than 5 : 1.49 According to Table 2, the tting coefficient
(R2) of the LSER-based model is 0.852, which is much larger
than 0.600. And the root-mean-square error is 0.254, which is
relatively small.

In order to determine whether there are “outliers” in the
LSER-based model, a cross-validation method is used for
testing. The high value of correlation coefficient of leave-one-
out (QLOO

2 ¼ 0.763) and the acceptable value of cross valida-
tion root mean square error (RMSEcv ¼ 0.322) prove the stability
of the LSER-based model. In addition, R2–QLOO

2 is 0.089, less
than 0.3, which meets the criterion of “good model”. Therefore,
it is further conrmed that the established LSER-basedmodel is
reliable.

Generally, P < 0.050 indicates that this parameter has an
effect on the model. According to Table 3, it is known that the P
value of each parameter is close to 0.000, indicating that these
ve parameters have a signicant effect on the LSER-based
model. The unstandardized coefficients in Table 3 are used to
construct the equation. The standardized coefficient is
RSC Adv., 2020, 10, 24542–24548 | 24545



Table 4 Correlation coefficient between the parameters of LSER-
based model (eqn (13)) and their VIF values

c1 log p1w A3 E3LUMO I3 VIF

c1 1 �0.364 �0.107 �0.485 �0.096 2.650
log p1w 1 0.670 �0.357 �0.569 2.381
A3 1 �0.639 �0.767 3.714
E3LUMO 1 0.708 4.209
I3 1 3.130

Table 5 The calculated log S data obtained from eqn (13) and the
relative error (RE)

# log S/mM RE

Progesterone 2.791 �2.057%
Nandrolone 3.259 �8.671%
Megestrol acetate 2.334 �9.096%
Cortisol 3.214 13.475%
Estrone 2.845 5.293%
b-Estradiol 3.456 13.870%
17-Ethinyl estradiol 1.889 27.915%
Estradiol-3-benzoate 1.472 �5.447%
Prednisolone 3.173 3.849%
Estriol 2.894 6.695%
Cholesterol 1.627 �1.571%
Cholic acid 3.186 11.922%
Norharmane 3.599 0.875%
Albendazole 3.556 �7.665%
MEABZ 3.525 �8.761%
Thiabendazole 3.488 �5.274%
Fuberidazole 3.424 8.400%
Allopurinol 3.571 �9.477%
6-Benzyladenine 3.357 �8.210%
Camptothecin 2.275 �12.556%
10-Hydroxycamptothecine 2.965 �4.800%
Kinetin 3.732 4.223%
TPP 2.934 6.183%
TPPZn 2.768 4.267%
TFP 3.266 10.118%
Clofazimine 2.606 �14.150%
Cinnarizine 3.971 �4.008%
Coumarin 6 2.518 �2.181%
Zaltoprofen 2.465 2.501%
VB9 3.469 7.772%
VB2 2.938 �1.164%
Guanine 2.459 �10.008%
2-Hydroxychalcone 3.131 �3.878%
Triamterene 3.188 �10.475%
Getinib 3.683 2.623%

Fig. 3 The plot of calculated solubility values from the LSER-based
model vs. the experimental solubility values.

RSC Advances Paper
dimensionless, which reects their inuence on log S, and the
order is as follows: A3 > E3LUMO > I3 > c1 > log p1w.

Table 4 also showed that the values of the ination factor VIF
are all less than 10, indicating that each parameter is relatively
independent and there is no collinearity problem. In addition,
the statistical QF1

2, QF3
2 and CCC are 0.710, 0.890 and 0.863,

respectively, in accordance to the eqn (10)–(12). This conrmed
the good external predictive ability of the LSER-based model.
The results show the proposed model could be employed to
predict the solubilizing effect of cucurbit[7]uril for other drugs.
24546 | RSC Adv., 2020, 10, 24542–24548
The calculated log S data obtained from eqn (13) and the
relative error are listed in Table 5, and the RE (|log Scalculation �
log Sexperimental|/log Sexperimental) are closed to 0.000. Fig. 3
indicates the LSER-based model is highly matched with the
experimental values, where the data points are on both sides of
the diagonal line and are close to the line. The dots represent
the data points in the training set, and the triangles represent
the data points in the test set.
3.2 Applicability domain

Applicability domain (AD) is dened to prove that the model has
a satisfactory accuracy. The standardized residual (d*) is an
important criterion, within the �3 times the standards devia-
tion (�3d).50 In addition to standardized residuals in the AD,
leverage (hi) is a commonmetric to evaluate the model accuracy.

d* ¼ yi � ~yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðyi � ~yiÞ2
s .

ðnTR �m� 1Þ
(14)

hi ¼ xTi (X
TX)�1xi (15)

h* ¼ 3(m + 1)/nTR (16)

where xi is column vector of the i-th drug parameter; X is 30 � 5
matrix of training set parameters; m is considered to be the
number of descriptors (here m ¼ 5); nTR is the number of drugs
in the training set (here nTR ¼ 30); h* denes a warning value for
leverage. Therefore, the warning value h* of the LSER-based
model (eqn (13)) is equal to 0.600. Fig. 4 shows that the stan-
dardized residuals of all drugs are in the acceptable range of
(�3d) and the leverage of all drugs is located within the dened
AD. From the results, the proposed LSER-based model shows
acceptable AD ranges.
3.3 Parameter analysis and interpretation

According to the proposed LSER model, solubilizing mecha-
nism of cucurbit[7]uril could be explored.
This journal is © The Royal Society of Chemistry 2020



Fig. 4 Presentation of AD for all drugs by the LSER-basedmodel using
a Williams plot. The leverage (h*) and standardized residual (d*) are
shown by dashed lines on the x-axis and y-axis, respectively.
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(a) The coefficient of the surface area of inclusion complexes
is a3 ¼ 22.859, where the parameter A3 has a positive correlation
with log S. It indicates that the large surface area of inclusion
complexes would promote the interaction between inclusion
complexes and water solvent. Thus the solubility of inclusion
complexes increases.

(b) The coefficient of the LUMO energy of inclusion
complexes is g3 ¼ 2.898, where the parameter E3LUMO has
a positive correlation with log S. The LUMO energy indicates the
ability of a molecule to accept electron pairs from neighbouring
molecule. With larger LUMO energy, inclusion complexes could
be easier to form hydrogen bonds with water, which enhances
the solubility of inclusion complexes.

(c) The coefficient of the polarity index of inclusion
complexes ism3 ¼ 20.347, where the parameter I3 has a positive
correlation with log S. When the polarity index is larger, the
interaction with polar water molecules would be stronger. Then
the solubility of inclusion complexes increases.

(d) The coefficient of the electronegativity of drugs c1 ¼
14.301, where the parameter c1 has a positive effect with log S.
According to the HOMO/LUMO orbital electron distribution
diagram of inclusion complexes, it is known that LUMO is
distributed on cucurbit[7]uril. If the drugs possess stronger
electronegativity, it would be easier to form hydrogen bonds
between the drugs and cucurbit[7]uril. Thus it increases the
possibility for drugs entering the cavity of cucurbit[7]uril.

(e) The coefficient of the drug oil–water partition coefficient
p1w ¼ �1.119, where the parameter log p1w has a negative
correlation with log S. The oil–water partition coefficient mainly
reects the hydrophobic of drugs. This shows that the more
Table 6 The calculated log S data obtained from eqn (13) and the
experimental solubility data

log SCal log SExp RE

Cucurbit[8]uril 3.973 4.630 16.533%
Cucurbit[7]uril 3.863 3.525 �8.761%
Cucurbit[6]uril 3.380 1.450 �57.117%
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hydrophobic the drug is, the stronger the repelling interaction
will be in the mixed system. Then it is harder to dissolve in
water and the solubility of drug decreases.

Based on the above analysis, it is concluded that the surface
area of inclusion complexes (A3), the LUMO energy of inclusion
complexes (E3LUMO), the polarity index of inclusion complexes
(I3), the electronegativity of drugs (c1), and the oil–water parti-
tion coefficient of drugs (log p1w) signicantly affect the solu-
bility of drugs by inclusions with cucurbit[7]uril.
3.4 Test on other macrocycles

As reported, forMEABZ the highest solubilities was obtainedwith
cucurbit[6]uril (2.4 mM or 0.7 g L�1), cucurbit[7]uril (7.3 mM or
2.3 g L�1) and cucurbit[8]uril (9.4 mM or 2.9 g L�1).17 Although
the model was developed for predicting the solubilizing property
of cucurbit[7]uril, this work is mainly to build a model suitable
for inclusion system. So to show the generality of the proposed
model, the utilized parameters in LSERmodel were used to check
the solubility of other macrocycles. According to Table 6, it could
be found that the solubility of MEABZ with cucurbit[8]uril
calculated from eqn (13) is close to the experimental solubility,
and the overall trend is in accordance to the data reported in the
literature. Thus it is possible to use this model for other macro-
cycles, such as cucurbit[8]uril or cucurbit[6]uril.
4. Conclusions

In this study, we proposed a LSER-based model by analysing
different sorts of molecular parameters combined with the
experimental solubility data of 35 drugs by inclusion with
cucurbit[7]uril. The reported data of 30 drugs are applied as the
training sets, while the rest data of 5 drugs are used as the test
sets. Results show that the proposed model has good tting and
prediction ability. The model suggests that the solubility of
inclusion complexes is not only dependent on the interaction
between the inclusion complexes and the solvent, but also
related to the interaction between the host and the guest. It
further claries the surface area of inclusion complexes (A3), the
LUMO energy of inclusion complexes (E3LUMO), the polarity
index of inclusion complexes (I3), the electronegativity of drugs
(c1), and the oil–water partition coefficient of drugs (log p1w) are
effective parameters on log S. The inuence of each parameter
on log S is as follows: A3 > E3LUMO > I3 > c1 > log p1w. These
parameters could be applied to calculate the solubilizing effect
of other drugs by inclusion with cucurbit[7]uril or other
macrocycles.
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