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Abstract
Background: Protein secondary structure prediction is a fundamental and important component
in the analytical study of protein structure and functions. The prediction technique has been
developed for several decades. The Chou-Fasman algorithm, one of the earliest methods, has been
successfully applied to the prediction. However, this method has its limitations due to low accuracy,
unreliable parameters, and over prediction. Thanks to the recent development in protein folding
type-specific structure propensities and wavelet transformation, the shortcomings in Chou-Fasman
method are able to be overcome.

Results: We improved Chou-Fasman method in three aspects. (a) Replace the nucleation regions
with extreme values of coefficients calculated by the continuous wavelet transform. (b) Substitute
the original secondary structure conformational parameters with folding type-specific secondary
structure propensities. (c) Modify Chou-Fasman rules. The CB396 data set was tested by using
improved Chou-Fasman method and three indices: Q3, Qpre, SOV were used to measure this
method. We compared the indices with those obtained from the original Chou-Fasman method
and other four popular methods. The results showed that our improved Chou-Fasman method
performs better than the original one in all indices, about 10–18% improvement. It is also
comparable to other currently popular methods considering all the indices.

Conclusion: Our method has greatly improved Chou-Fasman method. It is able to predict protein
secondary structure as good as current popular methods. By locating nucleation regions with
refined wavelet transform technology and by calculating propensity factors with larger size data set,
it is likely to get a better result.

Background
Protein sequence determines its senior structures [1].
Based on this hypothesis, the protein secondary and terti-

ary structures and their domains are contained within a
peptide chain. The protein secondary structure has been
studied intensely, since it is very helpful to reveal the func-
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tions of protein with unknown structures. In addition, it
has been shown that the prediction of protein secondary
structure is a step toward protein 3-dimensional structure
prediction and it can also be included in threading
method to identify distantly related proteins [2].

Many efforts have been made to extract useful informa-
tion of protein secondary structure from sequences [3-10].
Among them, Chou-Fasman method (CFM) [10] is one of
the pioneer works and it is still widely used. It is conven-
ient to use with many merits. It is an empirically statistical
method by assigning a set of prediction values to a residue
and by applying a simple algorithm. Three rules have been
proposed in CFM, including the locating of nucleation
regions, extending nucleation regions, and the refinement
of secondary structure segment [10].

With further investigations on CFM, it has been found
that there were three critical deficiencies in CFM. First, the
Chou-Fasman parameters are unreliable [11,12]. Since
CFM is a statistics-based method, it is very important to
perform statistics with a large number of data set in order
to get reasonable confidence. However, in their work,
Chou and Fasman only calculated 15, 29, 64 proteins in
1974 [10], 1978 [3] and 1989 [13], respectively. The lim-
ited size of data set might due to the small number of non-
homologous proteins with solved three-dimensional
structures at that time. However, as a result, it causes the
wide confidence limit which even makes us difficult to tell
if an amino acid is a helix former or breaker [11]. Sec-
ondly, the accuracy of CFM is low. There are several differ-
ent versions on how accurate the CFM is. Chou and
Fasman quoted the accuracy over 70% using their
method. However, most researchers considered the
number is 50–60% [10,14,15]. The difference which
makes people doubt the consequence from Chou and Fas-
man derives from the test data set. Chou and Fasman used
their training data as the test data, while other researchers
used different types of test data [10]. It implies that cross-
validation technique, where test proteins are removed
from the training set, is a more realistic evaluation of pro-
tein secondary structure prediction accuracy to be
obtained [16]. Thirdly, CFM trends to over predict in helix
and strand and under predict in coil. It indicates that
many coil positions are incorrectly predicted as helices or
strands in CFM that causes high false positive in CFM.

In order to solve the problems mentioned above, people
(include Chou and Fasman themselves) have produced a
lot of modifications in the past few decades. Their works
are focused on the modification of amino acid conforma-
tion propensities [11-13,17-20] since this is the key point
to improve CFM (as we all know that the location of
nucleation and the threshold of extension are closely
related to the residue conformation propensities). In

addition, the propensity factors were used in several dif-
ferent protein secondary structure prediction methods
[21,22]. Among these different kinds of propensities cal-
culated by various methods, most of them examined
amino acid secondary structure propensities in a whole
conformational base regardless of protein folding types.
However, it has been found that proteins of 4 major fold-
ing classes (all α-Helical, all β-Sheet, α/β, and α+β, classi-
fied by Levitt and Chothia [23]) are different in folding,
packing and so on [24]. Moreover, it has been proven that
folding class of certain protein is related to its amino acid
[25], and the knowledge of protein folding class is useful
in improving accuracy of protein secondary structure pre-
diction [26]. These researches demonstrate that the amino
acids' secondary structure parameters are different among
the four folding types. Fortunately, Jiang et al. have calcu-
lated the propensities by calculating the proteins with dif-
ferent classes [20]. The similarity among all these
sequences is less than 30%, and they have proven that
their results are statistically significantly different with
confidence level of 90%. That is, their data set is both non-
homologous and large enough. That is, these parameters
are reliable.

Besides statistic methods, there are several sequence anal-
ysis approaches proposed for protein secondary structure
prediction based on the physicochemical property of resi-
dues. Wavelet transform (WT) technology based on
hydrophobicity values is one of them. WT is a local time-
frequency analysis method with both time window and
frequency window changeable. Because of its character of
multi-resolution, WT has been applied in bioinformatics
to analyze and process biological data [27] recently. To
deal with protein sequence, WT coefficients with different
scale parameters correspond to different structural hierar-
chies [28]. Being the numerical basis of WT, hydrophobic-
ity value plays an important role in the method.
Hydrophobicity, one of the protein significant properties,
makes the water-fearing side chain to crimp into a com-
pressed conformation to avoid the water phase [29]. This
configuration is important for the existence and stability
of protein 3-dimensional structures. Hence, we can pre-
dict protein secondary structure on a hydrophobicity
basis.

Many hydrophobicity values have been provided [30,31].
Based on one of them, Mandell et al. [28] have found that
the number of protein secondary structure segments is
related to the coefficients cycles at certain scale calculated
by continuous wavelet transform (CWT). This method is
good at determining the number of secondary structure
segments and locating the regions of them, which is a
weak point of CFM. However, the accurate prediction of
the secondary structure conformation of every single resi-
due is a problem for CWT.
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By comparing the advantage and disadvantage between
CFM and hydrophobicity based CWT method, it can be
inferred that they are almost complementary for each
other. The nucleation regions calculated by CWT seems to
be better than CFM, while the Chou-Fasman extension
rule is a good solution for the fine prediction of CWT.

In this paper, we improved the CFM with the technology
mentioned above. In addition, we found the merit and
shortage of this renewed CFM by comparing it with some
current popular methods. Finally, we realized the full-
automation of our method for the analysis of great
number of data set.

Methods
Chou-Fasman rules can be concluded in three points
below [10]:

1. Forming of nucleation. A nucleation can be predicted
when 4 of 6 sequential residues in certain segment tend to
form helix (the helix former), and this number is 3 of 5 for
strand.

2. The nucleation regions are extended along both direc-
tions of the sequence until the average 4-peptides propen-
sities drops below 1.

3. If any extended segment with average propensities Pα >
1.03(helical propensities larger than 1.03 are strong alpha
former and alpha former [3]) and Pα > Pβ (subscript α
means helical propensities while β corresponds to strand
propensities), it can be predicted as helix. And the condi-
tion changes to Pβ > 1.05 (strand propensities larger than
1.05 are strong strand former and strand former [3]) and
Pβ > Pα for strand. If both helix and strand are predicted in
certain region (overlapped region), the secondary struc-
ture conformation with higher average propensities is pre-
dicted.

In our research, all three rules were improved with three
steps. First, the hydrophobicity value based CWT technol-
ogy was used to calculate the number and locations of
protein secondary structure segments, and then substi-
tuted the nucleation regions of CFM with these positions.
To improve the second rule, folding type-specific structure
propensities were used instead of traditional Chou-Fas-
man parameters to extend the secondary structure seg-
ments and to deal with the overlapped regions. We just
undid some processes in modification of the third rule.

CWT for nucleation regions
To explain this improvement, a sample protein was
selected randomly from Protein Data Bank (PDB) with ID
3dfr. From its data file, the sequence information and sec-
ondary structure information were extracted. The refer-

enced secondary structure for each position was defined
by DSSP [32]. According to this dictionary, we classified
secondary structure information into 3 classes: H, G, and
I are helices; E and B are strands; other conformations are
coils.

Then the character sequence must be converted into its
corresponding hydrophobic values (Figure 1). The values
obtained by Mandell et al. [28] were adopted, listed in
Table 1.

To analyze the numerical sequence in different scales, 1-D
continuous wavelet transform (CWT) was used with scale
ranging from 1 to 64 (Figure 2). Here we chose the Morlet
function (equation 1) as mother wavelet due to its sym-
metry, finity and continuity.

Ψ(x) = C exp(-x2/2)cos5x  (1)

where C is a constant, and in our method we chose 1 for
convenient calculation.

The continuous wavelet transform for a function f(t) is
defined as:

where a is the scale parameter, b is the translation param-
eter (a > 0, b ∈ R).

The hydrophobic cycle, as defined in reference 28, con-
sists of one dark band and one light band (In Figure 2,
dark dots represented for the coefficients at minimum
value whereas light ones corresponded to maximum
value. That means the light bands are more hydrophobic
than the dark ones. To determine dark or light with
numerical values, the coefficients at certain scale should
be picked up. The position with coefficient > 0 was con-
sidered as the light part whereas dark part represented for
the coefficient < 0). Examining Figure 2 in the scale dila-
tion axis at the region of approximate 9, we could count
15 hydrophobic cycles along the length of the protein. It
means there are 15 secondary structure elements (α-helix
and β-strand) in 3dfr. Comparing with the secondary
structure information derived from DSSP (17 secondary
structure units), we found that the number was very close.

We judged this number as the same value as that of nucle-
ation region. Moreover, we supposed that every cycle con-
tained a nucleation region. In this article, positions with
local extreme value (including maximum and minimum
values for the reason explained in the discussion part) at
scale 9 of CWT were considered as nucleation sites. Wave-
let coefficients at scale 9 were shown in Figure 3.
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We must improve the CWT formula since the sequence
chain is discrete. The formula was altered as follows (the
sign "≈" means approximately equal to):

Suppose f1(t) = s [k], t ∈ [k, k + 1), then

Hence, the coefficients of CWT can be calculated by the
difference of convolution of s [k] and the integral formula

.

According to the analysis above, a was set as 9. And we
took the positions with local extreme value as the nuclea-
tion sites.

Extend with folding type-specific structure propensities
The folding type-specific conformation propensities had
been divided into 4 groups (corresponding to the 4 pro-
tein classes): 59 proteins in α class, 76 proteins in β class,
40 proteins in α+β class, and 52 proteins in α/β class,
respectively. All these data had a sequence similarity less
than 30%, and the data set size was large enough to get the
confidence level of 90% [20]. Hence, these parameters are
reliable enough to be used in protein secondary structure
prediction. The four class propensities are shown in Table
1 of reference 20.
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Hydrophobicity sequence of protein 3dfrFigure 1
Hydrophobicity sequence of protein 3dfr.
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Table 1: The hydrophobic values of 20 amino acids

amino acid value amino acid value

Gly 0.00 Cys 1.52

Gln 0.00 Lys 1.64

Ser 0.07 Met 1.67

Thr 0.07 Val 1.87

Asn 0.09 Leu 2.17

Asp 0.66 Tyr 2.76

Glu 0.67 Pro 2.77

Arg 0.85 Phe 2.87

Ala 0.87 Ile 3.15

His 0.87 Trp 3.77

Plot of Morlet wavelet transform of the amino acid hydrophobic free energy sequence at scales from 1 to 64 (dark represents coefficient at minimum value whereas light correspond to maximum value)Figure 2
Plot of Morlet wavelet transform of the amino acid hydrophobic free energy sequence at scales from 1 to 64 (dark represents 
coefficient at minimum value whereas light correspond to maximum value).
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The extension rule is related not only with propensities,
but also with the terminating threshold. This value is 1 for
both helix and strand in CFM, which is approximately the
average propensity value of the 20 amino acids. However,
with the use of folding type-specific propensities in our
method, this threshold should be modified for both helix
and strand. We tested sequential 5 numbers beside the
average number with the interval of 0.01. The best one
with high accuracy of all the evaluation indices was
adopted (shown in the results part in detail).

Refinement
We only reserved the process of overlapped secondary
structure segments and abandoned others since those
empirical rules are not suitable for the data set now. We
also didn't bring in the helix/strand breakers which were
used to abolish secondary structure segment in Chou-Fas-

man rules. This is because the breaker such as proline was
found to be existed in helix or strand of some proteins.

Data set and evaluation indices
The data set CB396 (please see Supplementary file "data-
set.pdf"), proposed by Cuff and Barton [33], was used to
test our algorithm for two reasons: (a) It is a non-redun-
dant sequence set derived from a sensitive sequence com-
parison algorithm and cluster analysis combining with
filtering the X-ray crystal structures with resolutions over
2.5 Angstroms; (b) This test data set was totally different
from the training set which was used in the calculation of
folding type-specific structure propensities. Hence, it is
suitable for cross validation of our method with more
realistic evaluation of prediction accuracy to be obtained
[34]. We classified this data set into four classes based on
the protein structural classification database SCOP [35].

Plot of CWT coefficients at scale 9Figure 3
Plot of CWT coefficients at scale 9.
Page 6 of 11
(page number not for citation purposes)



BMC Bioinformatics 2006, 7(Suppl 4):S14
Three commonly used indices were adopted to assess our
method. Two traditional indices, Q3 and Qpre were used to
evaluate the accuracy of individual residues and the
degree of over predict, respectively [36]. Another index
which was proposed recently is the SOV (segment overlap
measure). It was used to measure the accuracy of second-
ary structure segments [37]. And in our method, the SOV
index was concerned a lot since it is more realistic and sig-
nificant in measuring protein secondary structure predic-
tion method.

In order to specify the efficiency of our algorithm, the
indices derived from our method were compared with
four currently popular methods. All these methods are
based on different technologies. The DSC [6] algorithm is
based on GOR [4] and multiple sequence alignment,
NNSSP [7] is a scored nearest-neighbor method, PHD [8]
is based on artificial neural network, and PREDATOR [9]
uses local sequence alignment approach.

All the observed secondary structures (derived from PDB
crystal structure and DSSP protein secondary structure dic-
tionary) and predicted secondary structures (calculated by
our method and four other methods) were performed
with two processes: (a) Helix segment with residue
number less than 3 is removed and considered as coil
since it is unable to form helix with residues number < 3.
(b) Strand segment with residue number less than 2 is
considered as coil. The refined results were biologically
significant. With this process, the accuracy of the four cur-
rent methods in our calculation is a little different from
the results computed in reference .

The whole algorithm flowchart is shown in Figure 4, with
both prediction part and evaluation part. People who are
interested in this algorithm can contact us by sending an
email requesting source code (written in matlab lan-
guage).

Results
Before performing our method, we compared traditional
CFM (proposed in 1978) with four current methods men-
tioned above to see how large the difference is. The result
is shown in Table 2. It can be found that the difference
between them is tremendous. Nearly all the indices in
CFM are less than other four methods, and most of them
are 20–30 percent lower, especially for the SOV and Qpre
indices. That means the CFM is weak in hitting the protein
secondary structure segment and it tends to over predict.

Every step of our method mentioned above was tested to
see if these modifications are efficient.

First the nucleation regions were calculated with continu-
ous wavelet transform (CWT) rather than performing

Chou-Fasman rule 1. The result is shown in Table 3. From
these values, it can be found that many indices were no
big difference but the SOV indices were improved increas-
ingly.

By performing the second step of our method with setting
the extension threshold to 1 as used in CFM, it can be
found from Table 4 that all the indices (except QE) have
been increased distinctly. This result again proved that the
propensities are very important for CFM.

With the modification of Chou-Fasman third rule, we
found that the SOV indices were improved while the Qpre
indices were a little worse than CFM. We reserved this
modification because the SOV indices were considered
more important in our method. The result was shown in
Table 5.

The degree of improvement with 3 different steps of our
method was shown in Table 6. From this result, it can be
found that each modification has improved several indi-
ces while other indices are nearly invariant. Hence, we are
confident to believe that with the combination of all three
modifications, the accuracy should be much better than
CFM for all the indices. Furthermore, we have to change
the extension threshold since the Chou-Fasman parame-
ters had been substituted with folding type-specific pro-
pensities. In our method, we calculated the 5 threshold
beside the average propensity value for proteins of the
four classes, with interval of 0.01. By considering the over-
all indices especially the SOV, we got the best values
which were listed in Table 7. However, the results calcu-
lated by different thresholds around average propensity
value were very close in our test.

The final result was shown in Table 8. And it could be
found that our method has a great improvement in every
index, about 15–20% better than CFM in accuracy. Com-
paring our method with four current methods, some indi-
ces in our method were better, while some were close or
worse as shown in Table 9. However, in general, our
method is comparable with these four current popular
methods.

Discussion
By use of cross validation, all the results calculated in this
article are reliable. We utilized some parameters con-
cluded by other researchers [10,20,28], and ensured that
our test data set is different from their training data set.
There is one exception, the extension threshold. The same
data set was used to train and test this value. However, as
we mentioned in the results part, this number is around
the average propensity value with no significant difference
in the final result. Hence, it is unnecessary to calculate the
Page 7 of 11
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extension threshold using cross validation, any number
around the average propensity value is accepted.

In our method, we took the positions with local extreme
value of every cycle of coefficients at certain scale calcu-
lated by CWT as the nucleation regions. This is for 2 rea-

sons: (a) The extreme value corresponds to the singularity
point in CWT which is considered as one of the most
important parts in analysis of CWT. (b) The residue
hydrophobicity in secondary structure segments is alter-
nate. When helix or strand is buried inside of a protein,
their residues are more hydrophobic. If the secondary

Table 2: Compare traditional CFM with four current methods

Method Q3(%) QH(%) QE(%) QH
PRE (%) QE

PRE (%) SOV (%) SOVH (%) SOVE (%)

CFM 46.88 55.64 60.77 49.22 34.40 36.26 42.63 43.95
DSC 69.10 63.65 54.95 73.70 71.31 66.19 63.14 60.86
NNSSP 72.31 64.93 55.28 80.42 73.34 67.32 66.07 63.40
PHD 72.60 65.38 68.59 77.98 63.55 69.94 65.74 72.05
PREDATOR 69.58 62.21 54.50 75.33 70.14 64.85 64.23 60.57

Algorithm flowchart with prediction and evaluationFigure 4
Algorithm flowchart with prediction and evaluation.
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Table 4: Result with the improvement of propensities

Method Q3(%) QH (%) QE (%) QH
PRE (%) QE

PRE (%) SOV (%) SOVH (%) SOVE (%)

CFM 46.88 55.64 60.77 49.22 34.40 36.26 42.63 43.95
Improved 
propensity

54.56 57.14 60.14 69.70 55.48 40.41 43.93 46.52

Table 3: Result with the improvement of nucleation

Method Q3(%) QH (%) QE(%) QH
PRE (%) QE

PRE (%) SOV (%) SOVH (%) SOVE (%)

CFM 46.88 55.64 60.77 49.22 34.40 36.26 42.63 43.95
Improved 
nucleation

48.10 52.14 58.30 49.54 34.71 40.82 44.97 47.82

Table 5: Result with the improvement of Chou-Fasman rules

Method Q3(%) QH(%) QE(%) QH
PRE (%) QE

PRE (%) SOV (%) SOVH (%) SOVE (%)

CFM 46.88 55.64 60.77 49.22 34.40 36.26 42.63 43.95
Improved 
rules

44.09 57.72 72.21 45.86 31.11 36.51 46.06 51.86

Table 6: The degree of improvement with 3 different steps of our method

Q3 QPRE SOV

Step 1 No difference No difference Distinct better
Step 2 No difference Much better A little better
Step 3 No difference A little worse Distinct better

Table 7: Extension threshold for proteins of 4 classes

Protein Class helix extension threshold strand extension threshold

All alpha 0.98 No statistic
All beta No statistic 1.01
Alpha and beta (α/β) 1 1.02
Alpha or beta (α+β) 0.99 0.98

Notice that the strand extension threshold in all alpha class and the helix extension threshold in all beta class are not statistical in reference 20.

Table 8: Result with all three improvements

Method Q3(%) QH(%) QE(%) QH
PRE (%) QE

PRE (%) SOV (%) SOVH (%) SOVE (%)

CFM 46.88 55.64 60.77 49.22 34.40 36.26 42.63 43.95
With all 
improvement
s

56.10 72.86 68.17 67.17 53.35 51.14 60.89 57.46
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structure component is located on the surface of a protein,
their residues are usually hydrophilic.

The advantage of our method can be concluded in 3
points below:

1. Our method has inherited the merit of CFM. It is very
simple and easy to realize. It is also fast and low compu-
tational consumption although the CWT method had
been brought in our method because it doesn't need to do
training and sequence alignment.

2. Our method has solved two problems in CFM, the
unreliable parameters and low accuracy. And the problem
over prediction has been partially solved.

3. Our method has a great improvement in all of the indi-
ces compared with CFM, and the result of our method is
comparable with current popular methods.

However, there are still several problem existed in our
method:

1. The high false positive still existed in our method. By
investigating the indices with esign '-' (which means our
method has low accuracy at these indices) from Table 9,
we can conclude that our method was trended to over pre-
dict in helix and strand while under predict in coil, this
leads to high accuracy in helix or strand indices and low
accuracy in overall indices (Q3, SOV). Another conclusion
is that the hit rate of secondary structure segment (nucle-
ation) in our method was not high enough, and this
blocks the increase of SOV indices.

2. In our method, protein class must be obtained first
since the propensities are assigned according to protein
class. This transcendental condition has narrowed the
application area of our method. However, by use of
sequence alignment, the class of protein with unknown
structure may be decided.

3. In folding type-specific structure propensities, there is
no strand value in proteins with all alpha class, while no

helix value in all beta class. However, in SCOP database,
protein in all alpha class may still contain strand seg-
ments, while in all beta class, helix segments can be
found. Hence, the strand propensity in alpha class and
helix propensity in beta class need to be calculated. Nev-
ertheless, in our method, the accuracy of alpha class and
beta class is still well. This may be due to the small propor-
tion of strand in alpha class and low proportion of helix
in strand class.

To deal with these problems, further modifications are
needed to improve our method:

1. Nucleation regions must be refined since they are very
important in CFM. If we can hit every protein secondary
structure segment nucleation, the result should be
improved increasingly. It may be a possible way to solve
this problem by using CWT to look for the scale of helix,
strand, and coil, respectively.

2. Improve the calculation method of propensity. In our
method, we used the propensities which were computed
based on statistics. However, for more biological signifi-
cance, it is helpful to calculate propensities by use of phys-
iochemical technology. For example, the thermodynamic
method which was used in reference [17] and [18]. In
addition, coil propensities can be included in protein sec-
ondary structure prediction for reducing over prediction.

3. To strict the extension threshold. This modification
may need a large number of statistics.

4. Develop new technique and rule to treat with breakers.
This is an efficient way to solve over prediction.

Conclusion
In our method, CFM was improved with modifications in
nucleation regions, parameters and some rules. One rep-
resented data set and 3 different kinds of indices were
used to evaluate our method. The results have showed
that our method has greatly improved CFM. It is also com-
parable with current popular methods in protein second-
ary structure prediction. With the further improvement

Table 9: Compare our method with 4 current methods

Method Q3(%) QH(%) QE(%) QH
PRE (%) QE

PRE (%) SOV (%) SOVH (%) SOVE (%)

Our method 56.10- 72.86* 68.17* 67.17+ 53.35- 51.14- 60.89+ 57.46+

DSC 69.10 63.65 54.95 73.70 71.31 66.19 63.14 60.86
NNSSP 72.31 64.93 55.28 80.42 73.34 67.32 66.07 63.40
PHD 72.60 65.38 68.59 77.98 63.55 69.94 65.74 72.05
PREDATOR 69.58 62.21 54.50 75.33 70.14 64.85 64.23 60.57

Superscript marker with sign '*', '+', '-' means the accuracy of our method was better than, close to, worse than other four methods in these 
indices, respectively.
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mentioned above, it is reasonable to believe that our
method is able to predict protein secondary structure with
high accuracy.

Acknowledgements
This article has been published as part of BMC Bioinformatics Volume 7, Sup-
plement 4, 2006: Symposium of Computations in Bioinformatics and Bio-
science (SCBB06). The full contents of the supplement are available online 
at http://www.biomedcentral.com/1471-2105/7?issue=S4.

References
1. Anfinsen CB, Haber E, Sela M: White F.H. The kinetics of the for-

mation of native ribonuclease during oxidation of the
reduced poly peptide chain.  Proc Natl Acad Sci 1961,
47:1309-1314.

2. Rost B, Schneider R, Sander C: Protein fold recognition by pre-
diction-based threading.  J Mol Biol 1997, 270:471-480.

3. Chou PY, Fasman GD: Prediction of the secondary structure of
proteins from their amino acid sequence.  Adv Enzymol Relat
Areas Mol Biol 1978, 47:45-147.

4. Garnier J, Osguthorpe DJ, Robson B: Analysis and implications of
simple methods for predicting the secondary structure of
globular proteins.  J Mol Biol 1978, 120:97-120.

5. Holley LH, Karplus M: Protein secondary structure prediction
with a neural network.  Proc Natl Acad Sci 1989, 86:152-156.

6. King RD, Saqi M, Sayle R: Sternberg M.J. DSC: Public domain
protein secondary structure prediction.  Comut Appl Biosci 1997,
13:473-474.

7. Salamov AA, Solovyev VV: Prediction of protein secondary
structure by combining nearest-neighbor algorithms and
multiple sequence alignments.  J Mol Biol 1995, 247:11-15.

8. Rost B: PHD: Predicting one-dimensional protein structure
by profile-based neural networks.  Methods Enzymol 1996,
266:525-539.

9. Frishman D, Argos P: Seventy-five percent accuracy in protein
secondary structure prediction.  Proteins 1997, 27:329-335.

10. Chou PY, Fasman GD: Prediction of protein conformation.  Bio-
chemistry 1974, 13:222-245.

11. Kabsch W, Sander C: How good are predictions of protein sec-
ondary structure?  FEBS Lett 1983, 155:179-182.

12. Kyngas J, Valjakka J: Unreliability of the Chou-Fasman parame-
ters in predicting protein secondary structure.  Protein Engi-
neering 1998, 11:345-348.

13. Chou PY: Prediction of Protein Structure and the Principles of Protein Con-
formation Edited by: Fasman GD. Plenum Press, New York;
1989:549-586. 

14. David Mount W: Bioinformatics sequence and genome analysis
2002:447-450.

15. Nishikawa K: Assessment of secondary-structure prediction of
proteins comparison of computerized Chou-Fasman
method with others.  Biochim Biophys Acta 1983, 748:285-299.

16. Cuff JA, Barton GJ: Evaluation and Improvement of Multiple
Sequence Methods for Protein Secondary Structure Predic-
tion.  Proteins 1999, 34:508-519.

17. Minor DL, Kim PS: Measurement of the beta-sheet forming
propensities of amino acids.  Nature 1994, 367:660-663.

18. Blaber M, Zhang XJ, Matthews BW: Structural Basis of Amino
Acid Alpha-Helix Propensity.  Science 1993, 260:1637-1640.

19. Bystroff C, Garde S: Helix propensities of short peptides:
molecular dynamics versus bioinformatics.  Proteins 2003,
50:552-562.

20. Jiang B, Guo T, Peng LW, Sun ZR: Folding type-specific secondary
structure propensities of amino acids, derived from α-Heli-
cal, β-Sheet, α/β, and α+β proteins of known structures.
Biopolymers 1998, 45:35-49.

21. Barton GJ: Protein secondary structure prediction.  Curr Opin
Struct Biol 1995, 5:372-376.

22. Viswanadhan VN, Denckla B, Weinstein JN: New Joint Prediction
Algorithm (Q7-JASEP) Improves the Prediction of Protein
Secondary Structure.  Biochemistry 1991, 30:11164-11172.

23. Levitt M, Chothia C: Structural patterns in globular proteins.
Nature 1976, 261:552-558.

24. Richardson JS: The anatomy and taxonomy of protein struc-
ture.  Adv Protein Chem 1981, 34:167-339.

25. Chou KC: A novel approach to predicting protein structural
classes in a (20-1)-D amino acid composition space.  Proteins
1995, 21:319-344.

26. Chandonia JM, Karplus M: Neural networks for secondary struc-
ture and structural class prediction.  Protein Science 1995,
4:275-285.

27. Lio P: Wavelets in bioinformatics and computational biology:
state of art and perspectives.  Bioinformatics 2003, 19:2-9.

28. Mandell AJ, Selz KA, Shlesinger MF: Wavelet transformation of
protein hydrophobicity sequences suggests their member-
ships in structural families.  Physica A 1997, 244:254-262.

29. Dill KA: Dominant forces in protein folding.  Biochemistry 1990,
29:7133-7155.

30. Nozaki Y, Tanford C: The solubility of amino acids and two gly-
cine peptides in aqueous ethanol and dioxane solutions.
Establishment of a hydrophobicity scale.  J Biol Chem 1971,
246:2211-2217.

31. Eisenberg D, Weiss RM, Terwilliger TC: The hydrophobic
moment detects periodicity in protein hydrophobicity.  Proc
Natl Acad Sci 1984, 81:140-144.

32. Kabsch W, Sander C: Dictionary of protein secondary struc-
ture: pattern recognition of hydrogen-bonded and geometri-
cal features.  Biopolymers 1983, 22:2577-2637.

33. Cuff JA, Barton GJ: Evaluation and improvement of multiple
sequence methods for protein secondary structure predic-
tion.  Proteins 1999, 34:508-519.

34. Rost B, Eyrich VA: EVA: large-scale analysis of secondary struc-
ture prediction.  Proteins 2001, 5:192-199.

35. Murzin AG, Brenner SE, Hubbard T, Chothia C: SCOP: A struc-
tural classification of proteins database for the investigation
of sequences and structures.  J Mol Biol 1995, 247:536-540.

36. Rost B, Sander C: Prediction of protein secondary structure at
better than 70% accuracy.  J Mol Biol 1993, 232:584-599.

37. Zemla A, Venclovas C, Fidelis K, Rost B: A modified definition of
SOV, a segment-based measure for protein secondary struc-
ture prediction assessment.  Proteins 1999, 34:220-223.
Page 11 of 11
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/7?issue=S4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=13683522
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=13683522
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=13683522
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9237912
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9237912
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=364941
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=364941
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=642007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=642007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=642007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2911565
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2911565
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7897654
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7897654
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7897654
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8743704
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8743704
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9094735
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9094735
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4358940
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6852232
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6852232
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9681866
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9681866
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6626558
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6626558
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6626558
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10081963
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10081963
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10081963
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8107853
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8107853
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8503008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8503008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12577261
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12577261
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7583635
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1932036
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1932036
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1932036
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=934293
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7020376
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7020376
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7567954
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7567954
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7757016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7757016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12499286
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12499286
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2207096
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5555568
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5555568
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5555568
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6582470
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6582470
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6667333
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6667333
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6667333
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10081963
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10081963
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10081963
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11835497
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11835497
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7723011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7723011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7723011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8345525
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8345525
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10022357
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10022357
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10022357
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

