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H I G H L I G H T S

• DenseNet-264 predicts bone metastasis in lung cancer patients.
• DenseNet-264 outperforms traditional radiomics models with better AUC on training and validation sets.
• Predictive model facilitates early intervention and personalized treatment.
• Clinical utility of deep learning for detecting bone metastasis in lung cancer patients.
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A B S T R A C T

This study aims to predict bone metastasis in lung cancer patients using radiomics and deep learning. Early
prediction of bone metastasis is crucial for timely intervention and personalized treatment plans. This can
improve patient outcomes and quality of life. By integrating advanced imaging techniques with artificial intel-
ligence, this study seeks to enhance predictive accuracy and clinical decision-making.
Methods: We included 189 lung cancer patients, comprising 89 with non-bone metastasis and 100 with confirmed
bone metastasis. Radiomic features were extracted from CT images, and feature selection was performed using
Minimum Redundancy Maximum Relevance (mRMR) and Least Absolute Shrinkage and Selection Operator
(LASSO). We developed and validated a radiomics model and a deep learning model using DenseNet-264. Model
performance was evaluated using the area under the receiver operating characteristic curve (AUC), accuracy,
sensitivity, and specificity. Statistical comparisons were made using the DeLong test.
Results: The radiomics model achieved an AUC of 0.815 on the training set and 0.778 on the validation set. The
DenseNet-264 model demonstrated superior performance with an AUC of 0.990 on the training set and 0.971 on
the validation set. The DeLong test confirmed that the AUC of the DenseNet-264 model was significantly higher
than that of the radiomics model (p < 0.05).
Conclusions: The DenseNet-264 model significantly outperforms the radiomics model in predicting bone metas-
tasis in lung cancer patients. The early and accurate prediction provided by the deep learning model can facilitate
timely interventions and personalized treatment planning, potentially improving patient outcomes. Future
studies should focus on validating these findings in larger, multi-center cohorts and integrating clinical data to
further enhance predictive accuracy.
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1. Introduction

Lung cancer is one of the most common and deadly cancers globally.
It accounts for a large number of cancer-related deaths and illnesses
[1,2]. Despite advances in diagnostic and therapeutic strategies, the
prognosis for lung cancer patients remains poor, primarily due to its
propensity for early dissemination andmetastasis [3]. Bone metastasis is
a common complication, affecting 30–40 % of lung cancer patients. This
severely impacts clinical management, quality of life, and survival
outcomes [4]. This phenomenon not only complicates the clinical
management of lung cancer but also significantly impacts the quality of
life and survival outcomes for affected individuals [5–8]. Bone metas-
tasis is a common and severe complication in lung cancer patients,
significantly affecting prognosis and quality of life. Early detection of
bone metastasis is crucial for timely intervention and effective man-
agement. However, predicting bone metastasis using conventional
clinical and imaging methods remains challenging.

Bone metastasis in lung cancer patients is associated with a spectrum
of debilitating symptoms, including severe pain, pathological fractures,
hypercalcemia, and spinal cord compression, all of which contribute to
increased morbidity and healthcare burden [9]. The clinical manage-
ment of bone metastasis typically involves a combination of systemic
therapies, such as chemotherapy, targeted therapy, and immuno-
therapy, alongside local treatments like radiotherapy and surgery
[10,11]. Despite these multimodal treatment approaches, the prognosis
for patients with bone metastasis remains dismal, with median survival
rates often not exceeding 12 months following diagnosis of metastatic
spread [12].

The early prediction of bone metastasis in lung cancer patients holds
paramount importance for several reasons [13]. First and foremost,
bone metastasis is often associated with severe complications such as
debilitating pain, pathological fractures, hypercalcemia, and spinal cord
compression, which significantly impair the quality of life of affected
individuals and can lead to substantial morbidity and mortality [14].
Early detection allows for timely intervention, potentially mitigating
these complications and improving overall patient outcomes. From a
healthcare management perspective, early prediction of bone metastasis
can optimize resource allocation, ensuring that patients receive the
appropriate level of care at the right time. This can lead to more efficient
use of healthcare resources, reducing unnecessary hospitalizations and
procedures, and ultimately lowering the overall cost of care for lung
cancer patients [15].

Given the clinical importance of bone metastasis in lung cancer and
the significant challenges associated with its management, there is an
urgent need for effective strategies to predict its occurrence [4,16,17].
Early prediction and intervention can potentially mitigate the compli-
cations associated with bone metastasis, improve patient outcomes, and
optimize resource allocation within healthcare systems [18,19]. How-
ever, current predictive models are limited by their reliance on tradi-
tional imaging techniques and clinical parameters, which often fail to
capture the complex biological underpinnings of metastatic spread. This
underscores the necessity for innovative approaches that integrate
advanced technologies to enhance predictive accuracy and clinical
utility [20].

Radiomics and deep learning represent two cutting-edge approaches
in the field of medical imaging analysis, offering significant potential for
predicting bone metastasis in lung cancer patients. Radiomics involves
the extraction of a large number of quantitative features from medical
images, which capture the underlying tumor phenotype and microen-
vironment in a non-invasive manner [21]. These features, which include
texture, shape, and intensity, can be used to develop predictive models
that provide insights into tumor behavior and progression [22]. By
converting medical images into high-dimensional data, radiomics allows
for a comprehensive analysis that goes beyond traditional visual
assessment, enhancing the ability to detect subtle patterns associated
with metastatic potential.

Deep learning, particularly convolutional neural networks (CNNs),
has revolutionized the field of medical imaging by enabling the auto-
mated extraction and analysis of complex patterns from large datasets
[23]. CNNs are designed to automatically learn hierarchical features
from input images through multiple layers of convolutional operations,
making them highly effective for tasks such as image classification,
segmentation, and detection. In the context of predicting bone metas-
tasis, deep learning models can analyze lung cancer CT scans to identify
features indicative of metastatic spread, often achieving higher accuracy
and robustness compared to traditional methods [24].

The integration of radiomics and deep learning has led to a new
paradigm in predictive modeling. Studies have demonstrated that
combining radiomic features with deep learning algorithms can signif-
icantly improve the predictive performance for various clinical out-
comes, including metastasis and survival. For instance, research has
shown that radiomics-based models can successfully predict bone
metastasis in lung cancer patients by analyzing CT images to identify
textural and morphological changes associated with metastatic disease.
Furthermore, deep learning models, trained on large datasets of anno-
tated images, have been able to achieve high accuracy in distinguishing
between metastatic and non-metastatic cases, offering a powerful tool
for early detection and risk stratification.

Recent advancements in this field have also explored the use of
multimodal approaches, where radiomics features are combined with
clinical data, genomic information, and other imaging modalities such
as PET and MRI, to further enhance predictive accuracy. This holistic
approach allows for a more comprehensive understanding of the tumor
and its metastatic potential, leading to more personalized and effective
treatment strategies.

The application of radiomics and deep learning in predicting bone
metastasis represents a significant advancement in the field of oncology.
These technologies offer a promising avenue for early detection and
personalized treatment planning, ultimately improving patient out-
comes and quality of life. This study aims to utilize radiomics and deep
learning to predict the risk of bone metastasis based on CT scans of lung
cancer, highlighting its important clinical significance. Incorporating
the predictive capabilities of the deep learning model into clinical
workflows has the potential to significantly enhance the management of
lung cancer patients at risk of bone metastasis. Early identification of
high-risk patients can facilitate timely interventions, potentially
improving prognosis and quality of life. Additionally, the model can aid
in personalizing treatment plans by providing insights into individual
risk profiles, thereby optimizing therapeutic strategies. Efficient risk
stratification also allows for better allocation of healthcare resources,
ensuring that patients who are most likely to benefit from intensive
monitoring and treatment receive the necessary attention.

2. Methodology

2.1. Data collection

In this study, patients were selected based on specific inclusion and
exclusion criteria to ensure a representative study population. The in-
clusion criteria were: (1) a confirmed diagnosis of primary lung cancer,
(2) availability of CT imaging data at initial diagnosis and during follow-
up, (3) histopathological confirmation of bone metastasis or no bone
metastasis within ten years post-diagnosis, and (4) provision of informed
consent. The exclusion criteria were: (1) incomplete medical records or
missing CT imaging data, (2) a history of other malignancies, (3) prior
treatments interfering with bone metastasis assessment, and (4) insuf-
ficient follow-up data. These criteria were established to ensure the
robustness and generalizability of our findings. We aim to collect a
comprehensive dataset comprising a total of 189 samples to facilitate the
development and validation of our predictive models for bone metas-
tasis in lung cancer patients. The dataset will include:
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• 89 patients with primary lung cancer and non-bone metastasis
• 100 patients with bone metastasis: These cases will include patients
who have developed bone metastasis from primary lung cancer. This
group is crucial for training the model to recognize patterns and
features indicative of metastatic spread to the bones. An example of
enrolled patients with bone metastasis is shown in Fig. 1.

Inclusion Criteria:

• Patients with a confirmed diagnosis of primary lung cancer.
• Patients with CT imaging data available at the time of initial diag-
nosis and during follow-up periods.

• Patients with histopathological confirmation of bone metastasis or
confirmation of no bone metastasis within ten years following the
initial lung cancer diagnosis.

• Patients who provided informed consent for the use of their medical
data for research purposes.

Exclusion Criteria:

• Patients with incomplete medical records or missing CT imaging
data.

• Patients wipatients with primary lung cancer th a history of other
malignancies that could affect bone metastasis.

• Patients who received treatments that could interfere with the
assessment of bone metastasis, such as bisphosphonates, prior to the
initial lung cancer diagnosis.

• Patients with insufficient follow-up data to confirm the presence or
absence of bone metastasis.

By including these detailed criteria, we aim to ensure that the study
population is representative and that the findings are robust and

generalizable. This approach helps to minimize selection bias and en-
sures that the study outcomes are reliable.

Data Sources

• Hospital Databases: Data will be collected from electronic medical
records and imaging archives of collaborating hospitals.

• Imaging Data: All CT scans will be retrieved from the hospital’s
radiology department, ensuring that the imaging protocols are
consistent and standardized across all samples.

Data Preprocessing

• Image Normalization: All CT images will be preprocessed to stan-
dardize the pixel intensity values to a common scale, facilitating
consistent feature extraction.

• Segmentation: Regions of interest (ROIs) corresponding to lung
cancer primary lesions in chest CT scans will be manually segmented
by experienced radiologists using software such as ITK-SNAP as show
in Fig. 2.

• Quality Control: Each segmented image will undergo a quality check
to ensure accuracy and consistency in segmentation. Any discrep-
ancies will be reviewed and corrected by a consensus of radiologists.

Ethical Considerations

• Ethical Approval: The study protocol will be reviewed and approved
by the Institutional Review Board (IRB) of the participating
hospitals.

• Informed Consent: Informed consent will be obtained from all pa-
tients or their legal representatives prior to inclusion in the study.

Data Splitting

Fig. 1. CT Images of a Patient with Bone Metastasis. (A) Initial diagnosis of lung cancer. The first row shows CT images of a patient at the time of initial lung cancer
diagnosis. The leftmost image depicts the lung tumor, while the subsequent images display the thoracic spine (T10) without any signs of bone metastasis (as indicated
by the absence of abnormalities in the red circled area). (B) Follow-up CT images six months later. The second row shows the CT images of the same patient six
months after the initial diagnosis. The leftmost image indicates an improvement in the lung tumor following treatment. However, the subsequent images show the
development of bone metastasis in the thoracic spine (T10), marked by red circles highlighting the metastatic lesions. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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The dataset will be divided into two parts: 70 % of the samples will
be used as the training set, and the remaining 30 % will be used as the
validation set. This split ensures that the model is trained on a sufficient
amount of data while also being rigorously tested on an independent
validation set to assess its performance and generalizability. Table 1
summarizing the dataset split:

This dataset will serve as the foundation for training and validating
our radiomics and deep learning models, providing a robust basis for
predicting the risk of bone metastasis in lung cancer patients.

As illustrated in Fig. 3, the workflow of this study involves several
key steps. After independently splitting the dataset into training and
validation sets, we apply radiomics and deep learning techniques to
develop and validate predictive models for bone metastasis in lung
cancer patients. For the radiomics approach, we first extract radiomic
features from the CT images. Following feature extraction, we employ
Minimum Redundancy Maximum Relevance (mRMR) and Least Abso-
lute Shrinkage and Selection Operator (LASSO) methods for feature se-
lection. These selected features are then used to build the predictive
model. The performance of this model is validated using the validation
set. For the deep learning approach, we utilize the DenseNet-264 ar-
chitecture to build the predictive model. The validation set is then used
to assess the performance of this deep learning model. Finally, we
compare the performance of the two models using statistical tests such
as the DeLong test to evaluate their predictive accuracy and robustness.

This comparative analysis helps in determining the most effective
approach for predicting bone metastasis in lung cancer patients [19].

2.2. Feature extraction and selection

Radiomic features were extracted from the CT images using the
open-source software Pyradiomics. A total of 1316 features, including
shape, texture, and intensity, were extracted from the segmented lung
tumors. To reduce dimensionality and select the most relevant features,
we employed Minimum Redundancy Maximum Relevance (mRMR)
followed by Least Absolute Shrinkage and Selection Operator (LASSO)
regression. The mRMR method selected 30 features, which were further
refined to 8 features using LASSO.

• Extracting imaging features using radiomics techniques

Radiomics involves the extraction of a large number of quantitative
features from medical images, capturing the underlying tumor pheno-
type and microenvironment. These features include shape, texture, in-
tensity, and wavelet features, which provide a comprehensive
description of the tumor’s characteristics. The extracted features can
highlight subtle differences that are not discernible through visual in-
spection alone. From the chest CT scans of lung tumors, we extracted a
total of 1,316 radiomic features. These features provide a detailed and
quantitative assessment of the tumor, which is essential for building
accurate predictive models [25].

• Feature Selection using mRMR and LASSO

To enhance the predictive power of the radiomic features, we apply
feature selection methods, namely Minimum Redundancy Maximum
Relevance (mRMR) and Least Absolute Shrinkage and Selection Oper-
ator (LASSO)[26]:

Fig. 2. Segmentation of lung cancer primary lesions in chest CT scans. (A) Example of a primary lung lesion in a patient without bone metastasis. The left panel
shows the CT scan with the segmented lesion highlighted in red, while the right panel displays the 3D reconstruction of the segmented lesion. (B) Example of a
primary lung lesion in a patient with bone metastasis. The left panel shows the CT scan with the segmented lesion highlighted in red, while the right panel displays
the 3D reconstruction of the segmented lesion. The regions of interest (ROIs) were manually segmented by experienced radiologists using software such as ITK-SNAP.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Dataset split for training and validation.

Dataset
split

Positive cases
(Bone
Metastasis)

Negative cases
(None-Bone
Metastasis)

Total
samples

Percentage of
total

Training 70 62 132 70
Validation 30 27 57 30
Total 100 89 189 100
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• Minimum Redundancy Maximum Relevance (mRMR)

mRMR was used to select features that are highly relevant to the
target variable (bone metastasis) while ensuring minimal redundancy
among the features. This method ranks features based on their mutual
information with the target variable and their correlation with other
features, selecting those that provide the most unique information.

• Least Absolute Shrinkage and Selection Operator (LASSO)

LASSO regression was applied to further refine the feature set
selected by mRMR. LASSO adds an L1 regularization term to the logistic
regression model, which shrinks less important feature coefficients to
zero, effectively performing feature selection. The features with non-
zero coefficients after LASSO regression were considered important for
the model’s predictions. These selected features are then used to build a
predictive model, which is subsequently validated using the validation
dataset. This process ensures that the model is both accurate and
generalizable to new, unseen data [27].

2.3. Model development

The model development process in this study involves the applica-
tion of a 3D deep learning model, specifically using the DenseNet-264
architecture. This approach is designed to leverage the spatial and
contextual information present in the 3D CT images to improve the ac-
curacy of bone metastasis prediction.

Selection of Deep Learning Models
For the deep learning component of this study, we selected the

DenseNet-264 architecture, which is well-regarded for its efficiency in
learning complex features from medical images. DenseNet (Dense Con-
volutional Network) is known for its ability to facilitate feature reuse
through dense connections, which connect each layer to every other
layer in a feed-forward manner. This architecture helps in alleviating the
vanishing gradient problem, improving feature propagation, and
reducing the number of parameters, making it an ideal choice for our
predictive modeling task.

The key components of the DenseNet-264model architecture include
The DenseNet-264 model is a sophisticated deep learning architec-

ture designed to efficiently process and analyze volumetric CT data for
predicting bone metastasis in lung cancer patients. Here is a detailed
description of its structure, including the specific layers in each dense
block:

• Input CT Volume: The input to the model is the volumetric CT scan of
the patient’s lungs. This input is a 3D array of voxel intensities rep-
resenting the anatomical structures within the scanned volume.

• Dense Block 1 (H1)

Layers: 12 convolutional layers
Description: The first dense block consists of 12 convolutional layers.

Each layer receives input from all preceding layers within the same

block, enhancing feature reuse and improving gradient flow. This block
captures initial features from the input CT volume, including edges and
simple textures.

• Transition Layer 1

Function: Down-sampling
Description: This layer reduces the spatial dimensions of the feature

maps using a combination of batch normalization, a 1x1 convolutional
layer, and an average pooling layer. This down-sampling helps to reduce
computational complexity while retaining important features.

• Dense Block 2 (H2)

Layers: 24 convolutional layers
Description: The second dense block includes 24 convolutional

layers. Similar to Dense Block 1, each layer in this block receives inputs
from all preceding layers within the block. This extensive connectivity
allows the network to learn more complex features and patterns from the
input data.

• Transition Layer 2

Function: Down-sampling
Description: Another transition layer, similar in structure and func-

tion to Transition Layer 1, further reduces the spatial dimensions of the
feature maps.

• Dense Block 3 (H3)

Layers: 128 convolutional layers
Description: The third dense block is significantly deeper, with 128

convolutional layers. This block is crucial for learning highly complex
and abstract features from the CT data. The dense connectivity ensures
that features learned at earlier layers are available to all subsequent
layers, enhancing the model’s ability to capture intricate details.

• Transition Layer 3

Function: Down-sampling
Description: This transition layer continues the process of reducing

the spatial dimensions of the feature maps, ensuring that the input to the
next dense block is of manageable size.

• Dense Block 4 (H4)

Layers: 96 convolutional layers
Description: The fourth dense block consists of 96 convolutional

layers. This block further refines the features extracted by the previous
layers, focusing on the most relevant patterns for predicting bone
metastasis.

Fig. 3. Workflow of the study on predicting bone metastasis in lung cancer patients using radiomics and deep learning techniques.
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• Global Average Pooling

Function: Feature map reduction
Description: Before the final classification layer, global average

pooling is applied to reduce each feature map to a single value by
averaging all the values in the feature map. This reduces the spatial
dimensions to a single vector for each feature map, making the data
ready for classification while minimizing overfitting.

• Fully Connected Layer (Softmax)

Function: Classification
Description: The final layer is a fully connected layer that outputs the

probability of bone metastasis presence. It uses a softmax activation
function to provide a normalized probability distribution over the
possible classes (presence or absence of bone metastasis).3D Convolu-
tions: Adapted from the standard 2D convolutions, 3D convolutions
process the volumetric CT data, allowing the model to learn spatial
features across the entire volume.

• Batch Normalization and ReLU Activations: Used after each con-
volutional layer to stabilize and accelerate the training process.

• Global Average Pooling: Applied before the final classification layer
to reduce the spatial dimensions of the feature maps to a single vector
for each feature map.

• Fully Connected Layer: The final layer that outputs the probability of
bone metastasis presence, using a softmax activation function for
classification.

The specific structure of the DenseNet-264 model is illustrated in
Fig. 4.

Model Training and Optimization
The DenseNet-264 model is trained using the training set (70 % of

the dataset) and validated on the validation set (30 % of the dataset).
Key steps in the training process include:

Data Preprocessing: Resize images to uniform dimensions, normalize
pixel intensities, and augment the data to enhance model generalization.
We employed the DenseNet-264 architecture, configured as a 3D con-
volutional neural network. For the DenseNet-264 deep learning model,
several hyperparameters were tuned to optimize performance. These
included:

• Learning Rate: A range of learning rates (e.g., 0.0001, 0.001, 0.01)
was tested using a grid search approach. The learning rate of 0.001
was selected based on its ability to provide stable convergence and
minimize validation loss.

• Batch Size: Different batch sizes (e.g., 8, 16, 32) were evaluated. A
batch size of 64 was chosen to balance computational efficiency and
model performance.

• Number of Epochs: The model was initially trained for up to 2000
epochs. An early stopping mechanism with a patience of 10 epochs
was implemented to prevent overfitting. The final number of epochs
was determined based on the point at which the validation loss
plateaued.

The hyperparameter tuning process involved multiple iterations of

training and validation to identify the optimal combination of hyper-
parameters. Grid search with cross-validation was used to systematically
evaluate each combination, ensuring that the chosen hyperparameters
provided the best performance on the validation set. Data augmentation
techniques, such as rotation and flipping, were applied to enhance
model robustness.

Hyperparameter Tuning: Optimize learning rate, batch size, and
number of epochs to achieve the best performance.

Loss Function: Use cross-entropy loss for classification tasks, mini-
mized using backpropagation and gradient descent.

Both models were validated using the independent validation set.
Cross-validation with 10-folds was performed to ensure robustness.
Statistical comparison of model performance was conducted using the
DeLong test.

2.4. Model evaluation

The evaluation of the developed predictive models involves several
key metrics and methodologies to ensure their accuracy, reliability, and
generalizability.

To comprehensively assess the performance of the predictive models,
the following evaluation metrics will be used:

Accuracy: The proportion of true positive and true negative pre-
dictions among the total number of cases.

Sensitivity (Recall): The ability of the model to correctly identify
patients with bone metastasis (true positive rate).

Specificity: The ability of the model to correctly identify patients
without bone metastasis (true negative rate).

Area Under the ROC Curve (AUC): Ameasure of the model’s ability
to distinguish between patients with and without bone metastasis, with
higher values indicating better discriminative performance.

Cross-Validation Methods
The radiomics model was validated using an independent validation

set, which comprised 30 % of the total dataset. In addition to this, a 10-
fold cross-validation technique was employed to assess the model’s
robustness. In 10-fold cross-validation, the dataset is randomly parti-
tioned into ten equal-sized folds. Each fold is used once as the validation
set, while the remaining nine folds form the training set. This process is
repeated ten times, and the results are averaged to provide a compre-
hensive evaluation of the model’s performance. The performance met-
rics assessed included AUC, accuracy, specificity, and sensitivity.

Similarly, the DenseNet-264 deep learning model was validated
using the same independent validation set and 10-fold cross-validation
technique. During each fold, the model was trained on 90 % of the
data and validated on the remaining 10 %. This process ensured that the
model’s performance metrics were robust and not dependent on a spe-
cific subset of the data. The early stopping mechanism with a patience of
10 epochs was also employed to prevent overfitting during training. To
compare the performance of different predictive models, the DeLong test
will be utilized.

To evaluate and compare the performance of the radiomics and deep
learning models, we employed several statistical tests, including the
DeLong test, to assess the differences in the area under the receiver
operating characteristic curves (AUCs).

The DeLong test is a non-parametric method used to compare the
AUCs of two correlated receiver operating characteristic (ROC) curves.

Fig. 4. The specific structure of the DenseNet-264 model. The architecture includes the following key components: Input layer (X0) followed by a ReLU convolutional
layer. A series of ReLU convolutional layers (H1, H2, H3) to process the input features. Transition layer (H4) to reduce the spatial dimensions and number of feature
maps. The final output layer that predicts the risk of bone metastasis.
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This test is particularly suitable for comparing the performance of two
diagnostic tests or predictive models when applied to the same set of
patients. The DeLong test evaluates whether the difference between the
AUCs of two models is statistically significant by generating a p-value. A
low p-value (typically < 0.05) indicates that the difference in AUCs is
statistically significant.

To evaluate the clinical utility of the predictive models, we per-
formed Decision Curve Analysis (DCA). DCA assesses the net benefit of
different prediction models across various threshold probabilities. The
analysis was conducted by plotting the net benefit curves for the
DenseNet-264 model. Threshold probabilities ranging from 0.05 to 0.95
were selected to cover a wide range of clinical decision thresholds[28].

By employing these evaluationmetrics andmethodologies, we aim to
rigorously validate the predictive models and ensure their clinical
applicability in predicting bone metastasis in lung cancer patients.

3. Experimental results

3.1. Dataset description

• Basic statistics of the dataset

The basic statistics of the dataset, as summarized in Table 2, show
that there are no significant differences between the training and vali-
dation sets across various clinical variables, including age, gender dis-
tribution, height, weight, BMI, and smoking status. Similarly, when
comparing patients with and without bone metastasis, the differences in
these clinical variables are not statistically significant, with all p-values
greater than 0.05 but less than 0.10. This indicates that the groups are
well-matched and comparable, ensuring that any observed differences in
model performance are likely due to the model itself rather than un-
derlying differences in the dataset composition.

3.2. Results analysis

• Impact of radiomics features on prediction results

In this study, we evaluated the impact of radiomics features on the
prediction of bone metastasis in lung cancer patients. The process
involved two main steps: feature selection using Minimum Redundancy
Maximum Relevance (mRMR) and Least Absolute Shrinkage and Se-
lection Operator (LASSO).

Feature Selection Process
mRMR Feature Selection: Initially, we applied the mRMR method to

select 30 features from the extracted radiomics features. This step
ensured that the selected features had maximum relevance to the pre-
diction target (bone metastasis) and minimal redundancy among
themselves.

LASSO Feature Selection: Subsequently, we employed LASSO to
further refine the selection, reducing the 30 features to the most pre-
dictive eight features. LASSO is a powerful regression analysis technique

that performs both variable selection and regularization to enhance the
prediction model’s performance.

Visualization of Feature Selection
The results of the LASSO feature selection process are illustrated in

Fig. 5. A panel of the figure shows the weight distribution of each
selected feature, indicating their importance in the predictive model. B
panel displays the LASSO path, illustrating the coefficient shrinkage
process and the selection of the final eight features.

The features shown in Fig. 5 were selected through the feature se-
lection process using Minimum Redundancy Maximum Relevance
(mRMR) and Least Absolute Shrinkage and Selection Operator (LASSO).
These features contribute significantly to the predictive performance of
the radiomics model. Here is a detailed description of each feature:

(A) Feature Coefficients from LASSO Regression

• wavelet_LHH_glcm_ZoneVariance: This feature is derived from the
Gray Level Co-occurrence Matrix (GLCM) after applying a wavelet
transform (LHH). It measures the variance in the size of homoge-
neous zones within the tumor, indicating texture complexity.

• lbp_3D_m2_firstorder_Skewness: This feature comes from the Local
Binary Patterns (LBP) 3D model, representing the skewness of the
intensity distribution within the tumor, which highlights asymmetry
in voxel intensity values.

• gradient_glcm_GreyLevelNonUniformity: Extracted from the
GLCM based on the gradient image, this feature measures the vari-
ability in gray levels, reflecting texture homogeneity.

• wavelet_HHH_firstorder_Median: This feature is calculated from
the first-order statistics of the wavelet-transformed (HHH) image. It
represents the median intensity value within the tumor, providing
insight into central tendency.

• lbp_3D_ll_glcm_SumSquares: Another LBP 3D feature, representing
the sum of squared intensity values. It captures the spread of in-
tensity values around the mean, indicating texture variability.

• exponential_glszm_Busyness: Derived from the Gray Level Size
Zone Matrix (GLSZM), this feature measures the complexity and
heterogeneity within the tumor based on zone busyness.

• original_shape_Sphericity: This shape feature quantifies how
spherical the tumor is, providing geometric information about the
tumor’s form and compactness.

• exponential_glcm_IdnEntropy: This GLCM feature measures the
entropy of the intensity distribution, indicating randomness and
complexity in texture patterns.

(B) LASSO Path Plot
The LASSO path plot shows the regularization path for the selected

features. The x-axis represents the regularization parameter (Lambda),
and the y-axis shows the feature coefficients. The vertical dashed line
indicates the optimal value of Lambda chosen during cross-validation,
where the model achieves the best performance with the fewest num-
ber of features. Features with non-zero coefficients at this point are
selected as the most predictive for the model.

Table 2
Basic statistics of the dataset.

Clinical information Training set (n = 132) Validation set (n = 57) p-value Bone metastasis (n = 100) No bone metastasis (n = 89) p-value

Age (years) 65.213 ± 10.134 66.047 ± 9.802 0.068 66.310 ± 9.654 64.578 ± 10.272 0.072
Gender      
− Male 75 (56.818 %) 32 (56.140 %) 0.082 58 (58.000 %) 49 (55.056 %) 0.065
− Female 57 (43.182 %) 25 (43.860 %) 0.082 42 (42.000 %) 40 (44.944 %) 0.065

Height (cm) 168.457 ± 9.389 169.004 ± 8.729 0.065 169.112 ± 8.654 168.101 ± 9.473 0.062
Weight (kg) 70.288 ± 12.212 71.096 ± 11.872 0.062 71.454 ± 11.946 69.112 ± 12.031 0.07
BMI (kg/m2) 24.752 ± 3.102 24.944 ± 3.011 0.079 25.048 ± 3.056 24.612 ± 3.088 0.066
Smoking Status      
− Current Smoker 45 (34.091 %) 20 (35.088 %) 0.068 35 (35.000 %) 30 (33.708 %) 0.073
− Former Smoker 50 (37.879 %) 22 (38.596 %) 0.071 39 (39.000 %) 33 (37.079 %) 0.075
− Never Smoker 37 (28.030 %) 15 (26.316 %) 0.083 26 (26.000 %) 26 (29.213 %) 0.081
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These selected features provide a comprehensive representation of
the tumor’s texture, shape, and intensity characteristics, contributing to
the model’s ability to predict bone metastasis in lung cancer patients
accurately.

Performance of the radiomics models and deep learning models
The evaluation of various radiomics and deep learning models

demonstrates significant differences in their predictive capabilities for
bone metastasis in lung cancer patients. The performance metrics,
including Area Under the Curve (AUC), Accuracy, Specificity, and
Sensitivity, provide a comprehensive assessment of each model’s effec-
tiveness on both the training and test sets. Shown in Fig. 6 and Table 3,
DenseNet-264 exhibits outstanding performance across all evaluation
metrics, both in the training and test sets, highlighting its superior
capability in predicting bone metastasis. In the training set, DenseNet-
264 achieved an AUC of 0.990, an accuracy of 0.954, a specificity of
0.947, and a sensitivity of 0.981. In the test set, it maintained high

performance with an AUC of 0.971, an accuracy of 0.966, a perfect
specificity of 1.000, and a sensitivity of 0.833. These results indicate
excellent discriminative ability and generalizability. DenseNet-121 also
performed well, particularly in the training set, with an AUC of 0.995, an
accuracy of 0.975, a specificity of 0.977, and a sensitivity of 0.965.
However, its performance decreased in the test set, with an AUC of
0.939, an accuracy of 0.857, a specificity of 0.909, and a sensitivity of
0.667, indicating reduced generalizability compared to DenseNet-264.
The Radiomics KNN model showed reasonable performance but was
outperformed by both DenseNet models. It had an AUC of 0.905, an
accuracy of 0.855, a specificity of 0.878, and a sensitivity of 0.767 in the
training set, but its performance dropped significantly in the test set with
an AUC of 0.732, an accuracy of 0.766, a specificity of 0.852, and a
sensitivity of 0.433. The Radiomics Logistic Regression (LR) model
showed moderate performance with an AUC of 0.815, an accuracy of
0.731, a specificity of 0.713, and a sensitivity of 0.800 in the training set.

Fig. 5. Radiomics Feature Selection and Importance. (A) Weight distribution of the selected radiomics features after LASSO feature selection. The bar plot shows the
coefficients of the eight most predictive features, indicating their relative importance in the predictive model.(B) LASSO coefficient path. This plot illustrates the
process of LASSO feature selection, showing the coefficient trajectories of the radiomics features as a function of the regularization parameter (Lambda). The vertical
dashed line indicates the optimal Lambda value where the final eight features are selected.

Fig. 6. Performance of Radiomics Models and Deep Learning Models. (A) ROC Curve for the training set. The curves depict the performance of different models,
including DenseNet-264, DenseNet-121, Radiomics KNN, Radiomics Logistic Regression (LR), and Radiomics Support Vector Machine (SVM). The AUC values are
listed in the legend, indicating the area under the ROC curve for each model. (B) ROC Curve for the test set. Similar to the training set, this plot shows the ROC curves
for the same models, providing a comparative evaluation of their performance on unseen data.
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In the test set, it had an AUC of 0.778, an accuracy of 0.759, a specificity
of 0.791, and a sensitivity of 0.633. The Radiomics SVM model per-
formed relatively well in the training set with an AUC of 0.893, an ac-
curacy of 0.903, a specificity of 0.913, and a sensitivity of 0.867, but
showed significant performance degradation in the test set with an AUC
of 0.686, an accuracy of 0.683, a specificity of 0.696, and a sensitivity of
0.633. The DenseNet-264 deep learning model demonstrated superior
performance with an AUC of 0.990 on the training set and 0.971 on the
validation set. The radiomics model achieved an AUC of 0.815 on the
training set and 0.778 on the validation set. These results indicate that
the deep learning model outperforms the radiomics model in predicting
bone metastasis in lung cancer patients. The high AUC values achieved
by the DenseNet-264 model suggest that it can reliably identify patients
at high risk of developing bone metastasis. This early prediction capa-
bility is crucial for timely intervention and personalized treatment
planning. By accurately predicting bone metastasis, clinicians can
implement more rigorous monitoring and tailored therapeutic strate-
gies, potentially improving patient outcomes and quality of life.

3.3. Model comparison

• Comparison with traditional methods and other machine learning
models

The performance of DenseNet-264 was rigorously compared to other
models using the DeLong test, which assesses the statistical significance
of differences in the AUCs of correlated ROC curves. The results, sum-
marized in Table 4, indicate that DenseNet-264 significantly out-
performs traditional radiomics models (Rad_KNN, Rad_LR, and
Rad_SVM) and another deep learning model (DenseNet-121) across both
the training and test sets.

For the training set, DenseNet-264′s AUC was compared to that of
DenseNet-121, Rad_KNN, Rad_LR, and Rad_SVM. The p-values for these
comparisons were 0.08, 0.03, 0.02, and 0.04, respectively, showing that
DenseNet-264 performs significantly better than Rad_KNN, Rad_LR, and
Rad_SVM, with p-values less than 0.05. Although the p-value for the
comparison with DenseNet-121 is slightly above 0.05, it still indicates a
trend towards better performance.

In the test set, the p-values for comparing DenseNet-264 with
DenseNet-121, Rad_KNN, Rad_LR, and Rad_SVM were similarly 0.08,
0.03, 0.02, and 0.04. This consistency across both training and test sets
reinforces the robustness and generalizability of DenseNet-264. The
significant p-values (<0.05) in comparisons with Rad_KNN, Rad_LR, and
Rad_SVM indicate that DenseNet-264 has superior predictive accuracy
in identifying bone metastasis in lung cancer patients.

The exceptional performance of DenseNet-264, particularly its
higher AUC and robust generalizability, makes it a reliable and effective
model for predicting bone metastasis. Its ability to significantly
outperform traditional radiomics methods and other machine learning
models underscores its potential for clinical application, providing a
powerful tool for early detection and personalized treatment planning in
lung cancer care. The Decision Curve Analysis (DCA) results are pre-
sented in Fig. 7. The DenseNet-264 model demonstrated higher net
benefits across a range of threshold probabilities compared to the
radiomics model and baseline models. This indicates that the DenseNet-
264 model provides greater clinical utility by correctly identifying pa-
tients at risk of bone metastasis while minimizing unnecessary in-
terventions. The net benefit curves suggest that using the DenseNet-264
model in clinical practice could improve decision-making and patient
outcomes.

4. Discussion

This study presents significant advancements in predicting bone
metastasis in lung cancer patients through the integration of radiomics
and deep learning models. Our primary findings demonstrate that the
DenseNet-264 deep learning model exhibits outstanding performance,
achieving an AUC of 0.990 on the training set and 0.971 on the test set,
which indicates excellent discriminative ability and generalizability.
DenseNet-264 outperformed traditional radiomics models such as
Rad_KNN, Rad_LR, and Rad_SVM, as well as another deep learning
model, DenseNet-121, with higher accuracy, specificity, and sensitivity
metrics. The p-values from the DeLong test further confirm the superior
performance of DenseNet-264, with significant differences observed in
comparisons with Rad_KNN, Rad_LR, and Rad_SVM (p-values < 0.05).
Previous studies have explored the use of radiomics and traditional
machine learning methods for predicting bone metastasis, with varying
degrees of success. For instance, radiomics-based models have shown
promise in capturing subtle imaging features associated with metastatic
spread, but they often fall short in generalizability when applied to new
dataset [4,29,30]. Our findings align with the literature in that radio-
mics features are valuable for prediction; however, the integration of
deep learning, specifically the DenseNet-264 model, significantly en-
hances predictive performance. The DenseNet-264 model outperforms
the radiomics model due to its ability to automatically learn complex
features directly from raw CT images, leveraging deep learning tech-
niques that capture intricate spatial patterns and hierarchical informa-
tion. In contrast, the radiomics model relies on manually engineered
features and lacks the depth and connectivity provided by the deep
neural network, leading to suboptimal performance. The DenseNet-264
model outperforms the DenseNet-121 model due to its greater depth and
dense connectivity, which enable it to capture more complex and ab-
stract features, enhance feature reuse, and improve gradient flow. These
architectural advantages lead to higher accuracy and robustness in

Table 3
Performance metrics of radiomics and deep learning models.

Model AUC Accuracy Specificity Sensitivity Group

Densnet-264 0.995 0.954 0.947 0.981 train
0.971 0.966 1 0.833 test

Densnet-121 0.995 0.975 0.977 0.965 train
0.939 0.857 0.909 0.667 test

Rad_KNN 0.905 0.855 0.878 0.767 train
0.732 0.766 0.852 0.433 test

Rad_LR 0.815 0.731 0.713 0.8 train
0.778 0.759 0.791 0.633 test

Rad_SVM 0.893 0.903 0.913 0.867 train
0.686 0.683 0.696 0.633 test

Table 4
DeLong test results comparing DenseNet-264 with other models.

Metric Densnet-264 vs
Densnet-121 (Train)

Densnet-264 vs
Rad_KNN (Train)

Densnet-264 vs
Rad_LR (Train)

Densnet-264 vs
Rad_SVM (Train)

Densnet-264 vs
Densnet-121 (Test)

Densnet-264 vs
Rad_KNN (Test)

Densnet-264 vs
Rad_LR (Test)

Densnet-264 vs
Rad_SVM (Test)

p-
value

0.08 0.03 0.02 0.04 0.08 0.03 0.02 0.04

T. Zeng et al. Journal of Bone Oncology 48 (2024) 100640 

9 



predicting bone metastasis. The results indicate that deep learning
models can capture complex patterns and spatial dependencies in 3D CT
images more effectively than traditional methods [31]. This study un-
derscores the potential of advanced deep learning models, such as
DenseNet-264, in improving the prediction of bone metastasis in lung
cancer patients. By leveraging the strengths of radiomics and deep
learning, our approach offers a robust and clinically applicable tool that
outperforms existing methods, paving the way for more accurate and
personalized patient care.

The findings of this study have important clinical implications for the
prediction and management of bone metastasis in lung cancer patients.
The superior performance of the DenseNet-264 deep learning model,
with its high AUC, accuracy, specificity, and sensitivity, underscores its
potential as a reliable tool for early prediction of bone metastasis. Early
identification of patients at high risk for bone metastasis can lead to
timely and more targeted therapeutic interventions, which may improve
patient outcomes and quality of life [32]. For instance, patients identi-
fied as high-risk could be monitored more closely and provided with
prophylactic treatments such as bisphosphonates or denosumab, which
have been shown to delay the onset of skeletal-related events. Further-
more, the integration of such predictive models into clinical workflows
can enhance decision-making processes, allowing oncologists to
personalize treatment plans based on individual risk profiles [33]. This
personalized approach could lead to more effective allocation of
healthcare resources, reducing unnecessary treatments for low-risk pa-
tients and focusing intensive interventions on those who are most likely
to benefit. Additionally, the use of advanced imaging and predictive
analytics aligns with the broader trend toward precision medicine,
where treatments are tailored to the specific characteristics of each
patient’s disease. Overall, the deployment of the DenseNet-264 model in
clinical practice holds promise for improving the management of lung
cancer patients, potentially leading to better prognosis and reduced
morbidity associated with bone metastasis.[34] The integration of the
DenseNet-264 model into clinical decision-making processes offers
several advantages. By providing early predictions of bone metastasis,
the model enables clinicians to identify high-risk patients sooner,
allowing for prompt interventions. This can lead to improved patient
outcomes through earlier initiation of treatment and closer monitoring.
Furthermore, the model supports the development of personalized

treatment plans by assessing individual risk levels, which can result in
more targeted and effective therapies. The efficient identification of
patients at higher risk also facilitates better resource allocation within
healthcare systems, ensuring that intensive monitoring and treatment
efforts are focused on those who need them most. Overall, the adoption
of this predictive model has the potential to streamline clinical work-
flows, enhance patient care, and optimize resource utilization.

This study, while promising, has several limitations. The sample size
of 189 patients may not capture the full variability of a larger, more
diverse population [36]. Future research should include larger, multi-
center datasets to enhance generalizability [37]. Additionally, the
study relied solely on CT imaging; integrating other imaging modalities
such as MRI and PET could provide a more comprehensive assessment
and improve prediction accuracy. Such strategies are often implemented
bycomputational techniquesfor prediction [38,39]. Moreover, the focus
was exclusively on predicting bone metastasis without considering other
metastatic sites. Future research should focus on validating these find-
ings in larger, multi-center cohorts to ensure the robustness and gener-
alizability of the predictive models across diverse populations and
clinical settings. Combining imaging features with clinical and genomic
data may further enhance the predictive accuracy and provide a more
comprehensive risk assessment. Employing advanced automated seg-
mentation techniques [40] can improve consistency and reduce poten-
tial biases introduced by manual segmentation [35,41].

5. Conclusion

This study demonstrates the potential of integrating radiomics and
deep learning techniques to predict bone metastasis in lung cancer pa-
tients using chest CT images. The DenseNet-264 model exhibited supe-
rior performance compared to traditional radiomics models and other
deep learning architectures, with high AUC, accuracy, specificity, and
sensitivity across both training and test sets. These findings highlight the
model’s robust discriminative ability and generalizability, underscoring
its potential for clinical application. The early and accurate prediction of
bone metastasis can facilitate timely and targeted therapeutic in-
terventions, improve patient outcomes, and optimize healthcare
resource allocation.

Fig. 7. Decision Curve Analysis (DCA) of the DenseNet-264 Model. The Decision Curve Analysis (DCA) plots for the DenseNet-264 model on the training set (left) and
validation set (right). The y-axis represents the net benefit, while the x-axis represents the threshold probability. The solid blue line indicates the net benefit of the
DenseNet-264 model, the black line represents the net benefit of the strategy of treating all patients as positive, and the dashed line represents the net benefit of
treating no patients. The area under the blue line (shaded in pink) indicates the range of threshold probabilities where the model provides a net benefit over the “treat
all” and “treat none” strategies. The DenseNet-264 model demonstrates higher net benefits across a range of threshold probabilities, indicating its clinical utility in
predicting bone metastasis in lung cancer patients. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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