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Abstract: Cystic fibrosis (CF) is a chronic autosomic recessive syndrome, caused by 

mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, a chloride 

channel expressed on the apical side of the airway epithelial cells. The lack of CFTR 

activity brings a dysregulated exchange of ions and water through the airway epithelium, 

one of the main aspects of CF lung disease pathophysiology. Lentiviral (LV) vectors, of the 

Retroviridae family, show interesting properties for CF gene therapy, since they integrate 

into the host genome and allow long-lasting gene expression. Proof-of-principle that LV 

vectors can transduce the airway epithelium and correct the basic electrophysiological defect 

in CF mice has been given. Initial data also demonstrate that LV vectors can be repeatedly 

administered to the lung and do not give rise to a gross inflammatory process, although they 

can elicit a T cell-mediated response to the transgene. Future studies will clarify the efficacy 

and safety profile of LV vectors in new complex animal models with CF, such as ferrets and 

pigs. 
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1. Introduction 

Cystic fibrosis (CF), the most common lethal hereditary disease among Caucasians, with a 

prevalence of approximately one in 3500 newborns, is characterized by chronic lung infections and 

inflammation that results in life expectancy being reduced, although treatment advances over the past 

several decades have raised the median predicted survival age from mid-teens in the 1970s to more 

than 36 years old today [1].  

The CF gene is located on the long arm of chromosome 7 [2] and, based on the prediction of the 

amino acid sequence of the encoded protein, it was termed CFTR (cystic fibrosis transmembrane 

conductance regulator). A whole codon deletion, resulting in the loss of a phenylalanine residue at 

amino acid position 508 (F508del) in the protein is the commonest mutation, accounting for 50-90% of 

CF patients [3]. The CFTR amino acid sequence contained 12 domains previously recognized as 

membrane-spanning sequences, and in vitro gene transfer experiments demonstrated restoration of 

chloride channel function in cystic fibrosis pancreatic cells [4]. Further work using purified CFTR 

protein in phospholipid vesicles confirmed that the protein functions as a cAMP-dependent chloride 

channel [5]. 

Lung disease in CF patients reflects chronic infection of the conducting airways with a surprisingly 

low number of bacterial species. Staphylococcus aureus and Haemophilus influenzae are early 

colonizers, whereas Pseudomonas aeruginosa and Burkholderia cepacia complex (Bcc) often occur 

later, resulting in progressive loss of lung function and premature death. Several hypotheses link 

mutations in CFTR to development of lung disease in CF, whose hallmarks are bacterial infection with 

opportunistic pathogens and a vicious neutrophil-dominated chronic inflammatory response [6-9]. 

Current available data support the “low volume” hypothesis which postulates that, due to absent 

chloride transport and increased sodium absorption, the height of the airway surface liquid (ASL) is 

reduced, leading to impaired mucociliary clearance [10]. Reduced mucociliary clearance leads to 

formation of thickened dehydrated mucus, which provides an ideal environment for bacterial growth, 

leading to chronic inflammation and ultimately organ failure in the CF lung. Normal CFTR is partly 

responsible for maintaining this airway surface liquid volume by means of chloride secretion and 

down-regulation of the ENaC (epithelial Na+ channel) [11]. In vitro models of polarized human cystic 

fibrosis bronchial epithelial cells demonstrate an isotonic reduction in the volume of airway surface 

liquid, and consequently impaired movement of the overlying mucus [10]. The importance of CFTR’s 

regulation of ENaC has been strengthened further by recent data demonstrating that overexpression of 

ENaC in a mouse model results in many of the key features of cystic fibrosis lung disease  

(e.g., reduction in airway surface liquid, reduced muco-ciliary clearance and increased mucus plugging 

of the lungs) without any direct impairment of CFTR function [12]. 

2. Gene therapy of CF lung disease 

Cystic fibrosis should be an ideal candidate for gene therapy, for four main reasons: (1) it is a single 

gene defect; (2) it is a recessive condition, with heterozygotes being phenotypically normal 

(suggesting gene dosage effects are not critical); (3) the main pathology is in the lung, which is 

accessible for treatment; and (4) it is a progressive disease with a virtually normal phenotype at birth, 

offering a therapeutic window. 
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In vitro and in vivo studies have suggested that only 5–10% of normal CFTR function is required to 

reverse the chloride channel defect [13-15], although it is not clear whether this has to be achieved in 

the majority of the airway epithelial cells, or whether a minority of cells expressing much higher levels 

would suffice. However, in vitro and in vivo studies suggest that nearly every cell in the sample must 

be corrected with CFTR to reverse the excess activity of ENaC [13,16,17]. These findings would 

imply that gene therapy of CF lung disease should achieve the correction of approximately every cell 

in the airway epithelium. 

Table 1. Comparison among viral vectors for CF gene therapy. 
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In clinical trials to date, two main vector systems have been harnessed to deliver the CFTR cDNA 

with appropriate promoter into host cells (for reviews, see [18-20]). First, viral vectors with the CFTR 

cDNA incorporated into the viral genome exploit the efficiency of viruses to enter host cells and 

achieve relatively high levels of gene expression. Secondly, cationic liposomes complexed with 

plasmid DNA encoding CFTR enhance the transport of the DNA into host cells. Although cationic 

liposomes seem to generate a lower immune response than current viral vector systems, the levels of 

CFTR expression using this delivery system have been relatively poor. 

The ideal vector system would have the following characteristics: (1) an adequate carrying 

capacity; (2) to be undetectable by the immune system; (3) to be non inflammatory; (4) to be safe to 

the patients with pre-existing lung inflammation; (5) to have an efficiency sufficient to correct the 

cystic fibrosis phenotype; and (6) to have long duration of expression and/or the ability to be safely re-

administered. Furthermore, to provide therapeutic benefit in vivo, the delivery of CFTR gene therapy 

must be extremely efficient to overcome the physical barriers such as thick tenacious mucus and 

pulmonary surfactant, as well as the logistical difficulties resulting from many viral receptors which 

are expressed on the basolateral membrane of bronchial epithelial cells. Much of the morbidity and 
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mortality seen in cystic fibrosis patients is related to pre-existing pulmonary inflammation; 

consequently, it is important that any vector system does not cause further inflammation. Table 1 

summarizes the characteristics of viral vectors used in CF gene therapy to date [21-23]. 

3. Lentiviral vectors 

Many viral vector systems have been developed for gene therapy applications, but most of these 

vectors are non-integrating, which limits their usefulness for transgenesis. The best characterized 

integrating viral vectors originate from the Retroviridae family, because of their intrinsic ability to 

integrate into genomic DNA. However, oncoretroviral vectors have shown limited success because of 

the requirement of cell replication for integration. Lentiviral vectors (LV) have overcome these 

limitations showing the ability to transduce nondividing cells and provide a more efficient transgene 

expression if compared with oncoretroviral vectors. Higher efficiency of LV vectors is likely due to 

the stability of transcripts derived from the lentiviral provirus because of the strong 3’ poly(A) signal 

that causes an increased cytoplasmic accumulation of the RNA of the transgene [24]. Naldini et al. 

were the first to demostrate that a LV vector derived from human immunodeficiency virus type 1 

(HIV-1) could provide efficient in vivo delivery, stable integration and long-term expression of 

transgenes into non-mitotic cells such as neurons [25,26].  

Although various lentiviruses from different species (human, simian, equine, ovine, bovine, feline, 

caprine) have been used to generate gene transfer vectors (reviewed in [27]) only HIV-1 and feline 

immunodeficiency virus (FIV) have been considered in the context of airway epithelium and cystic 

fibrosis gene therapy. Lentiviruses, such as HIV-1, have a diploid genome with two copies of single-

stranded plus RNA and a nucleocapsid constituted by the proteins derived from the gag gene, viral 

enzymes such as a protease derived from the pro gene, Rnase H, reverse transcriptase and integrase 

derived from the pol gene. The virion is enveloped by the host cell membrane containing the viral 

protein derived from the env gene. After virus entry into the cell, reverse transcription produces viral 

double strand DNA which enter in the nucleus and integrate randomly and permanently in the host 

genome, resulting in a provirus state. In the provirus, the lentiviral genome is flanked on both sides by 

the long terminal repeats (LTR), which contain the U5, R and the U3 regions. The 5’-LTR can act like 

an RNA pol II promoter. The 3’-LTR acts to terminate transcription and promote polyadenylation. The 

LTR also has recognition sequences necessary for integration into the genome. Tat is an accessory 

viral protein which activates the 5’ LTR promoter, whereas Rev controls the amount of RNA splicing 

as well as the RNA export into the cytoplasm. At the end of cycle infection, viral genomes are 

packaged, enveloped and released from the cells. Two important cis-acting DNA elements, the central 

polypurine tract sequence (cPPT) and the postregulatory element (PRE), derived from woodchuck 

hepatitis B virus, are also included in the transfer vector to enhance the transduction efficiency and 

transcript stability. In particular, cPPT has been shown to facilitate nuclear translocation of pre-

integration complexes, and PRE acts at the post-transcriptional level, by promoting nuclear export of 

transcripts and/or by increasing the efficiency of polyadenylation of the nascent transcript [28-30]. 

Another important feature in the lentiviral transfer plasmid is a 400-bp deletion in the U3 region of the 

3’-LTR, which debilitates the 5’-LTR RNA pol II promoter activity following integration creating a 

so-called self-inactivating (SIN) vector, increasing the vector biosafety profile [31]. 
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The development of lentiviral vector system, in order to achieve a gene transfer agent, is based on 

modifications of a native lentivirus genome. Presently, the lentivirus-based gene delivery system is 

constituted by four components: 1) the packaging elements like structural proteins and enzymes 

involved in the formation of the viral particles, derived from the gag-pol genes; 2) a post-

transcriptional regulator for gag and pol expression as well as nuclear RNA export encoded by the rev 

gene; 3) the vector carrying the transgene to be transferred to the target cells; 4) an heterologous 

glycoprotein i.e., vesicular stomatitis virus glycoprotein G (VSV-G) which pseudotypes the vector in 

order to increase its tropism. All structural proteins are HIV-1-derived, except the envelope because of 

the restricted host range of the HIV-1 env glycoprotein. Association of VSV-G with viral cores 

derived from lentiviruses, results in an high titer production and in a broad tropism of the vectors. 

Finally, deletion of the coding sequences for viral gene products renders the LV gene transfer vectors 

replication incompetent and makes 6–8 kb available for the insertion of desired genes, in this case a 

large transcriptional units such as an epithelial-specific promoter expressing the CFTR gene [25]. 

Lentivirus vectors only recently made their debut in human clinical trials for hematological 

disorders, such as -thalassemia and sickle cell disease [32]. In the first reported clinical trial with LV 

vectors, an HIV-1 derived vector expressing an antisense gene against the HIV-1 envelope gene 

(termed VRX496) was transferred to autologous CD4 T cells. A single intravenous infusion of these 

gene-modified autologous T cells was well tolerated in all five patients enrolled in the clinical trial; 

self-limiting mobilization of the vector and improvement of immune function was observed in four out 

of five patients [33]. Currently there are 21 clinical trials with LV vectors referring to various diseases, 

representing 1.4% of the vectors used in gene therapy clinical trials, as reported by 

http://www.wiley.co.uk/genetherapy/clinical/. 

4. Barriers to efficient viral-mediated gene transfer to the airway epithelium  

Gene therapy of cystic fibrosis lung disease needs an efficient delivery and a persistent expression 

of the CFTR transgene into the airway epithelium. LV vectors appear to be promising vehicles for 

gene delivery into respiratory epithelial cells due to their ability to infect nondividing cells and to 

integrate into the host cell genome mediating long-term persistence of transgene expression. Various 

physical and pathological barriers, inherent also to CF lung, including mucus plugs, glycocalyx 

components and mucins at the apical surface of the epithelia, represent an obstacle for viral attachment 

to the target cells and inhibit viral transduction from the luminal face [34,35]. These hurdles, together 

with immune response to vector encoded proteins [36], limit the success of in vivo application of gene 

transfer vectors in the airway epithelium. Moreover, the expression of receptors for many commonly 

used viral vectors is more abundant on the basolateral membrane than on the apical side of the 

respiratory epithelium and they are hardly accessible because of the airway tight junctions [37-39]. 

5. Gene tranfer to the airway epithelium mediated by LV vectors 

To mimic the persistent and progressive infection typical for CF patients, the bacteria can be 

encapsulated into agar beads and injected to the mouse lung via the trachea [40]. The impact of chronic 

Pseudomonas aeruginosa infection on adenovirus-mediated gene transfer was evaluated by two 

studies [41,42], which demonstrated that efficiency of adenovirus-mediated gene transfer to the airway 
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epithelium is significantly reduced by inflammation induced by Pseudomonas. Increased adenovirus-

specific CD8 cytotoxic T cell activity was considered by the authors as one of the underlying 

mechanisms [42]. Recently, we have demonstrated that LV VSV-G vector-mediated transduction of 

the airway epithelium is not affected when administered to the lung of chronically infected mice [43]. 

Although these data refer to only one day post-injection, our findings together with those previously 

published underscore the importance of considering the influence of the disease milieu when 

evaluating modes of gene therapy for such diseases in animal models. 

Other studies have shown that the capacity of LV vectors to transduce a fully differentiated 

respiratory epithelium is lower compared with an undifferentiated one. A first generation VSV-G 

pseudotyped HIV vector was able to transduce wild type CFTR into poorly differentiated human 

bronchial xenografts and its expression corrected the chloride transport defect and reverted the 

bacterial killing activity; however gene transfer was less efficient when the epithelium was fully 

differentiated [44]. A second generation LV vector could enable efficient and long-term transduction 

of a 3D spheroid culture of fetal human airway epithelial cells derived from the fetal trachea or from 

fetal airway xenografts (a culture model of airway epithelial cells in suspension showing a polarized, 

junctional and differentiated mucociliary surface epithelium) for up to 80 days [45]. LV vector-

mediated LacZ expression in the human fetal tracheal xenograft model was observed in up to 99% of 

the surface epithelial cells and the submucosal gland cells, up to nine months after vector 

administration [46], indicating that HIV-1-derived vectors mediate long-term gene expression by 

targeting a 'progenitor cell' compartment. 

Pseudotyping the vectors with heterologous envelopes and pre-conditioning of the airway tight 

junctions are the strategies currently used to overcome the paucity of receptors for lentivirus on the 

apical surface of the respiratory epithelium and to allow the access to the basolateral compartement 

receptors (Figure 1).  

Most of the studies on HIV-1-derived lentiviral mediated gene transfer in the airway epithelium 

refer to gene delivery mediated by LV vectors pseudotyped with VSV-G which is useful not only to 

allow virus particle concentration, but also to modulate virus interaction with the host immune system 

and to broaden its host range.  

VSV-G LV vectors have been shown to be inefficient in in vivo gene transfer into a fully 

differentiated epithelium unless disruption of the epithelial barrier integrity obtained with calcium-

chelating agents like EGTA [47], inhalation exposure to sulfur dioxide [48], or modification of the 

barrier function of the airway epithelium with lysophosphatidylcholine (LPC) [49] is obtained. As a 

proof-of-principle that disruption of tight junction integrity helps LV-mediated gene transfer to a 

differentiated airway epithelium, Johnson et al. demostrated that direct in vivo delivery of VSV-G 

pseudotyped HIV-1- based vector to the nasal epithelium of rats and mice failed to mediate gene 

transfer, but injury of the epithelium with sulfur dioxide (SO2) 1-2 hours before vector delivery 

strongly enhanced transduction levels of the nasal epithelium. SO2 pre-treatment also enhanced gene 

transfer to the tracheas of rodents [48]. 
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Figure 1. VSV-G LV vectors have been shown to be inefficient in in vivo gene transfer 

into a fully differentiated epithelium unless treatment with agents that disrupt the TJ 

integrity (EGTA; LPC) exposing basolateral receptors to the vector. LPC acts also 

increasing vector residence time by reducing cilial beat (blue arrow). To overcome the 

inability of VSV-G LV to efficiently infect the airway epithelium in the absence of 

injuring agents other heterologous envelope glycoproteins than VSV-G (e.g., GP64 from 

baculovirus A. Californica) conferred to the LV vector the ability to transduce 

differentiated airway epithelium from the apical surface. 

 
 

Calcium-chelating agents may be more useful in the context of CF lung disease, since they 

transiently disrupt tight junctions [50]. CFTR function was restored after in vitro transduction of fully 

differentiated human CF airway epithelia with a VSV-G pseudotyped FIV vector formulated with 

EGTA [47]. In the same study pre-treatment of rabbit tracheas with EGTA solution for 30-60 minutes 

prior to vector application resulted in transduction mostly of lower airways (basal cells, Clara cells, 

and alveolar type II cells). Gene transfer persisted in respiratory epithelial cells for 6 weeks.  

The attachment and entry mechanism of VSV-G pseudotyped LV vectors into the airway epithelial 

cells and subsequent infection are still unknown. We demonstrated a role of glycosaminoglycans 

(GAGs) in gene transfer mediated by a third generation VSV-G pseudotyped LV vector in an in vitro 

model of polarized airway epithelial cells. In particular, heparan sulfate, chondroitin sulfate A and B 

seem to be strongly involved in the infection of respiratory cells mediated by a VSV-G pseudotyped 

LV vector [51]. However, one hour of treatment with 12 mM EGTA significantly increased VSV-G 

LV efficiency transduction in polarized cells obtained from a CF F508del homozygous patient [51], 

indicating that not all the putative attachment receptors are expressed on the apical surface of CF 

airway epithelium.  

Other biological modifers of the membrane permeability have been actively searched [22]. LPC 

pre-treatment results in a transient disruption of tight junctions, facilitating the access of lentiviral 

vectors to the basolateral membrane [49]. Other mechanisms by which LPC might enhance gene 

transfer are by acting as a mucolytic agent and by reducing cilial beat, both of which increase vector 

residence time [52]. Pre-treatment of the epithelium with 1% LPC 1 hour prior to intranasal instillation 

of a VSV-G-LV vector expressing LacZ reporter gene in mice produced significant transgene 

expression in the nasal respiratory epithelium for at least 92 days, suggesting that transduction of 
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airway progenitor cells had occurred. Transduction with LV expressing CFTR after LPC treatment 

achieved sustained CFTR expression and partial correction of the electrophysiological defect in the 

nose of CF mice for at least 110 days [49].  

In a recent work, a VSV-G pseudotyped LV carrying LacZ or CFTR gene was delivered in the 

nostrils of mice 1 hour after pre-treatment with 0,3 % LPC via inhalation-driven instillation. LacZ 

transgene expression lasted over 24 months and was restricted to the anterior regions of transitional 

and respiratory epithelium within the dosed nasal airway affecting primarily ciliated and nonciliated 

cells, but also a low number of secretory and basal cells. At 24 months when LacZ gene expression 

was still present, the number of cells transduced was significantly reduced compared to the initial 1 

week level. Significant correction of CFTR function, measuring nasal potential, was present at 1 and 

12 months compared to untreated mice [53]. Although these findings are consistent with an 

approximate 3-month cell turnover time originally established for murine tracheal airway [54], recent 

data suggest longer turnover times (up to 17 months) in deeper regions of the mouse lung [55].Thus, it 

is currently unclear, if prolonged expression is due to vector integration into the pulmonary stem or 

progenitor cells or due to the long life-expectancy of airway epithelial cells. 

Agents disrupting tight junction structure and disturbing membrane permeability may not be useful 

in the context of CF lung disease, since CF lungs are replenished with bacterial products and 

inflammatory mediators. To overcome the inability of VSV-G-pseudotyped lentiviral vectors to 

efficiently infect the airway epithelium in the absence of injuring agents, other heterologous envelope 

glycoproteins, such as those from the Marburg virus or the Zaire subtype Ebola virus [56,57], the 

baculovirus Autografa californica [58] and the influenza virus [59], were used to pseudotype the 

vectors. 

HIV-1-based vectors pseudotyped with the envelope from the Zaire strain of the Ebola virus (EboZ) 

gave efficient transduction (70% of positive cells) when applied to the apical side of polarized 

epithelia [56]. Ex-vivo transduction of human trachea by EboZ-pseudotyped vector resulted in high 

levels of LacZ expression as compared to VSV-G pseudotyped vector. When the Ebo-Z pseudotyped 

virus was injected in the trachea of mice, 30% of the entire tracheal epithelium was transduced at day 

28 and 24% at day 63. Interestingly, high expression was observed in submucosal glands, while 

transduction efficiency was lower in epithelia of more distal lung (airway and alveolar) cells.  

Pseudotyping with the GP64 derived from the baculovirus A. californica conferred to a FIV 

lentiviral vector the ability to transduce differentiated human airway epithelia from the apical surface 

with higher efficiency than VSV-G LV [58]. Intranasal instillation of the vector carrying LacZ 

formulated in viscous methylcellulose carrier, which is thought to act by increasing vector residence 

time, resulted in persistent gene expression in the mouse nose, with gene expression observed one year 

post-infection. 

Kremer et al. compared the efficiency of transduction of mice nasal airways by a VSV-G 

pseudotyped vector (carrying LacZ gene) after a pre-treatment with LPC, and the same vector 

pseudotyped with GP64 envelope without any pre-treatment. In the absence of pre-conditioning the 

GP64-pseudotyped lentiviral vector resulted significantly less efficient than the VSV-G pseudotyped 

vector after LPC treatment. The levels of transduction were similar for the two vectors when a pre-

treatment with LPC was used. The cell types transduced were essentially the same with the majority of 

cells transduced being respiratory (ciliated cells). However, while the VSV-G LV resulted in persisting 
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gene expression, transduction with the GP64 LV resulted in gene expression that decline to 

undetectable levels over six months, whether or not an LPC treatment was used. These results suggest 

that the GP64-pseudotyped LV vector, in contrast to the VSV-G-pseudotyped vector, was unable to 

transduce progenitor cells for respiratory epithelium, even when used in combination with LPC pre-

treatment [52]. 

Different results in transducing airway epithelial cells in vitro and in vivo were obtained with other 

envelope proteins, such as those from influenza virus [59], Ross River virus [60], and Jaagsiekte sheep 

retrovirus [61]. For example, McKay et al. demostrated that an HIV-1-derived LV vector pseudotyped 

with influenza virus hemagglutinin could efficiently transduce, via the apical membrane, differentiated 

cultures of human and murine airway epithelial cells, and mouse tracheal epithelium in vivo, with a 

preference for ciliated cells [59]. These vectors warrant further studies about their attachment and 

entry mechanisms. 

6. Safety of LV vectors in the lung  

Gene therapy viral vectors are known to elicit transgene- or viral protein-specific immune responses 

[62]. This issue has long been studied with adenoviral vectors, with which, transgene expression in 

vivo usually extinguishes within 2 to 3 weeks, concurrent with the development of inflammation. This 

is caused by the rapid activation of potent CD8 and CD4 T cell responses against both the viral 

antigens and the transgene. In addition, activation of B cells by viral capsid proteins, leading to the 

production of neutralizing antibodies, limits effective readministration of the vector. When 

administered to the lung, adenoviral vectors activate cytolytic transgene-specific T cells [63]. This 

drawback has hindered the development of adenovirus as a gene therapy vector for CF. A preliminary 

evaluation of safety of administration of LV vectors into airways showed that in vivo delivery of a 

HIV-1-derived vector in the tracheas of C57Bl/6 mice did not induce inflammatory infiltrates post-

infection [56], and the persistent expression in mice and rabbits suggested a potential “immune 

tolerance” in these animal models [47]. Intravenous administration of LV vectors in immunocompetent 

mice induced the proinflammatory cell-adhesion molecules ICAM-1, VCAM-1, PECAM-1 and the 

costimulatory molecule B7-2 [64] and resulted in reduced duration of expression of the transgene [65], 

whereas direct administration into the retina, liver, muscle, and brain has been associated with milder 

systemic inflammatory and immune responses [66-68].  

A GP64-pseudotyped FIV vector was also used to investigate the efficacy of repeated 

administration to the airways [69]. In particular the authors reported for the first time a successful in 

vivo re-administration of lentiviral vectors to respiratory epithelia, associated with an increase 

expression of reporter or therapeutic transgenes, without the development of innate and adaptive 

responses that represent a significant limitation to clinical applications for airway diseases for other 

virus vectors, such as adenoviruses or adenoassociated viruses. In this study, GP64-FIV was 

repeatedly delivered to murine nasal epithelia, in particular four groups of mice received 1, 3, 5 or 7 

doses of the vector carrying the luciferase transgene over the same number of consecutive days. Mice 

underwent bioluminescence imaging 1, 4, 8 and 12 weeks following the final dose demonstrating 

additive increases in transgene expression with repeat dosing, probably due both to an increase of 

percentage of cells expressing a transgene and in the number of transgene copies/cells. The levels of 
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anti-GP64 IgG were measured in sera and in bronchoalveolar lavage (BAL) fluid one week after a 

booster dose of the vector, showing low levels of anti-GP64 IgG antibodies in sera for all groups of 

mice and higher levels in BAL fluid; importantly, the levels of inactivating antibodies measured with a 

neutralizing antibody assay resulted below the limit of detection indicating that though an adaptive 

immune response is mounted against the vector, it is insufficient to block gene transfer. Although these 

results are encouraging for the expression of a therapeutic protein over the life, recently published data 

argue against this scenario. Limberis and colleagues demonstrated that transient expression of Green 

Fluorescent Protein (GFP) at day 90 in alveolar epithelium following an intratracheal injection of 

VSV-G-pseudotyped HIV-1-derived vector to the mouse lung is due to transgene- and gag-specific  

T-cell activation [70]. These results suggest that issues linked to the elicitation of an immune response 

are also associated with the application of pseudotyped LV vectors for gene therapy of pulmonary 

genetic diseases, such as CF. Specifically, it has been predicted, using computational analysis, the 

likelihood of a CFTR-specific T-cell activation following expression of the therapeutic CFTR gene in 

CF subjects with the most common mutation F508del [71]. It is thus likely that expression of the 

therapeutic CFTR in CF patients with the F508del mutation could be subject to antigen cross-

presentation or activation of quiescent CFTR-specific T cells, an issue that has been understimated in 

previous clinical studies. Indeed, Limberis and colleagues identified a dominant CD8 T cells epitope in 

the CFTR gene upon intramuscular injection of an adenovirus vector expressing human wild-type 

CFTR cDNA into CFTR KO mice [72]. 

Lineage-regulated transgene expression will be necessary for effective, long-term gene therapies for 

disorders affecting the lung. Most gene therapy clinical trials directed to respiratory epithelium to date 

have used constitutive promoters such as the promoter from the cytomegalovirus (CMV) or the 

promoter in the retroviral LTR. However, long-term animal studies have indicated that, over time, 

transgene expression can be silenced from viral promoters [73,74], or can disregulate cellular genes 

near the integration site leading to tumorigenesis [75]. Thus, lineage-specific regulation of expression 

will be beneficial for many gene therapy applications to avoid vector silencing or toxicities associated 

with unregulated transgene expression. Furthermore, lung-specific transgene expression would have 

the advantage of avoiding transgene expression in antigen presenting cells, such as dendritic cells, and 

limiting immune responses against the transgene and viral encoded genes.  

Hendrickson et al. constructed a series of lentiviral vectors with regulatory elements to obtain lung-

specific transgene expression: the surfactant protein C promoter (SPC) for alveolar epithelial type II 

cell (AECII) expression, the Clara cell 10-kDa protein (CC10) for Clara cell expression in the airway, 

and the Jaagsiekte sheep retrovirus (JSRV) promoter for expression in both cell types. Transgene 

expression from the SPC and CC10 vectors was restricted to alveolar epithelial type II and Clara cell 

lines, respectively, while expression from the JSRV vector was observed in multiple respiratory and 

non-respiratory cell types. After intratracheal delivery of lentiviral vector to mice, transgene 

expression was observed in AECII from the SPC lentiviral vector, and in Clara cells from the CC10-

promoted lentivector. Transgene expression was not detected in non-respiratory tissues after 

intravenous delivery of CC10 and SPC lentiviral vectors [76].  
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Innate immune responses to LV vectors in the context of lung gene therapy have not been 

thoroughly investigated. Epithelial respiratory cells function as part of the innate immune responses 

and not merely only as a physical barrier. Multiple substances with pro- and anti-inflammatory as well 

as antimicrobial activities are secreted by airway epithelial cells [77-79]. Airway epithelial cells can 

sense and are activated by respiratory pathogens, including viruses [80,81]. On this line, we have 

undertaken an evaluation of the pro-inflammatory potential of LV vectors in vitro in airway epithelial 

cells. A third-generation VSV-G LV vector did not induce those pro-inflammatory signals usually 

observed in human respiratory epithelial cells exposed to classical stimuli, such as TNF-, or other 

gene transfer vectors previously studied, such as adenovirus-derived vectors, except for a mild and 

transient induction of transcription of IFN- in an epithelial tracheal cell line [82]. These results, 

although indicating “stealth” properties of LV vectors in respect with pro-inflammatory potential, 

warrants further evaluation in preclinical animal models. Confirming our results in those models, there 

would be nevertheless the undoubted necessity to cope with adaptive immune response, as shown by 

Limberis and colleagues. 

7. LV-mediated gene transfer into fetal airway epithelium  

Recent studies have explored the feasibility of LV vector-mediated gene expression in the fetal 

airway epithelium, considering the advantage of a therapeutic intervention before clinical onset and in 

the absence of a functional immune response. In vivo GFP gene transfer to fetal respiratory epithelium 

has been achieved in rabbits after direct VSV-G LV intra-tracheal or intra-amniotic administration, 

hovewer tracheal delivery was associated with high fetal mortality rate (75%) and an elevated degree 

of transgene expression in the control ipsilateral uninjected fetuses, likely due to contamination of 

fetomaternal circulation, compared with intra-amniotic administration [83].  

Injection of VSV-G LV carrying GFP reporter gene into the lung parenchima of fetuses of rhesus 

monkeys resulted in transgene expression in pulmonary vasculature and alveolar cells in term fetuses 

and three month aged pups [84]. This work also indicates that postnatal lung development and function 

were not altered after fetal intraorgan gene transfer and subsequent transgene expression prenatally and 

postnatally. 

In a recent study an HIV-based lentiviral pseudotyped vector with the baculovirus GP64 envelope 

was applied to the fetal, neonatal or adult airways. Fetal intra-amniotic administration resulted in 

transduction of approximately 14% of airway epithelial cells, including both ciliated and non-ciliated 

epithelia of the upper, mid and lower airways, with a negligible alveolar or nasal transduction. A 

significant transduction of the airway epithelium mainly in distal lung and alveoli was detected at 1 

year after application following neonatal intra-nasal administration, while in the adult the majority of 

transduction was restricted to alveoli. In contrast, VSV-G pseudotyped virus transduced only after 

adult and neonatal application and no transduction was observed after fetal administration [85]. 

Taken together, these results strongly indicate that fetal airway epithelium can be transduced by LV 

vectors and that the pseudotype can be fundamental as in the transduction of adult airway epithelium. 

The early intervention with an integrating gene transfer vector able to transduce the lung via the 

lumen, avoiding immune elimination of transgenic protein and probably increasing lung stem-cell 
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transduction to result in a persistent gene expression, while ethically complex, may be a successful 

therapeutic approach for CF. 

8. Conclusions and perspectives 

LV vectors are endowed with interesting features which make them promising agents for 

application to gene therapy of CF lung disease. However, they present some drawbacks which need to 

be addressed before they can enter into the clinic. Although the issue of attachment and entry 

mechanisms has not been studied in detail, it seems that, at least in in vitro cultures of human polarized 

airway epithelia and small conventional animal models, the apical surface of the airway epithelium 

poses a strenous barrier to efficient transduction from this side, due to the lack of apical receptors. 

Moreover, while other viral vectors have been considered in light of the extracellular barriers, such as 

the thick and dehydrathed mucus layer covering the airway epithelium, comprehensive studies on this 

aspect are still lacking. The alternative to the use of tight junction disrupting agents and membrane 

detergents, which could possibly enhance the leakage of bacterial products and inflammatory 

mediators into the submucosa and further damage the CF lung, is the pseudotyping of LV envelope 

with heterologous proteins from other viruses. This approach should be evaluated in terms of the safety 

issue, when pathogen viruses are used [57]. Another approach is to use physical methods in order to 

enhance the residence time of viral vectors onto the airway epithelium, avoiding their wash out by the 

mucociliary clearance. For example, magnetofection is a nucleic acid delivery technique to cells 

supported and site-specifically guided by the attractive forces of magnetic fields acting on viral vectors 

which are associated with magnetic nanoparticles. This field is actively investigated by us and other 

research groups [86,87]. 

Most of the data on the efficacy (i.e., the correction of the electrophysiological defect) of LV 

vectors have been collected in CF mouse models. For both anatomical and physiological reasons, mice 

do not show a respiratory syndrome that is equivalent to that found in humans [88]. To develop 

meaningful LV vectors for CF gene therapy, evaluation of LV vectors should be done on novel animal 

models for CF. Pigs and ferrets seem to be better animal models to develop protocols and vectors for 

gene therapy of CF, because they share many anatomical and physiologycal similarities with those of 

human lungs [89,90]. 

The issue of immune response to transgene- and viral genes is a caveat in the use of viral vectors for 

human gene therapy. The first indications on the elicitation of innate and adaptive responses to LV 

vectors have been produced, although this field is in its infancy. It seems that LV vectors have a low 

pro-inflammatory potential, while they can stimulate a transgene-directed T cell response. Novel 

animal models may aid also in elucidating this issue. 
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