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ABSTRACT

Adjusting DNA structure via epigenetic modifica-
tions, and altering polyadenylation (pA) sites at
which precursor mRNA is cleaved and polyadeny-
lated, allows cells to quickly respond to environ-
mental stress. Since polyadenylation occurs co-
transcriptionally, and specific patterns of nucleo-
some positioning and chromatin modifications cor-
relate with pA site usage, epigenetic factors poten-
tially affect alternative polyadenylation (APA). We re-
port that the histone H3K4 methyltransferase Set1,
and the histone H3K36 methyltransferase Set2, con-
trol choice of pA site in Saccharomyces cerevisiae,
a powerful model for studying evolutionarily con-
served eukaryotic processes. Deletion of SET1 or
SET2 causes an increase in serine-2 phosphory-
lation within the C-terminal domain of RNA poly-
merase II (RNAP II) and in the recruitment of the
cleavage/polyadenylation complex, both of which
could cause the observed switch in pA site us-
age. Chemical inhibition of TOR signaling, which
causes nutritional stress, results in Set1- and Set2-
dependent APA. In addition, Set1 and Set2 decrease
efficiency of using single pA sites, and control nu-
cleosome occupancy around pA sites. Overall, our
study suggests that the methyltransferases Set1 and
Set2 regulate APA induced by nutritional stress, af-
fect the RNAP II C-terminal domain phosphorylation
at Ser2, and control recruitment of the 3′ end pro-
cessing machinery to the vicinity of pA sites.

INTRODUCTION

The basic structural unit of chromatin is the nucleosome,
consisting of a histone octamer, around which 147 base
pairs of DNA are coiled (1,2). Epigenetic modifications
provide a higher level of chromatin structure by organiz-
ing it into either transcriptionally active euchromatin or in-
active heterochromatin. The epigenetic machinery remod-
els nucleosomes and performs histone posttranslational
modifications, which in turn control access of transcrip-
tion regulatory proteins to DNA, and dictate the initia-
tion and elongation rate of RNA Polymerase II (RNAP
II) (3). Epigenetic factors include DNA methyltransferases,
histone demethylases, methyltransferases (HMTs), deacety-
lases (HDACs), acetyltransferases (HATs), dephosphory-
lases, kinases, deubiquitinases, ubiquitinases and nucleo-
some remodelers which control nucleosome positioning
(3,4). The cell easily modulates its gene expression by dy-
namic and reversible modifications of chromatin (5–7).

In addition to chromatin remodeling, the cell tunes
its transcriptional regulation by switching polyadenylation
(pA) sites (8–10). Most human genes have multiple pA
sites located not only in their 3′ UTRs, which contain cis-
regulatory elements, but also within introns and coding
sequences. Choice of pA site determines the location at
which the pre-mRNA is cleaved and polyadenylated lead-
ing to the production of different mRNA isoforms in a pro-
cess called alternative polyadenylation (APA). Controlling
3′ UTR length may promote or repress mRNA degradation,
nuclear export, and translation. Thus, APA leads to pro-
duction of proteins with different expression levels, struc-
ture, function and subcellular localization so that the cell
properly responds to different environmental stimuli (11–
13). Recent advances have shown that APA and dysreg-
ulation of the epigenetic landscape are hallmarks of can-
cer (4,11,14–18), aging (19–24), DNA damage (8,25,26),

*To whom correspondence should be addressed. Tel: +1 617 636 6935; Email: claire.moore@tufts.edu
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

C© The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0002-2525-5830


5408 Nucleic Acids Research, 2020, Vol. 48, No. 10

differentiation (27–32), metabolism (33–35), heart failure
(36,37), pulmonary fibrosis (38,39), neurodegenerative dis-
eases (40,41) and immune responses (28,32,42–46). Due to
the lack of knowledge about APA regulation, reversing such
dysregulation remains a challenge.

Because polyadenylation occurs co-transcriptionally, epi-
genetic factors are likely to affect APA. Indeed, slowing the
transcriptional elongation rate of RNAP II favors utiliza-
tion of upstream pA sites (47). Furthermore, specific pat-
terns of nucleosome positioning and chromatin modifica-
tions correlate with APA, and are more accurate in predict-
ing functional pA sites than cis elements (48). More specifi-
cally, nucleosomes are depleted in the immediate vicinity of
pA sites, and preferred pA sites show greater nucleosome
occupancy upstream and downstream of the sites, along
with RNAP II accumulation upstream of the pA site (48).
Moreover, the presence of downstream nucleosomes cor-
relates with the transcriptional termination sites of non-
coding RNAs and cryptic transcripts (49). Histone H3K4
(48) and H3K36 (48,50) methylation is strongly associated
with pA sites in humans. Methylation of both histone H3K4
and H3K36 has been shown to regulate alternative splicing
(51), but it remains unknown whether they regulate APA.

To determine whether histone H3K4 and H3K36 HMTs
control APA, we took advantage of Saccharomyces cere-
visiae, a powerful model for studying evolutionarily con-
served eukaryotic processes. In S. cerevisiae, Set1 co-
transcriptionally methylates histone H3 on lysine 4 (52,53).
Histone H3K4me3 is enriched at the 5′ end of genes, his-
tone H3K4me2 in the middle, while histone H3K4me1 is
prominent toward the 3′ end of a gene (54,55). Set1 is the
HMT in the COMPASS complex, which also includes Bre2,
Sdc1, Shg1, Spp1, Swd1, Swd2 and Swd3 (53,56,57). Set1-
mediated methylation of histone H3K4 is regulated by the
PAF complex (58). Although methylation of histone H3K4
is considered a mark of open chromatin (59–61), it can
also repress transcription of rDNA (62), silent mating-type
loci (63) and telomeres (63–65), as well as prevent cryp-
tic transcription (63,66–68). Loss of Set1 in S. cerevisiae
up-regulates the expression of stress responsive genes in
a Rad53- and histone H3K4me1-dependent manner (69).
Set1 recruits the early termination factor Nrd1, and cells not
expressing Set1 and Nrd1 are severely defective for termina-
tion of snoRNAs and cryptic unstable transcripts (CUTs)
(68). The histone H3K4 demethylase Jhd2 controls choice
of pA site by recruiting the 3′ end processing machinery (70)
However, the effects of Set1 on the choice of pA site have
not been determined. Like nucleosomes, histone H3K4me1
is depleted around pA sites (48). Mammalian genes utilizing
upstream pA sites have high levels of histone H3K4me3 at
the upstream site, and histone H3K4me3 levels drop down
downstream of the pA site (71).

Histone H3K36 methylation in S. cerevisiae is catalyzed
solely by Set2 (72), and occurs co-transcriptionally (73–
76). Like histone H3K4me1, histone H3K36me3 is en-
riched toward the 3′ end of genes (54,55,77,78). Histone
H3K36 methylation in S. cerevisiae is regulated by sev-
eral factors, such as Spt6 (79), the PAF complex (73,80),
and the RNAP II C-terminal domain (CTD) Ser2 ki-
nases Ctk1 (73,76,79,81), and Bur1 (80,82,83). Set2 binds
RNAP II phosphorylated at Ser2 and Ser5 of its CTD

(84). Like methylation of histone H3K4, methylation of
histone H3K36 is considered a mark of open chromatin
(85), but it can also repress transcription of certain genes
(86), and prevent cryptic (87–89) and intragenic transcrip-
tion (90) mainly via its interaction with the HDAC Rpd3S
(88,89,91–93). The repression of intragenic transcription
by the histone H3K36 HMT is also conserved in humans
(94). Methylation of histone H3K36 and repression of cryp-
tic transcription requires interaction of Set2 with residues
of histones H4, H2A and H3 (95,96). Histone H3K36
demethylases increase RNAP II processivity (97), and cells
not expressing Set2 or cells with a mutated histone H3K36
residue have elevated levels of RNAP II at the 3′ ends of
genes. Preferred pA sites in human genes have high levels
of histone H3K36me3 (71), and histone H3K36me3 levels
are significantly higher at pA sites in genes with multiple pA
sites compared to genes with a single pA site, suggesting a
role for histone H3K36me3 in APA regulation (50). Inter-
estingly, levels of histone H3K36me3 drop gradually down-
stream of pA sites, and the persistence of this mark may lead
to increased pausing of RNAP II, which would give more
time for processing at an upstream pA site (98,99).

Studies on mechanisms leading to APA have focused on
regulation by changing levels of cleavage/polyadenylation
proteins or factors that suppress or enhance recruitment of
the cleavage/polyadenylation complex to specific pA sites
(100–102). Chromatin structure has been recently shown to
control alternative promoter choice and alternative splicing
(103,104). Previous studies on APA have only demonstrated
a correlation between chromatin modifications and pA site
choice, but functional validation was not performed (48–
50). To test the hypothesis that epigenetic factors affect al-
ternative pA site usage, we looked at utilization of pA sites
in S. cerevisiae cells not expressing the Set1 or Set2 HMTs.
We demonstrate that deletion of SET1 or SET2 leads to
changes in pA site choice, and negatively affects APA in re-
sponse to nutritional stress. Furthermore, using a chromatin
immunoprecipitation (ChIP) assay, we show that in set1Δ
and set2Δ cells, the amount of 3′ end processing complex at
pA sites preferred in the mutants is increased. In addition,
set1Δ cells had increased RNAP II CTD Ser2 phosphoryla-
tion (Ser2-P) at pA sites, which enhances RNAP II’s associ-
ation with polyadenylation factors (105). Deletion of SET1
or SET2 also increased the 3′ end processing efficiency at
genes containing single pA sites.

MATERIALS AND METHODS

Yeast strains and culture

The yeast mutants were a generous gift from Dr. Hungjiun
Liaw (106) and are listed in Table 1. Cells were grown in
YPD medium (1% yeast extract, 2% peptone, and 2% glu-
cose) containing 0.004% DMSO with agitation (220 rpm)
at 30◦C. To induce nutritional stress, cells were grown in
the presence or absence of 10 nM rapamycin (AdipoGen,
from a 0.25 mM stock dissolved in DMSO) for 2 h in the
dark with agitation (220 rpm) at 30◦C. For spot assays, yeast
cells were cultured in 5 ml of YPD media for 16 h and then
diluted to OD600 = 0.5, which is about 5 × 106 cells/ml.
Ten-fold serial dilutions were spotted on YPD agar plates
containing 2 nM rapamycin or DMSO as a solvent control.
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Table 1. Yeast strains used in this study

Strains Genotype and carried plasmids

W303� MAT� leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15
set1Δ MAT� leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 set1::KANMX6
set2Δ MAT� leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 set2::KANMX6
WT H3 MAT� leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 hht1hhf1::KAN, hht2hhf2::KAN,

pRS415-HHF1-HHT1
H3K4R MAT� leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 hht1hhf1::KAN, hht2hhf2::KAN,

pRS415-HHF1-H3K4R
H3K36R MAT� leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 hht1hhf1::KAN, hht2hhf2::KAN,

pRS415-HHF1-H3K36R

Table 2. Antibodies used in this study

Specificity Supplier Catalog #

Anti-Histone H3 Abcam Ab1791
Anti-Histone H4 Abcam Ab10156
Anti-H3K4me1 Abcam Ab8895
Anti-H3K36me3 Abcam Ab9050
RNAP II CTD Ser2-P ChromoTek 3E10
RNAP II pan-CTD (4H8) Santa Cruz sc-47701
Rna15 Dr H. Domdey
Pta1 Dr H. Domdey
�-tubulin (YOL1/34) Invitrogen MA1-80189

Immunoblot analysis

Whole-cell lysates were prepared from exponentially grow-
ing cultures, using a modified version of the TCA method
(107). Briefly, 10 ml of cells were collected by centrifuga-
tion and frozen at −80◦C. The cell pellet was resuspended
in 0.25 ml of cold 20% TCA, and transferred to a 1.5 ml mi-
crofuge tube. The cells were broken by vortexing at the high-
est speed for 3 min at 4◦C with acid-washed glass beads. The
cell lysate was transferred to a new microfuge tube, avoid-
ing the glass beads. Two 0.5 ml volumes of cold 5% TCA
were used to wash beads, and combined with the lysate.
The lysate was mixed and the precipitated protein was col-
lected by centrifugation at 14 000 rpm for 10 min at 4◦C.
The pellet was washed with cold 100% ethanol. Protein was
re-suspended in 40 �l of 1M TrisCl (pH 8.0), and 80 �l of
2× SDS loading buffer (60 mM Tris (pH 6.8), 2% SDS, 10%
glycerol, 0.2% bromopheonol blue, 100 mM DTT). Samples
were heated for 5 min at 95◦C before loading onto a 10%
SDS-PAGE gel. Proteins were transferred to a polyvinyli-
dene difluoride membrane by electroblotting. Antibodies
used for immunoblotting are listed in Table 2.

qRT-PCR analysis

Total RNA from exponentially growing wild-type or mu-
tant cells was isolated using the Hot Phenol Method (108)
and Heavy Phase Lock Gel tubes (Quantabio), and treated
with RQ1 DNase (Promega). DNA-free RNA was sub-
jected to reverse transcription using SuperScript III (Invit-
rogen), and either anchored oligo(dT)20 primer for the 3′
end analysis, or with random hexamers for pA site read-
through determination. The resulting cDNA samples were
analyzed using the real-time PCR analysis performed in a
12 �l reaction with 417 nM of 10 �M forward and reverse
primers, 5 �l of SYBR Green Supermix (BIO-RAD), 1 �l
cDNA and 5 �l of distilled water. The primer sequences are

listed in Table 3. The expression of the long mRNA isoform
of a given gene was normalized to the expression of total
mRNA of that gene, and normalized to wild-type.

Chromatin immunoprecipitation

ChIPs were performed as described previously (109). Quan-
titative real-time PCR analysis was carried out using SYBR
Green reagents (BioRad) with the primers listed in Table 3.

Statistical analysis

Statistical analysis was carried out using a Student’s t-test.
A two-tailed distribution was performed using a two sample
equal variance test. *P < 0.05, **P < 0.01, ***P < 0.001.
A P value < 0.05 was considered significant.

RESULTS

Set1 and Set2 influence usage of pA sites

While histone H3K4 and histone H3K36 methylation cor-
relate with the usage of pA sites (48), it has not been de-
termined whether they influence APA. To assess the role of
the histone H3K4 HMT Set1 and the histone H3K36 HMT
Set2 in the choice of pA site, we looked at polyadenylation
of eight different yeast genes with two or more pA sites.
These genes have pA sites located within their open read-
ing frames (ISM1, FAT1, MDV1, RRD2, RTG2, GRS2),
or in their 3′ UTRs (RAD53 and RPB2) (Figure 1A–F,
Supplementary Figure S1A and B). Switch in pA site us-
age was measured using total RNA reversely transcribed
with oligo d(T) primer to select for polyadenylated RNA.
Primers specific for long and total mRNA isoforms were
used for qRT-PCR. Long mRNA isoforms were normalized
to total mRNA isoforms for a given gene. set1Δ and set2Δ
cells show a strong decrease in use of the ISM1, FAT1,
MDV1 and RPB2 downstream pA sites (Figure 1A–D), as
measured by the 3′ end amplification assay. Set1 and Set2
had minimal effect on choice of pA site in GRS2 and RTG2
(Supplementary Figure S1A and B). The expression of total
ISM1, FAT1 and MDV1 mRNA was measured with primer
sets amplifying regions close to the upstream pA sites and
normalized to 18S was increased in set1Δ and set2Δ cells
(Supplementary Figure S2A–C), while that of RPB2 de-
creased. In contrast to the other sites that we examined,
set1Δ and set2Δ cells show a strong decrease in use of the
RRD2 and RAD53 upstream pA sites (Figure 1E and F).
Total RAD53 mRNA normalized to 18S was decreased in
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Figure 1. Set1 and Set2 HMTs determine choice of pA site. (A–F) Wild-type and set1Δ, set2Δ, histone H3K4R and histone H3K36R mutants were cultured
in YPD media and RNA harvested during exponential growth, followed by reverse transcription using anchored oligo d(T) primers. Total and long gene
isoforms of the ISM1, FAT1, MDV1, RPB2, RRD2 and RAD53 genes were amplified for the 3′ end analysis via qRT-PCR using the primer pairs indicated
above the bar graphs. The ratios of long to total mRNAs in the mutant strains were normalized relative to the ratio in the wild-type W303 strain. Stars
depict pA sites. Three biological replicates were performed for each gene. Bars show average values ± SD. **P < 0.01, ***P < 0.001 (Student’s t-test). pA
site positions were determined by Graber et al. (8).
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Table 3. Primers used in this study

Primer name Primer sequence 5′-3′

Anchored oligo d(T) primer TTTTTTTTTTTTTTTTTTTTVN
Random hexamer NNNNNN
ISM1 Total Forward AGCAAGCGATATCTCGCCAA
ISM1 Total Reverse GTCCATGACAATCCCAGCCA
ISM1 pA4 Forward CACCAAGCATCACCTCCCAT
ISM1 pA4 Reverse ATCCTCTTCGGCTGAGTTGG
FAT1 Total/pA1 Forward TCACGGTGGTTGCCTTGCGT
FAT1 Total/pA1 Reverse TGGATGTGCGTGGCTCCTGT
FAT1 pA2 Forward CAAAGGGTTTGGATGGAAATGACAC
FAT1 pA2 Reverse TCCCAATCAGCAGCGGTCAAG
MDV1 Total/pA1 Forward TCACACAGAGCTTCCTAACTTCCA
MDV1 Total/pA1 Reverse ACCCCAGGCGGTATGAGAAATGA
MDV1 pA2 Forward TGAGGGTCGTGAAAATGGGGAC
MDV1 pA2 Reverse TCTTCAAATGGGTTGACTTGATTGC
RPB2 Total Forward GCCTGTAGAGGGTAGATCGAG
RPB2 Total Reverse TCAGCCCGCAAATACCACAA
RPB2 pA2 Forward TCATTTGTGCTGATCTTGCCA
RPB2 pA2 Reverse TGCTTGAAAGTTCTCTCTGCT
RRD2 Total Forward GGGAAGAATCCCCAACAAGAGC
RRD2 Total Reverse ACTGCTCATCTGTGAGAGAGGG
RRD2 pA2 Forward TCTCCACCAAGAGGCCACATAC
RRD2 pA2 Reverse AGTAGCCGCAATAGCGCTCG
RAD53 Total/pA1 Forward ACCAAACCTCAAAAGGCCCCGA
RAD53 Total/pA1 Reverse AGGGGCAGCATTTTCTATGGGT
RAD53 Long Isoform/Between pAs Forward AACCCGTCTTATGCCTTCCGGG
RAD53 Long Isoform/Between pAs Reverse GCCGCCTCCGCCCCTTAATC
PDC1 Forward GCCAGTCTTCGATGCTCCAC
PDC1 Total Reverse ATCGCTTATTGCTTAGCGTTGG
PDC1 pA Span Reverse ACTGTCGGCAACTTCTTGTCTGG
RPP1B Total Forward ACGCTAAGGCTTTGGAAGGTAAGGA
RPP1B Total Reverse AACCGAAACCCATGTCGTCGTCAGA
RPP1B pA Span Forward GACGACGACATGGGTTTCGGT
RPP1B pA Span Reverse TCGTAGCCCTTTCGTATGGACA
RAD53 Promoter Forward AGGTAAGAAAGCAGAAAAGGACGG
RAD53 Promoter Reverse GCGTGGATTGCTGTGTGGGT
RAD53 CDS Forward TCCTAACGGGCCACTTACCTTT
RAD53 CDS Reverse GGGCCCTTCATGATATGAGCCTCT
RAD53 End of CDS Forward GTCGGCTAAGAAGCCGCCAG
RAD53 End of CDS Reverse CGGGGCCTTTTGAGGTTTGGTC
RAD53 pA2 Forward AGAAGTTTGGGTAATTCGCTGCT
RAD53 pA2 Reverse TCTTCCCTTACGTGGTAGGC
GRS2 Total Forward ATAACGATGGCTTCCCCGCT
GRS2 Total Reverse ACGTAAAGCCTGCGAGATCC
GRS2 pA2 Forward ACAACCCTGATGAATCGGACTGGG
GRS2 pA2 Reverse ACAGGCGACAGTCCAAATGTTGAT
RTG2 Total Forward AGGGTGGTGTTCGAGAGGGTTC
RTG2 Total Reverse AATGGAGCATAAGGACGGGACGC
RTG2 pA2 Forward AGTGCTTCCGTTCGTTCCAGA
RTG2 pA2 Reverse TGCACGCCAATTTTAACCCTCTCT
18S Forward GATGCCCTTAGACGTTCTGG
18S Reverse GGCCTCACTAAGCCATTCAA

set1Δ and set2Δ cells, while the total RRD2 mRNA nor-
malized to 18S remained the same (Supplementary Figure
S2D–F).

Histone H3K4R and H3K36R mutants, which cannot be
methylated by Set1 or Set2, demonstrated similar switches
in pA site usage, although to different degrees than set1Δ
and set2Δ cells (Figure 1A–F). Together, these data demon-
strate that the absence of Set1 or Set2, as well as mutations
in the histone residues that are their targets, change pA site
choice, and most often increase use of upstream sites.

A recent paper has reported that the deletion of SET1 or
SET2 can lead to utilization of internal cryptic promoters
(110). Depending on their position relative to our primer

sets used to detect total and long mRNA isoforms, acti-
vation of these promoters could affect our analysis. Ex-
amination of the localization of the internal cryptic pro-
moters reported by Wei et al. (110) revealed that there
were internal promoters in the ISM1, MDV1, FAT1 and
RAD53 genes that were significantly increased in set2Δ
cells, but not in set1Δ cells (Supplementary Figure S3A–
H). However, activation of the internal cryptic promoters
in the ISM1, MDV1, and FAT1 genes would cause the ra-
tio of long to total mRNA isoforms to increase, but we
observe a decrease. In summary, other mechanisms, as de-
scribed below, are likely to be responsible for the APA
changes.
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Loss of set1 or Set2 increases processing efficiency at single
pA sites

Changes in pA site usage as indicated by the anal-
ysis described above can occur if the efficiency of
cleavage/polyadenylation is altered. We tested whether Set1
and Set2 alter the efficiency of 3′ end processing in vivo
by looking at the level of transcripts that contain sequence
upstream and downstream of a pA site. These transcripts
represent RNA that has not been processed, and can be
detected by RT-qPCR with a primer pair that spans the
pA site. We examined the RPP1B and PDC1 genes which
have single pA sites. In addition, the genes downstream of
RPP1B and PDC1 have the same transcriptional orienta-
tion, and are located 496 and 376 bp downstream from the
coding sequence of RPP1B and PDC1, respectively. This
gene organization minimizes the possibility of transcrip-
tional interference influencing pA site usage. Absence of
Set1 or Set2 decreased the amount of unprocessed RNA,
which implies that these chromatin modifiers inhibit pro-
cessing at the RPP1B and PDC1 pA sites (Figure 2A and
B). Total RPP1B and PDC1 mRNA normalized to 18S
was decreased in set1Δ and set2Δ cells, which minimizes
the possibility that the decrease in transcripts that span the
pA site is due to post-transcriptional stabilization of ma-
ture mRNA in these cells (Supplementary Figure S2D–F).
Moreover, we were recently able to show a decrease in pro-
cessing efficiency at single pA sites of RPP1B and PDC1 in
the processing-defective ipa1–1 mutant (111), which further
verifies that using these two pA sites we can measure both,
an increase and a decrease, in the 3′ end processing. These
data indicate that Set1 and Set2 negatively affect the effi-
ciency of cleavage/polyadenylation at these single pA sites.

Set1 and Set2 control nucleosome occupancy around pA sites

Nucleosome positioning and histone marks are both ways
in which the cell alters its chromatin structure. However,
only a few studies have addressed the interactions between
these dynamic processes. Histone methylation patterns af-
fect nucleosome occupancy (112). For example, cells not
expressing Set1 have lower nucleosome occupancy at the
PHO5 promoter (113,114). Likewise, Set2 has been shown
to suppress histone exchange over transcribed regions and
to suppress histone interactions with histone chaperones
(115).

We examined histone occupancy in set1Δ and set2Δ cells
using antibodies against histone H3 and H4. We focused
our analysis on genes with single pA sites, or with well-
spaced alternative pA sites to confidently measure changes
associated with each pA site via ChIP assays. For this
reason, we looked at the pA sites of FAT1, MDV1 and
RAD53, which have a spacing of at least 500 bp between
pA sites. Cells not expressing Set1 have a significant de-
crease in histone H3 and H4 occupancy around the FAT1,
MDV1, PDC1, RPP1B and RAD53 pA sites compared to
wild-type cells (Figure 3A–F). Cells not expressing Set2
have decreased histone H3 occupancy around the FAT1,
MDV1 and RAD53 pA sites (Figure 3A, B and E), a mod-
erate decrease at the RPP1B pA site, and no change at
the PDC1 site (Figure 3C and D). The set2Δ cells also
have a strong decrease in histone H4 in the vicinity of the

Figure 2. SET1 and SET2 deletion enhances utilization of single pA sites.
(A, B) Schematic representation of primer pairs used for qRT-PCR anal-
ysis of transcripts reading through the PDC1 and RPP1B pA sites. Total
RNA was reversely transcribed using random hexamers. qRT-PCR analy-
sis of RNA was conducted using the primer pairs indicated above the bar
graphs to determine the amount of total transcripts and that of transcripts
spanning PDC1 and RPP1B pA sites, which represent unprocessed tran-
scripts. The ratios of unprocessed to total transcripts in the mutant strains
were normalized relative to the ratio in the wild-type W303 strain. Three
biological replicates were performed for each gene. Bars show average val-
ues ± SD. **P < 0.01, ***P < 0.001 (Student’s t-test).

FAT1, PDC1, RPP1B and RAD53 pA sites and moderate
decrease at the MDV1 pA site (Figure 3A–D, F). Overall,
the strongest decrease in nucleosome occupancy is seen in
set1Δ cells (Figure 3A–F).

To see if the loss of histone H3 and H4 in set1Δ and
set2Δ cells is specific to regions near pA sites, we looked
at histone H3 and H4 occupancy along the RAD53 gene. In
set1Δ cells, histone H3 and H4 levels significantly decreased
across the whole gene (Figure 3E and F). SET2 deletion re-
sulted in a significant loss of histone H3 and H4 occupancy
only in the RAD53 3′ UTR (Figure 3E and F). The strong
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Figure 3. SET1 and SET2 deletion decreases nucleosome occupancy around pA sites. (A–D) ChIPs for histone H3 and histone H4 around FAT1, MDV1,
PDC1 and RPP1B pA sites in wild-type (W303), set1Δ and set2Δ cells. (E) ChIPs for histone H3, and H4 (F) along the RAD53 gene in wild-type, set1Δ

and set2Δ cells. Primer pairs indicated above the bar graphs were specific for the RAD53 promoter, coding sequence (CDS), 3′ end of coding sequence,
pA1 site, region between pA1 and pA2 sites, as well as pA2 site. Two biological replicates were performed for each gene. Bars show average values ± SD.
*P < 0.05, **P < 0.01, ***P < 0.001 (Student’s t-test).
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decrease in nucleosome occupancy seen in set1Δ cells was
accompanied by a small decrease in total histone H3 and
H4 levels as shown by western blot (Figure 4A). The set2Δ
cells had unchanged total histone H3 levels, but the histone
H4 levels were increased (Figure 4A). These data demon-
strate that Set1 and Set2 regulate histone occupancy along
genes, especially around pA sites.

Set1 and Set2 modulate each other

To determine whether Set1 and Set2 influence each other,
we looked at histone H3K4me1 in set2Δ in cells, and his-
tone H3K36me3 in set1Δ cells. Interestingly, the absence of
Set1 caused a strong decrease in total histone H3K36me3
levels and presence near pA sites, as measured by western
blot and ChIP assay, respectively (Figure 4A, C–F). How-
ever, once normalized to total histone H3 levels, Δset1 cells
had increased efficiency of histone H3K36 trimethylation
(Figure 4G–J). The absence of Set2 caused a similar de-
crease in histone H3K4me1 near the FAT1 and MDV1 up-
stream pA sites, and the RAD53 downstream pA site, but
not the RAD53 upstream pA site (Figure 4C–F). Once nor-
malized to histone H3 ChIP signal, set2Δ cells had de-
creased monomethylation of histone H3K4 at the FAT1
and MDV1 upstream pA sites and decreased monomethy-
lation of histone H3K4 at the downstream RAD53 pA
site, while the H3K4me1 at the RAD53 upstream pA site
remained unchanged (Figure 4G–J). These data suggest
possible crosstalk between these different methylation ma-
chineries may in turn contribute to the effects of each on pA
site choice.

Set1 and Set2 affect RNAP II Ser2-P and recruitment of
cleavage/polyadenylation factors

RNAP II CTD Ser2, Tyr1 and Thr4 phosphorylation
is enriched near the 3′ end of genes (116,117). RNAP
II CTD Ser2-P is important for the recruitment of the
cleavage/polyadenylation complex to the 3′ ends of genes
(105). Previous reports showed that cells not expressing Set1
have increased RNAP II CTD Ser5 and Ser7 phosphoryla-
tion at the 5′-end of genes (118). We tested whether RNAP
II CTD Ser2-P is affected by loss of the Set1 and Set2
HMTs. The amount of RNAP II and RNAP II Ser2-P in to-
tal protein extracts was not affected by Set1 depletion, but
it was decreased by Set2 depletion (Figure 4A). The set1Δ
cells had a strong increase in the RNAP II CTD Ser2-P oc-
cupancy at all the tested pA sites (Figure 5A–F). Deletion
of SET2 increased RNAP II CTD Ser2-P only at the PDC1
and RPP1B pA sites, although to a lesser level than that
seen in set1Δ cells (Figure 5C and D). These data show that
the decrease in Set1, and to some degree in Set2, enhances
the level of RNAP II CTD Ser2-P near pA sites.

The cleavage/polyadenylation complex in S. cerevisiae is
composed of Cleavage Factor IA (CF IA), Cleavage Factor
IB (CF IB), and holo-CPF, which contains core processing
subunits and the Associated with Pta1 (APT) factor (119).
To understand the mechanism by which Set1 and Set2 af-
fect pA site choice, we tested whether the HMTs affect re-
cruitment of cleavage/polyadenylation factors to the vicin-
ity of pA sites via ChIP assay. We used the Rna15 subunit

of CF IA and the Pta1 subunit of CPF as markers for the
two factors, and examined the recruitment of these two pro-
teins to the pA sites of FAT1, MDV1, RAD53, PDC1 and
RPP1B. The expression of Rna15 and Pta1 in total pro-
tein extracts was not affected by Set1 or Set2 depletion (Fig-
ure 4A). However, set1Δ cells had increased recruitment of
Rna15 to the FAT1 and MDV1 upstream pA sites, as well
as the PDC1 and RPP1B pA sites (Figure 5A–D), and an
increased recruitment of Pta1 to all of the pA sites (Figure
5A–F). The set2Δ cells had an increased presence of Rna15
only at the PDC1 and RPP1B pA sites but an increased re-
cruitment of Pta1 to all of the pA sites (Figure 5A–F). These
findings suggest that SET1 deletion enhances phosphory-
lation of the RNAP II CTD at Ser2, which in turn leads
to increased recruitment of the 3′ end processing factors to
the vicinity of pA sites, while SET2 depletion increases re-
cruitment of the cleavage/polyadenylation complex mostly
independent of RNAP II CTD Ser2-P.

The HMTs set1 and set2 control APA in response to ra-
pamycin

To assess the role of Set1 and Set2 in the switch to alterna-
tive pA sites in response to environmental stress, we treated
cells with the inhibitor of Target Of Rapamycin (TOR), ra-
pamycin. TOR senses nutrients and regulates cell growth
and aging. Mammalian TOR (mTOR) hyperactivation has
been shown to lead to global mRNA 3′ UTR shortening
in human cells, which upregulates translation of a subset
of mRNAs (120). S. cerevisiae expresses two TOR proteins:
Tor1 and Tor2, both of which are inhibited by rapamycin.
Consistent with previous reports (56,121), Set1- and Set2-
deficient cells, as well as histone H3K4R and H3K36R mu-
tants, had increased sensitivity to rapamycin-induced nutri-
ent stress (Figure 6A). Wild-type yeast grown for two hours
in the presence of rapamycin switched to the upstream pA
sites of ISM1, FAT1 and MDV1 (Figure 6B–D), and to the
downstream pA site of RRD2 and RAD53 (Figure 6F and
G). Rapamycin had minimal effect on RPB2 APA (Figure
6E).

Cells not expressing Set1 or Set2 were not able to switch
to alternative pA sites of ISM1, FAT1, MDV1 and RRD2
(Figure 6B–D, F). Cells expressing histone H3K4R were
not able to switch to alternative pA sites of FAT1, MDV1,
RPB2 and RRD2 (Figure 6C–F). Cells expressing histone
H3K36R were not able to switch to alternative pA sites
of ISM1, RPB2 and RRD2 (Figure 6B, E, F). The set1Δ
and set2Δ cells, as well as mutants of histone H3K4 or
H3K36 were still able to switch to the RAD53 downstream
pA site following rapamycin treatment (Figure 6G). Thus,
Set1 and Set2 are large contributors to the shift to alterna-
tive pA sites in the rapamycin-induced stress condition, at
least in part via methylation of histone H3K4 and H3K36
residues.

Rapamycin alters chromatin structure around pA sites

Epigenetic modifications enable cells to quickly respond to
environmental changes. For example, S. cerevisiae changes
nucleosome occupancy and histone modifications in re-
sponse to heat shock, osmostress, and different nitrogen
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Figure 4. Set1 and Set2 modulate each other. (A) Protein levels of Set1, Set2, histone H3, histone H4, H3K4me1, H3K36me3, RNAP II, RNAP II Ser2-P,
Rna15 and Pta1 in wild-type, set1Δ and set2Δ backgrounds. (B) Protein levels of histone H3K4me1 and H3K36me3 in wild-type histone H3, histone
H3K4R and H3K36R backgrounds. For panel A and B, whole cell extracts from exponentially growing cells in YPD media in the presence of 10 nM
rapamycin (for 2 hours) or DMSO were resolved by SDS-PAGE and analyzed by Western blot. �-tubulin was used as a protein loading control. (C–F)
ChIP of histone H3K4me1 and H3K36me3 to FAT1, MDV1 and RAD53 pA sites in wild-type, set1Δ and set2Δ cells. (G–J) Same data as in (C–F)
normalized to histone H3 ChIP from Figure 3. Two biological replicates were performed for each gene. Bars show average values ± SD. **P < 0.01, ***P
< 0.001 (Student’s t-test).
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Figure 5. SET1 and SET2 deletion enhances the RNAP II CTD Ser2-P and the cleavage/polyadenylation complex levels at pA sites. (A–F) ChIP of the
RNAP II CTD serine-2 phosphorylation, Rna15 and Pta1 to FAT1, MDV1, RAD53, PDC1 and RPP1B pA sites in wild-type, set1Δ and set2Δ cells. The
values were normalized relative to RNAP II occupancy. Two biological replicates were performed for each gene. Bars show average values ± SD. *P <

0.05, **P < 0.01, ***P < 0.001 (Student’s t-test).

conditions (5–7). We investigated whether nutritional stress
caused by TOR inhibition affects histone occupancy and
methylation within the vicinity of pA sites. We observed
a significant decrease in histone H3 levels following ra-
pamycin treatment at the FAT1 upstream pA site (Figure
7A), and the RAD53 pA sites (Figure 7C and D). The
decrease in histone H3 levels was also detected in whole
cell protein extracts via western blot (Figure 4A). Histone
H3 levels at the MDV1 pA site were not as strongly af-
fected by rapamycin treatment (Figure 7B). Histone H4
occupancy around pA sites varied according to the gene,
with no change at the RAD53 upstream pA sites, an in-
crease at the MDV1 upstream pA site, and a decrease at the
RAD53 downstream pA site, and FAT1 pA site (Figure 7A–
D). The total histone H4 protein levels were not affected by
rapamycin treatment (Figure 4A).

Since histone H3K4me1 and H3K36me3 strongly cor-
relate with pA site usage (48), and are found near the 3′
ends of genes (54,55), we examined these histone modi-
fications around pA sites in cells undergoing nutritional
stress. Rapamycin treatment decreased histone H3K4me1
around all pA sites (Figure 7E–H), despite Set1 expression
being upregulated, and total histone H3K4me1 levels re-

maining unchanged (Figure 4A). Upon normalization to
histone H3 levels, the monomethylation of histone H3K4
was unchanged around the FAT1 upstream pA site, and the
RAD53 downstream pA site, while it increased around the
RAD53 upstream pA site, and decreased around the MDV1
upstream pA site (Figure 7I–L). Histone H3K36me3 was
decreased around RAD53 pA sites (Figure 7G and H), but
not at the FAT1 and MDV1 pA sites (Figure 7E and F).
Upon normalization to histone H3 levels, the trimethyla-
tion of histone H3K36 was unchanged around the MDV1
upstream pA site, but it was increased around the FAT1,
and RAD53 upstream pA sites, and around the RAD53
downstream pA site (Figure 7I–L). Set2 expression, and to-
tal levels of histone H3K36me3 was downregulated follow-
ing rapamycin treatment (Figure 4A). The decrease in hi-
stone H3K4me1 and H3K36me3 near pA sites can be ex-
plained by the overall decrease in nucleosome occupancy
around pA sites. The decreased histone H3K36me3 total
levels can be also attributed to the decrease in Set2 levels
(Figure 4A). Overall, these findings show that rapamycin
treatment changes nucleosome occupancy and epigenetic
modifications around pA sites, as well as affects the expres-
sion of Set1 and Set2.
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Figure 6. Histone H3K4 and H3K36 methylations are important for resistance to rapamycin. (A) set1Δ, set2Δ, H3K4R and H3K36R cells have increased
sensitivity to rapamycin. Ten-fold serial dilutions of indicated strains were spotted on YPD agar containing 2 nM rapamycin or DMSO as a solvent control.
(B–G) Set1 and Set2 mediate the alternative polyadenylation observed after rapamycin treatment. Wild-type and Set1, Set2, histone H3K4 and histone
H3K36 mutants were exponentially grown in YPD media and shifted to media containing 10 nM rapamycin (for 2 h) or DMSO as a solvent control
(DMSO data same as in Figure 1). Total RNA was reversely transcribed using anchored oligo d(T) primers. Total and long gene isoforms were amplified
via qRT-PCR. The ratios of long to total mRNAs in the mutant strains and in the presence of rapamycin were normalized relative to the ratio in the
wild-type W303 strain with DMSO. Three biological replicates were performed for each gene. Bars show average values ± SD. *P < 0.05, **P < 0.01,
***P < 0.001 (Student’s t-test).
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Figure 7. mTOR inhibition leads to epigenetic changes. (A–D) ChIPs for histone H3 and histone H4 around FAT1, MDV1, and RAD53 pA sites in wild-
type S. cerevisiae exponentially growing in YPD media and shifted to media containing 10 nM rapamycin (for 2 h) or DMSO as a solvent control. (E–H)
ChIPs for histone H3K4me1 and histone H3K36me3 near FAT1, MDV1 and RAD53 pA sites in wild-type cells from (A–D). (I–L) Same data as (E–H)
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turn enhances recruitment of the 3′ end processing complex.

DISCUSSION

APA is dysregulated in many human diseases, but despite
its relevance to health, the mechanisms regulating it re-
main a poorly understood aspect of biology. Most studies
have looked at the impact of cleavage/polyadenylation fac-
tors and RNA-binding proteins on APA. The abundance
of histone H3K4me1 and H3K36me3 modifications highly
correlate with pA site positions, and they have been pro-
posed to influence pA site selection (48,50). To establish
whether these epigenetic processes are responsible for APA
regulation, we examined mRNA 3′ end processing in yeast
lacking Set1 or Set2 which methylate histone H3K4 and
H3K36, respectively, as well as cells with mutations in the
histone H3 residues that are targets of these two HMTs.
Our findings support a model in which Set1 and Set2 af-
fect RNAP II Ser2-P near pA sites, and hence the recruit-

ment of cleavage/polyadenylation factors, and choice of pA
site (Figure 8). H3K4R and H3K36R mutants show simi-
lar effects on pA site usage as the set1Δ and set2Δ mutants,
respectively, confirming a role of these histone H3 modifi-
cations in APA.

In this study, we show that loss of Set1 or Set2 in-
creases the 3′ end processing efficiency as measured by the
decreased accumulation of unprocessed transcripts from
genes with single pA sites. By decreasing the 3′ end process-
ing efficiency, the presence of Set1 and Set2 may promote a
switch to downstream pA sites, as fewer transcripts cleaved
at the upstream pA site would increase the proportion of
pre-mRNA processed at the downstream pA site. Indeed,
this is the case, as cells lacking Set1 or Set2, or cells with
H3K4 or H3H36 mutations, show a switch to upstream pA
sites for the majority of genes that we have examined. Fur-
thermore, discrepancies in the pA site utilization between
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Table 4. Summary of key results

FAT1 MDV1 RAD53 PDC1 RPP1B

set1� cells Change in pA Site Usage ↑↑↑ pA1 ↑↑↑ pA1 ↑↑↑ pA2 No Change ↓↓ Read-through
Histone H3 at pA1 or Single pA ↓↓↓ ↓↓↓ ↓↓↓ ↓↓↓ ↓↓↓
Histone H3 at pA2 ND ND ↓↓↓ ND ND
Histone H4 at pA1 or Single pA ↓↓↓ ↓↓↓ ↓↓↓ ↓↓ ↓↓
Histone H4 at pA2 ND ND ↓↓↓ ND ND
RNAP II Ser2-P at pA1 or Single pA ↑↑↑ ↑↑↑ ↑↑↑ ↑↑↑ ↑↑↑
RNAP II Ser2-P at pA2 ND ND ↑↑ ND ND
Rna15 at pA1 or Single pA ↑↑ ↑↑ No Change ↑↑↑ ↑
Pta1 at pA1 or Single pA ↑ ↑↑ ↑ ↑↑ ↑↑↑
Pta1 at pA2 ND ND ↑ ND ND

set2� cells Change in pA Site Usage ↑↑↑ pA1 ↑↑↑ pA1 ↑ pA2 ↓↓ Read-through ↓↓ Read-through
Histone H3 at pA1 or Single pA ↓↓ ↓ ↓↓ No Change No Change
Histone H3 at pA2 ND ND ↓↓ ND ND
Histone H4 at pA1 or Single pA ↓ No Change No Change ↓↓ ↓
Histone H4 at pA2 ND ND ↓↓ ND ND
RNAP II Ser2-P at pA1 or Single pA No Change No Change No Change ↑↑↑ ↑↑↑
RNAP II Ser2-P at pA2 ND ND No Change ND ND
Rna15 at pA1 or Single pA No Change No Change No Change ↑↑↑ ↑
Pta1 at pA1 or Single pA ↑ ↑ ↑↑ ↑↑ ↑↑↑
Pta1 at pA2 ND ND ↑↑ ND ND

Not determined (ND).

set1Δ and H3K4 mutants, and between set2Δ and H3K36R
mutants, are small, suggesting that Set1 and Set2 affect the
choice of pA sites, at least in part, by methylation of their
histone targets.

The changes in pA site choice in the absence of Set1 or
Set2 could be caused in multiple ways. As summarized in
Table 4, we find that loss of these epigenetic factors elic-
its several changes that could affect pA site usage. These
include increased recruitment of the 3′ end processing ma-
chinery to transcribed genes, increased phosphorylation of
the RNAP II CTD, and alterations in the occupancy of
histone H3 and H4 around pA sites. While it is possible
that Set1 and Set2 somehow affect the enzymatic activity
of the cleavage/polyadenylation complex, such effects have
not been reported.

Phosphorylation of RNAP II CTD Ser2 is required for
the recruitment of the 3′ end processing factors (122). In this
study, we show that loss of Set1 increases the level of RNAP
II CTD Ser2-P at all analyzed pA sites, without affecting
its total protein level. SET2 deletion upregulates RNAP II
CTD Ser2-P only at single pA sites, and in contrast to Set1
loss, it decreases total RNAP II, and RNAP II Ser2-P levels.
Consistent with the increased RNAP II CTD Ser2-P, set1Δ
and set2Δ mutants have increased recruitment of Rna15 or
Pta1 to pA sites, without changes in the overall expression
of these subunits of the CF IA and CPF processing fac-
tors. However, the extent to which the recruitment of Rna15
and Pta1 to the tested pA sites changes is not always pro-
portional to the increase in RNAP II CTD Ser2-P levels.
This difference points to additional mechanisms that con-
trol 3′ end machinery recruitment, such as modifications of
other RNAP II CTD residues (116,117,123) and interac-
tions of the Rna15-containing CF IA factor with the Spt5
elongation factor and the RNAP II flap loop (124,125). For
genes with multiple pA sites, the extent of RNAP II pausing
downstream of the pA site and elongation rate of RNAP II
between pA sites could also affect the time available for fac-
tors to be recruited to the upstream site. This timing could

be modulated by changes in chromatin organization and
modification.

Both Set1 and Set2 are positioned where they could affect
the CTD phosphorylation status, which in turn, could affect
recruitment of processing factors to the pA site region. For
example, Set1 and Set2 physically interact with RNAP II,
and both associate with the newly transcribed RNA (126–
128). Set1 gets recruited to RNAP II phosphorylated at Ser5
of its CTD (58,129). However the highest level of Set1 bind-
ing to mRNA, as observed by UV crosslinking experiments,
occurs right before the pA site, supporting the idea that Set1
will influence 3′ end processing (128). Set2 binds to RNAP
II that is phosphorylated at Ser2 and Ser5 of its CTD (84).
Set1 and Set2 may regulate RNAP II phosphorylation by
controlling the expression, activity or recruitment of the
RNAP II CTD kinases or phosphatases. Interestingly, dele-
tion of SET1 in strains lacking the kinase Ctk1 (Ser2) (130),
or RNAP II CTD phosphatases Glc7 (Tyr1) (131) and Rtr1
(Ser5) (118,132–135), and deletion of SET2 in strains lack-
ing Ctk1 or the Ser2 phosphatase Fcp1 (135,136) alters the
cell’s fitness, suggesting that the two HMTs and RNAP II
CTD modulators functionally interact.

Decreased RNAP II processivity has also been implicated
as a mechanism for switching to upstream pA sites (47). It
could not only prevent RNAP II from reaching downstream
pA sites, but also allow more time for the 3′ end processing
machinery to get recruited to, and to work at an upstream
pA site. Furthermore, previous studies have indicated that
a slow mutant of RNAP II results in increased CTD Ser2-P
towards the 5′ of genes (137). Our observations are consis-
tent with such a mechanism, as we find that loss of Set1 or
Set2, two HMTs favoring open chromatin (59–61,85), in-
creases RNAP II CTD Ser2-P around upstream, as well as
single pA sites. Thus, Set1 and Set2 may also favor the use
of downstream pA sites in most of the studied genes be-
cause they increase the processivity of RNAP II by alter-
ing chromatin structure and indirectly decreasing RNAP
II CTD Ser2-P near upstream pA sites. The mechanism by
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which Set1 and Set2 induce a switch to some upstream pA
sites is not clear, and may reflect the fact that these two
HMTs promote closed chromatin structure in some genes
(62–65,72,86,114,138).

Nucleosome positioning correlates with 3′ end formation
(139), and the 3′ ends of genes, especially at pA sites, are de-
pleted of nucleosomes (140). We found that the absence of
Set1, and to a smaller degree Set2, decreases histone H3 and
H4 occupancy around pA sites. These data are consistent
with previous report that cells not expressing the histone
H3K4 demethylase Jhd2 have higher histone H3 levels at the
SRG1 3′ end (141). Likewise, deletion of the histone H3K4
demethylase KDM5B results in increased nucleosome occu-
pancy at promoters in embryonic stem cells (142). Methy-
lation of histone H3K4 and H3K36 is likely to affect nu-
cleosome occupancy by affecting nucleosome turnover or
remodeling, rather than deposition.

Histone H3K4 and H3K36 residues and HMTs that
modify them may also affect pA site choice via interac-
tion with other epigenetic factors. For example, histone
H3K36me3 can be bound by NuA3 (143) and NuA4 HAT
complexes. Likewise, H3K4me3 recruits HATs such as
NuA3 (94), NuA4, SAGA and HBO1. Thus, another way
in which a decrease in H3K4 and H3K36 methylation can
lead to utilization of upstream pA sites is by decreasing the
recruitment of HATs (143), which would then lead to con-
densed chromatin structure (3,4).

APA and epigenetic modifications allow cells to quickly
adjust their RNA and protein composition (8,144,145). For
example, nutritional stress results in switch to downstream
pA sites in yeast (146), and increases utilization of the down-
stream CAT1 pA site, which in turn results in increased ex-
pression of the human amino acid transporter Cat1 (147).
During cold shock, there is a global switch to upstream
pA sites (148), while during heat shock there is a switch to
the upstream HSP70.3 pA site, which results in increased
translation of the heat shock protein HSP70.3 (149,150).
Stress-induced APA occurs not only in animals and fungi; in
plants, hypoxia induces a switch to upstream pA sites (151).
The APA response also varies by species. For example, ar-
senic stress, which causes oxidative stress, leads to utiliza-
tion of upstream pA sites in mouse (152), while in human
cells, it leads to a switch to distal pA sites (9). Likewise,
DNA damage in yeast results in a switch to downstream pA
sites (8,25), while in human colon carcinoma RKO cells, it
favors utilization of upstream pA sites (153).

Set1 and Set2 are important for the cell’s proper response
to cellular cues and environmental stress. Set2 regulates
the proper response to carbon source (154), DNA damage
(155–157), and longevity (23,158). Likewise, Set1 is impor-
tant for the proper response to DNA damage (64,159–161).
We have found that during the nutritional stress response
induced by the TOR inhibitor rapamycin, several gene tran-
scripts are alternatively polyadenylated. This rapamycin-
induced APA correlates with a decrease in histone H3 levels,
as well as a decrease in histone H3K4me1 and H3K36me3
around pA sites. Importantly, Set1 and Set2 were required
for the rapamycin-induced switch to alternative pA sites.
Thus, it is very likely that Set1 and Set2 mediate resistance
to rapamycin in part by affecting the choice of pA sites.

Taken together, we present evidence that the epigenetic
factors, Set1 and Set2, control choice of pA sites via modu-
lation of RNAP II, and recruitment of the 3′ end processing
machinery. As described above, changes in histone H3K4
and H3K36 methylation also affect APA during nutritional
stress, and it will be interesting to see if they have similar
roles in other cell responses. Set1 and Set2 increase nucleo-
some occupancy around pA sites, but it remains unknown
whether this leads to changes in pA site selection. A bet-
ter understanding of mechanisms regulating pA site choice,
and APA’s role in human health, is required in order to ma-
nipulate it to affect disease outcomes.
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