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ABSTRACT: Peptides are very diverse molecules that can participate in
a wide variety of biological processes. In this way, peptides are attractive
for doping, since these molecules can activate or trigger biological
processes that can improve the sports performance of athletes. Peptide
molecules are found in the official World Anti-Doping Agency lists,
mainly in sections S2, S4, and S5. In most cases, these molecules have a
very short half-life in the body and/or are identical to natural molecules
in the body, making it difficult to analyze them as performance-
enhancing drugs. This article reviews the role of peptides in doping, with
special emphasis on the peptides used as reference materials, the
pretreatment of samples in biological matrices, the instrumentation, and
the validation of analytical methodologies for the analysis of peptides used in doping. The growing need to characterize and quantify
these molecules, especially in complex biological matrices, has generated the need to search for robust strategies that allow for
obtaining sensitive and conclusive results. In this sense, strategies such as solid phase peptide synthesis (SPPS), seeking to obtain
specific peptides, metabolites, or isotopically labeled analogs, is a key tool for adequate quantification of different peptide molecules
in biological matrices. This, together with the use of optimal methodologies for sample pretreatment (e.g., SPE or protein
precipitation), and for subsequent analysis by high-resolution techniques (mainly hyphenated LC-HRMS techniques), have become
the preferred instrumentation to meet the analytical challenge involved in the analysis of peptides in complex matrices.

1. INTRODUCTION
Doping in sports is an unacceptable practice that has become
increasingly common among elite athletes and even those who
practice sports in a noncompetitive manner.1 They use an
expanding range of substances that help them improve their
performance during competition in order to achieve sporting
success, enjoy the economic benefits derived therefrom, or
increase their muscle mass solely for aesthetic purposes, as in
the case of bodybuilding.2 These substances range from
structurally simple molecules to more complex ones such as
peptides, proteins, and even gene therapy or physical methods
like blood doping.3−5

Historically, the use of doping substances dates from ancient
times. In Mesopotamia and ancient Egypt, poppy and opiate
derivatives were consumed for their stimulant effects.6

Furthermore, several cultures practiced organotherapy, which
consisted in eating human or animal organs to cure diseases,
increase vitality, or improve performance.7 For example, the
Indians and Egyptians ate testicles to cure impotence and
strengthen virility, and the Aztecs ate hearts to gain courage
and strength.6,8 Athletes during those times sought to improve
their performance in competition through diets unusually high
in protein or through the consumption of stimulant substances

such as brandy, wine, hallucinogenic mushrooms, and other
stimulants that were usually extracted from natural sources,
which helped them to overcome fatigue and thus improve their
performance.7

Doping in sports grew alongside the development of modern
medicine in the 19th century, when scientific advances,
especially in pharmacology, allowed the optimization of the
use of naturally occurring stimulants, especially alkaloids, such
as caffeine, morphine, cocaine, and strychnine.6 In sports
requiring high endurance and aerobic capacity, such as cycling,
swimming, or running, the use of these substances by
competitors to outdo their opponents became very common.7

Because the substances used in doping can affect the health
of athletes and even have fatal consequences, and to promote
fair competition in sports, nowadays antidoping tests have
been introduced in almost all sports. The first efforts to ban
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doping were made by the International Athletics Federation
(FIA) by prohibiting the use of stimulant substances in 1923.7

However, it is generally considered that the fight against
doping as it is known today began in 1961 at the initiative of
the International Olympic Committee (IOC) when it created a
Medical Commission following the death of the Danish cyclist
Knud Enemark Jensen at the Olympic Games (OG) in Rome,
who collapsed during the team competition and died before
the eyes of the whole world. The cause of his death, although
not known exactly, has been attributed to the use of a
vasodilator or an amphetamine used for doping purposes.9

Today, the World Anti-Doping Agency (WADA), created
on November 10, 1999, coordinates international efforts
against the use of doping agents in sports. These efforts have
made it more difficult for athletes to use doping substances,
mainly due to the progress in analytical sciences for detecting
their use, the extensive testing program both in and out of
competition, and the novel implementation of the athletes’
biological passport, which is based on the personalized
monitoring of doping biomarkers throughout the athletes’
career, which constitutes a new paradigm in the antidoping
fight.10,11

Despite all the above, the fight against doping in sports
continues to be a major challenge, due to the rapid emergence
of new doping substances, since the analytical methods
available to detect their use must be more and more
sophisticated to achieve their purpose. Such is the case with
structurally complex peptide-type molecules since they behave
in the same way as their endogenous analogues and have short
half-life times. In addition, the lack of reference standards of
these molecules makes the development of new analytical

methods a major challenge.12 Figure 1 summarizes the most
important milestones of the history of peptides as doping
agents.
In this review, we explore the role of peptides in doping,

namely: (i) peptides used for doping purposes, (ii) peptides as
reference standards, in-house standards, or biomarkers to
design, develop, and validate analytical methods, (iii) pretreat-
ment of samples containing peptides, and (iv) analytical
methods used for peptide detection.

2. PEPTIDES IN DOPING
Sports affect people’s physical and mental health and foster
fundamental values in life in society, such as teamwork, respect
for the rules of the game, solidarity, and concentration.13

Biologically active peptides have become a threat to clean,
honest sports.14 This problem is worsening due to the role that
the pharmaceutical industry has played in the design and
development of peptide analogs that mimic natural protein
hormones. In the same vein, the production and commerci-
alization of peptides used for the diagnosis and treatment of
various diseases has grown steadily since the second half of the
20th century, reaching more than 100 peptide drugs approved
just for the year 2020.15

Small peptides and peptide hormones are classified in the
official WADA lists into 3 sections: section S2, peptide
hormones, growth factors, related substances, and mimetics;
section S4, hormone and metabolic modulators, and section
S5, diuretics and masking agents.16 In accordance with the data
reported by the WADA Anti-Doping Testing Figures in 2020,
peptide hormones were responsible for 48 (3% of total
findings) adverse analytical findings (AAF), hormones and

Figure 1. Timeline of selected events related to the use of peptides as doping agents.

Table 1. WADA Official Classification of Peptides Used in Doping

Category and group of prohibited substances
and methods Relevant peptides and protein derivatives

S2. peptide hormones, growth factors, related
substances, and mimetics

erythropoietin (EPO) and erythropoiesis-stimulating agents (ESAs)

chorionic gonadotropin (CG) and luteinizing hormone (LH) and their releasing factors (leuprorelin, goserelin,
buserelin, deslorelin, gonadorelin, nafarelin, triptorelin, etc.)

growth hormone (GH), its fragments and releasing factors (sermorelin, GHRH, GHRPs, etc.)
growth factors (GFs) and growth factor modulators (IGF-1, GnRH, FGFs, HGF, MGFs, PDGF, and VEGF)

S4. hormone and metabolic modulators insulins and insulin-mimetics
S5. diuretics and masking agents vasopressin and vasopressin analogues (desmopressin, felypressin, terlipressin, and lypressin)
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metabolic modulators for 127 AAF (8%), and diuretics for 213
AAF (14%).17 Some examples of peptides in these sections are
listed in Table 1.
2.1. Peptide Hormones, Growth Factors, Related

Substances, And Mimetics. The use and analysis of
peptides and proteins has become a fundamental aspect of
study for doping control laboratories, especially because of
their ability to improve the physical performance of athletes18

and because of the complexity of detecting these molecules,
which has generated the need to develop more sensitive and
sophisticated analytical methods.12 For these reasons, this
group of substances is prohibited by the official WADA lists,
where molecules such as erythropoietin, insulin-like growth
factor-I, growth hormone, and gonadotropin, among others,
are singled out.
Erythropoietin (EPO) is a hormone produced naturally by

the body19 that induces erythropoiesis and promotes the
proliferation of oxygen-releasing erythrocytes.20 Since recombi-
nant human erythropoietin (rHuEPO) became available in the
1980s,3 its use in sports has increased considerably, leading to
its ban in sports in official listings in the early 1990s.19,20 The
use of EPO and ESAs has been reported in different sports,
such as the well-known cases in cycling,21 athletics,22 and more
recently mixed martial arts (MMA).23

Growth hormone (GH) is a polypeptide hormone secreted
by the pituitary gland.24 The use of GH has been reported
since the 1980s to increase the performance of athletes,25

mainly due to its anabolic26 and lipolytic effects,27 i.e., it
increases the body mass of athletes and also decreases their
fatty mass.28 As has been reported, the anabolic activity of GH
is mediated by the generation of insulin-like growth factor-I
(IGF-I), which has established it as another important
molecule in the field of doping control.29 Human chorionic
gonadotropin (hCG) is a substance prohibited only in men,
used to stimulate testosterone secretion, causing anabolic
effects in muscle tissue by enhancing the muscular and skeletal
mass.30

The difficulty for the detection of peptide hormones as
doping agents is that they are triggered by the nature of the
molecule administered. These peptides have a short half-life in
blood, which considerably shortens the time window for their
detection in body fluids. In addition, hormones such as hGH
and hCG can exist as a mix of multiple isoforms or degradation
fragments that differ in length, sequence, rate of clearance and
excretion, and biological potency. hGH is secreted in such
minute quantities in urine that the development of antidoping
tests for hGH in the urine matrix is not viable, notwithstanding
the use of novel analyte concentration techniques.12

Similarly, the use of GH secretagogues (GHSs) (e.g.,
ghrelin), growth hormone-releasing hormone (GHRH) [e.g.,
sermorelin or GHRH (1−29)] and GH-releasing peptides
(GHRPs) is also prohibited by WADA.31 GHRPs are a group
of small synthetic peptides that have been shown to exhibit the
effect of releasing growth hormone in animals and humans32

and that also function as cytoprotective and cardioprotective
agents.33

Human gonadotropins, luteinizing hormone (LH), follicle-
stimulating hormone (FSH), and human chorionic gonado-
tropin (hCG) are hormonal glycoproteins that are responsible
for regulating the function of the sexual organs in humans and
play a fundamental role in normal growth, sexual development,
and reproduction.34,35 Currently, there are several synthetic
gonadotropin-releasing hormones (GnRH) on the market,

such as leuprorelin, goserelin, buserelin, deslorelin, gonador-
elin, nafarelin, and triptorelin, among others. These GnRH
analogues stimulate the secretion of LH and testosterone and
have the possibility of exerting effects such as doping and/or
masking agents, which is why they are currently prohibited for
use in sports.36

2.2. Hormone and Metabolic Modulators. Hormones
and metabolic modulators are among the most potent
performance-enhancing drugs used illicitly in doping.37 Insulin
and its analogues are increasingly used as doping agents1 and
have been part of the list of prohibited substances since 1999,38

mainly due to their property of altering metabolic processes,
promoting muscle growth and energy supply.38,39

Insulin is a peptide hormone secreted by the β cells of the
pancreatic islets of Langerhans. Insulin exerts its function of
regulating glucose homeostasis by facilitating the uptake of
cellular glucose in the liver, fatty tissues, and skeletal muscles.40

Insulin has been reported to have properties that promote
enhanced athletic performance through the promotion of
amino acid uptake, protein anabolism, increased glucose
uptake, and muscle glycogen storage.24,26 Furthermore, due
to the short half-life of insulins (especially the short-acting
insulins), they are often very difficult to detect or to
differentiate from the athlete’s own insulin, which has made
insulin a potential drug of abuse in the sport community.28

The misuse of insulins in strength and endurance sports has
been previously reported in various sports, especially in
bodybuilding, cycling, and weightlifting, among others.25,37,41

The main and most common side effect that is generated using
insulin is hypoglycemia, which, in the case of inadequate
therapeutic management or lack of professional medical
assistance, can potentially lead to coma or even death among
athletes.42

There are very few cases of insulin abuse reported in the
literature; however, the problem of insulin abuse may be much
more widespread. One study revealed that at least 10% of a
physician’s 450 regular patients admitted to using insulin and
that most of them obtained insulin from diabetic friends. The
short-acting insulin has a half-life of about 4 min in the human
body; it vanishes rapidly and is very difficult to detect. Even
when detected, it is impossible to distinguish it from the
athlete’s own insulin.43

2.3. Diuretics and Masking Agents. Diuretics and
masking agents are compounds that are taken with the express
purpose of hiding the presence of specific illegal drugs that are
screened during athletic drug testing.44 The peptide that
should be emphasized in this group of substances is
desmopressin (N-deamino-8-D-arginine-vasopressin or
dDAVP), which was first included in the WADA List of
Prohibited Substances and Methods in 2011.45

Desmopressin is a synthetic analogue of vasopressin with
increased antidiuretic activity and decreased pressor activity.45

It works by binding to V2 receptors and by limiting the
amount of water that is eliminated in urine, increasing water
reabsorption. It is indicated for the therapeutic management,
prevention, and control of polyuria, polydipsia, and dehy-
dration in patients with diabetes insipidus and in primary
nocturnal enuresis.45 Desmopressin has been studied as a
masking agent for blood doping in sports, where it generates a
hemodilution effect, significantly decreasing the hematological
values measured by the antidoping authorities to detect blood
doping.45,46
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Vasopressin (a nine-amino-acid peptide), also known as
arginine-vasopressin (AVP) or antidiuretic hormone (ADH), is
a natural hormone with potent vasoconstrictive effects.47

Vasopressin is synthesized in the hypothalamus and has the
property of increasing blood pressure through vasoconstriction
(due to activation of V1a receptors). Also, vasopressin activates
V2, V1b, and oxytocin receptors, which explains its antidiuretic
and procoagulant activity.47,48

Other diuretics relevant to the study of antidoping
substances are felypressin (phenylalanine-lys-vasopressin),
terlipressin (trigly-8-lys-vasopressin), and lypressin (8-lys-
vasopressin), which have been included in screening studies
to detect peptide hormones in human urine.49 It is important
to point out that WADA states that local administration of
felypressin in connection with local anesthesia during a dental
treatment is not prohibited.16

3. PEPTIDE SYNTHESIS AND REFERENCE MATERIALS:
OBTENTION AND CHARACTERIZATION

A pure reference material, or an appropriately certified solution
of the pure material, is used in development of analytical
methods, methodology validation, and the detection and
analysis of an analyte.50,51 The reference material in routine
analysis is used to prepare working calibration solutions and
are crucial in the measurement process.52

A certified pure reference material will have the identity of
the substance appropriately confirmed and will have a purity
value with a measurement uncertainty to clearly define the
mass fraction of the substance that is present. Currently, there
are many reference materials used in antidoping analysis.52

Unfortunately, this is not the case for peptide-type doping
agents, which constitutes a major challenge for the modern
antidoping agencies.52 For this reason, it is necessary to
develop peptide reference materials that have the required
quality for reliable identification and quantification of peptides
used in doping.
Although nowadays peptides of all types are commercially

available, their quality can vary greatly, because the production,
purification, and characterization methods are different for
each manufacturer, which makes their traceability difficult.53 In
this regard, it is necessary to ensure the quality of reference
materials through the standardization of their production,
purification, and characterization. This topic is another
analytical challenge by itself, especially since the quantification
process requires not only establishing the whole content of the
peptide in the sample (using, e.g., amino acid analysis, with
TLC, HPLC, GC-MS, LC−MS, CE, or RMN methods) but
also the content of the counterion (using either LC or GC
methodologies), water/humidity content (using Karl Fischer),
and impurities tests for the evaluation of residual solvents
(such as ACN, DMF, DCM through GC-HS-MS), heavy
metals, and peptide-related and nonrelated impurities.
The use of internal standards (ISs) is well established and

recommended for doping control assays by WADA. Especially
when the sample preparation comprises various steps with the
potential to deplete the target analyte, ISs offer a way to
control the reliability of the results. ISs compensate for any loss
of the target analyte during sample pretreatment to the exact
same extent and provide clear mass spectrometric differences.
These characteristics are valid for isotope-labeled ISs, with one
or more amino acids being replaced by their isotopically
labeled analogues (e.g., D8-Synacthen).54

For quantitative analysis, isotopically labeled analogues are
used to ensure reliable results. In qualitative analyses, analogue
peptides with one or more amino acid substitutions can be
used as ISs. This strategy consists of the use of peptides that
have some differences in their physicochemical properties from
the prohibited compounds but whose specific changes do not
affect the recovery percentage during the pretreatment process,
which allows an adequate interpretation of the result of the
analysis.54

Thomas et al. used internal standards commercially available
to analyze 12 prohibited peptides. The internal standards were
bovine insulin, D8-Synacthen, Des-pGlu-LH-RH, acetyl-(Tyr1,
D-Arg2)-GRF (1−29), and R3-IGF-1. A mixture of these ISs
was spiked with 500 pg/mL into each specimen (blood or
urine) as the first sample preparation.54 Cuervo et al. used the
GHRP-2 deamidated labeled in lysine (13C6 and 15N2, β-Nal =
β-naphthylalanine) as an IS for the analysis of 17 substances:
GHRP-1, GHRP-2, GHRP-4, GHRP-5, GHRP-6, hexarelin,
anamorelin, ipamorelin, alexamorelin, LHRH, leuprolide,
buserelin, triptorelin, desmopressin, lypressin, deamidated
GHRP-2, and deamidated GHRP-4.55 Zvereva et al. used the
synthetic peptides GHRP-1, GHRP-2, GHRP-4, GHRP-5,
GHRP-6, alexamorelin, hexarelin, ipamorelin, N-acetyl-
LKKTETQ (TB-500), and desmopressin to study the
metabolism of in vitro models.56

Coppieters et al. used a stock standard solution containing
50 peptides, which included the synthetic peptides ibutamoren,
bovine insulin, tabimorelin, LHRH, terlipressin, TB-500 and its
metabolites (which were synthesized in-house), and addition-
ally a mixture containing ISs such as [deaminoCys1, Val4, D-
Arg8]-vasopressin and 13C, 15N GHRP-2 (1−3) for the analysis
of these peptides in urine samples.57 Thomas et al. reported a
method for identifying small peptides (<2 kDa) using five ISs
(lys8-vasopressin, 2H-labeled GHRP-5, 2H-labeled GHRP-6,
and 2H-labeled GHRP-4) to control the matrix effects over the
chromatographic run.58 Other studies have used a variety of
ISs, such as 2H3-D-Ala-D-(β-naphthyl)-Ala-Ala-OH, bovine
insulin, 13C6

15N4-labeled T1 peptide of IGF-1, etc.
59

Solid-phase peptide synthesis (SPPS) allows obtaining small
peptides (less than 20 amino acids) in a relatively easy,
economical, and environmentally friendly manner,60 making it
a powerful tool for obtaining in-house reference materials.
Furthermore, there are purification methods based on LC or
reverse-phase solid-phase extraction (RP-SPE) that yield
peptides with chromatographic purities greater than 95%,61

allowing them to be used as reference materials, as long as an
adequate characterization via HPLC and LC−MS is
performed, to confirm their identity and ensure that there
are no impurities that coelute with the peptide of interest.53

Peptides GHRP-4, GHRP-5, GHRP-6, desmopressin, vaso-
pressin, and leuprolide were synthesized via SPPS using the
Fmoc/tBu strategy (SPPS-Fmoc/tBu) to get in-house
reference materials. The synthesis proceeded in a good
manner, obtaining peptides with high purity and yields,
indicating that this methodology is viable for obtaining in-
house reference standards to develop analytical techniques
focused on the detection of peptides used in doping.62,63

A crucial aspect in obtaining reference standards is the
unequivocal identification and characterization of each of the
peptides. In this sense, the construction of databases and
libraries of mass spectra has been reported to be a fundamental
tool for the identification of peptides in proteomic studies,64
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and in the same way, this tool could be fundamental for the
study of peptides used in doping.
Although research in this field is in its early stages, important

advances have been made recently, such as the work reported
by Plachka ́ et al., who built a library of 192 doping agents,
reporting retention times, TWCCSN2 values, and m/z ratios.65

The database was built with molecules from different classes
and related sections in the WADA listings, but agents such as
anamorelin stand out as peptide molecules in the library. To
the best of our knowledge, this is the first reported large library
that is built exclusively for doping agents that involves
parameters such as retention times and m/z ratios. Therefore,
the continuous development of these libraries, and the joint
work with databases already developed, will be essential to
advance in the study of different peptides in doping, and thus,
obtaining in-house reference materials could be key for
facilitating these investigations.

4. SAMPLE PREPARATION
In doping control analysis for small molecules, such as
peptides, the sample pretreatment is relevant, since these
molecules are susceptible to oxidation, enzymatic proteolysis,
and degradation. Therefore, the storage of blood and urine
samples is of vital importance for carrying out an adequate
analysis. Freezing at −20 °C is adequate and avoids peptide
degradation.54

The analysis of peptide hormones and small peptides in
biological matrices is an area of relevance in the study of
doping.66 The first step in the analysis of a sample in a doping
control laboratory is to carry out a screening procedure, where
an analytical methodology is used (mainly using chromato-
graphic techniques coupled with mass spectrometry) to detect
the suspected substance in a complex sample.58 Subsequently,
after confirming the presence of the prohibited substance in
the sample, it is necessary to carry out a confirmatory analysis
(where the WADA likewise recommends the use of mass-
coupled chromatographic techniques).67

The detection and quantification of peptide hormones has
been shown to be a challenge for antidoping laboratories,
mainly due to the heterogeneity of molecules and groups of
substances that involve peptides and proteins.68 In this vein,
the analytical techniques used for its detection have had to
evolve toward more robust, reliable, and sensitive methods,
and this evolution has also been reflected in the sample
preparation processes.
Initially, GC-MS analysis required extraction and derivatiza-

tion processes, as has been reported for the analysis of diuretics
in doping.44 At present, the development of more robust
methods based on LC−MS has become a standard analytical
technique in doping control and toxicology laboratories,69

which has allowed for the analysis of multiple analytes and
groups of substances in the same sample and has also expanded
the possibilities for sample preparation, even allowing the
detection of substances without the need for sample
preparation, only using “dilute-and-shoot”-LC−MS (DS-LC−
MS), which has led to its use in antidoping, among other
disciplines.69−71

Doping control tests are generally carried out using urine as
a biological matrix, although research work has also been
reported using matrices such as blood, plasma, serum, and hair,
among others.72,73 The methods used to extract peptide
hormones from these biological matrices involve the same
traditional methods used for the quantification of peptides and

proteins, mainly solid-phase extraction (SPE), liquid−liquid
extraction (LLE), protein precipitation (PP), and immunoaf-
finity purification (IAP), as reported in previous articles.32,74,75

SPE is the methodology most used in sample pretreatment,
and it involves various separation mechanisms such as reverse,
normal, ion-exchange, etc. The cartridge matrix containing the
stationary phase allows analyte retention after the analyte is
able to be eluted with an isocratic or gradient elution, in a way
similar to HPLC chromatography. Mixed-mode SPE involves
reversed-phase and ion-exchange chromatography mechanisms
and is an effective way to extract peptides from plasma and
urine. There are four major mixed-mode IE-RPSPE sorbents:
strong cation exchange, weak cation exchange, strong anion
exchange, and weak anion exchange.32 SPE is used as an
enrichment methodology and/or prepurification step. In this
context, Insuasty Cepeda et al. developed an RP-SPE
methodology that allows for obtaining peptides with purities
higher than 95%, demonstrating that this technique could be
used to purify short peptides.61

Another technique used in the preparation of peptide
samples in biological matrices is enzymatic digestion, which
can be carried out before or after the other pretreatment
methods. Enzymatic digestion involves the use of proteolytic
enzymes (such as trypsin, chymotrypsin, etc.), which seeks to
produce shorter peptide fragments that can facilitate the
analysis and detection of peptides and proteins (peptide
fingerprint).76 This method for preparing peptide samples was
developed mainly for mass spectrometry-based proteomic
studies;77 however, its use has been extended to the
characterization of these molecules in antidoping studies.
The use of enzymatic digestion is often preferred in bottom-up
analysis, while for shorter peptides, top-down approaches are
often used (which typically do not require protease digestion),
followed by LC−MS/MS analysis.76,78 Table 2 summarizes
some of the different approaches and conditions of pretreat-
ment techniques used for the analysis of peptides in doping.

5. LIQUID CHROMATOGRAPHY (LC) ANALYSIS
The chromatographic separation of small peptides is possible
with HILIC,81 cation-exchange,82 size exclusion, and super-
critical fluid chromatography,83 and even comprehensive RP-
HPLC−MS multianalyte detection methods have been applied
on the nano, micro, and analytical scale; however, applications
based on the use of nanoliquid chromatography yielded the
lowest LODs, but due to longer run times and difficulties with
the robust operation of such instruments, it did not gain
popularity for routine small peptide analysis.
Recently reversed-phase HPLC (RP-HPLC), has become

the standard platform for peptide analysis and bottom-up LC−
MS proteomics, based upon the hydrophobic characters of
sorbent, analyte, and organic solvent content, as well as the
presence of various mobile phase additives. Analytical columns
(50−150 mm) are preferred with varying particle sizes (1.7−5
μm) and column chemistry.84
Cuervo et al. found that C18 chemistry was superior to C8

columns in terms of peptide peak areas and peak shape.55 The
same research group and Mazzarino et al found that the use of
fused core particles was found to be superior compared to the
classical particles.49 Improved chromatography was achieved
for several GHRPs by applying an acetylation step, which
rendered the peptides more hydrophobic and reduced their
charge.85 Various mobile phase compositions were tested by
different laboratories. However, an aqueous solvent that may
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contain formic acid (AF) (0.1−1%) and acetonitrile (ACN)
fortified with formic acid (0.1−1%) became the prevailing one.
Electrospray ionization mass spectrometry (ESI-MS) has

become the premier analytical platform for the MS analysis of
proteins and peptides. The hallmark of ESI-MS for proteins
and other large biomolecules, multiple charging, extends the
effective mass range of the analyzer in direct proportion to the
number of charges per ion. Modifying mobile phase
compositions by adding solvents such as DMSO is trending
for supercharging proteins.84 In the context of peptide ESI, the
benefits of adding DMSO to improve ionization efficiency have
also long been described in the field of proteomics.86

Compared to their lower-charged counterparts, more highly
charged proteins and peptides dissociate more efficiently,
providing higher sequence coverage in tandem MS (MS/MS).
Its application for the routine measurements of small peptides
was evaluated by Judaḱ et al.87

For Görgens et al., several assays enabling the detection of
peptidic drugs and drug candidates (<2 kDa) prohibited in
sports have been developed for doping control purposes. While
the first analytical methods were based on sophisticated and
laborious sample preparation procedures, e.g., SPE, more
recent publications demonstrated the fitness-for-purpose of
simplified approaches, e.g., the dilute-and-inject approach. This
last strategy has shown that the omission of the SPE-based
sample preparation is possible with conventional one-dimen-
sional LC systems but has also aided others to lower the LODs
of already established multidimensional direct urinary injection
methods.88 According to the results observed by various
research groups, depending on the experimental setup applied,
ionization can be enhanced, resulting in a higher signal
intensity, which seems to vary among instruments.86

Atmospheric pressure chemical ionization (APCI)89 was
used for the ionization of smaller peptides/AAs, however,
electrospray ionization (ESI) is considered a more ideal
atmospheric pressure ionization source for biomolecule
analysis. Under typical ESI conditions, small peptides form
singly-, doubly-, and triply charged gas-phase ions. It has been
demonstrated that mobile phase additives may influence
charge state distribution; in the case of DMSO, shifts toward
lower charge states were observed.87,90,91 For Hahne et al., this
is possibly caused by the high gas-phase basicity of DMSO;86

otherwise, Nshanian et al. found that changes in solvent
composition might simply cause charges to be allocated
differently when transitioning from droplets to gas-phase
ions.84

6. MASS SPECTROMETRY (MS) ANALYSIS
For Thomas et al., the determination of peptides by means of
mass spectrometry after liquid chromatographic separation is
the preferred technique for complex analytical assays. Highly
reproducible, specific, and sensitive results are obtained with
hyphenated UHPLC separation and high-resolution mass
spectrometry for small peptides and their metabolites in
antidoping laboratories.92,93

Multiple reaction monitoring (MRM) is a powerful method
for the sensitive detection of target analytes using low-
resolution triple quadrupole (QqQ) mass spectrometry.
However, for multitarget approaches dealing with hundreds
of analytes, targeted MS/MS techniques are often limited by
the attended cycle time of the instruments, and therefore, the
identification of sensitive and selective multiple reaction

monitoring (MRM) transitions is required for low concen-
tration detection.49

The uses of high-resolution mass spectrometry (HRMS),
either by time-of-flight (TOF)55 or Orbitrap instrumenta-
tion,87,88 has increased in antidoping laboratories. The fact that
each molecule has its own unique exact mass allows us to
elucidate chemical formulas from unknown compounds as well
as confirm a known compound with great certainty.94 HRMS
especially became popular in small peptideanalysis due to
features such as the possibility of extracting exact mass peptide
isotopes to use them as specific confirming ions,90 the use of
full scan acquisition, which allows searching for initially
untargeted substances by retrospective data evaluation, data-
dependent analysis (DDA), which combines targeted and
nontargeted analysis, and the possibility to incorporate several
small peptides into comprehensive multiclass analyte meth-
ods.95,96 Table 3 lists the classification, sequence and
confirmatory ion for the most relevant peptides used in doping.

7. VALIDATION
The validation of analytical methods is a fundamental aspect of
establishing reference methods and determining with sufficient
evidence that these methodologies have the capacity to
generate reliable, reproducible, and accurate results. Analytical
methods must be validated considering performance parame-
ters such as selectivity, specificity, accuracy, precision, linearity
range, limit of detection (LOD), limit of quantification
(LOQ), and robustness, among others.
For doping control laboratories, it is of utmost importance

to ensure the quality and reliability of the analytical method,
since it is based on this that decisions of a sporting,
competitive, and even legal nature are made. To set standards
for laboratory antidoping procedures around the world,
WADA has developed the International Standard for
Laboratories (ISL), which states that confirmation methods
for nonthreshold substances [a substance included in the
Prohibited List for which the identification constitutes an
adverse analytical finding (AAF)] must be validated.
Several guidelines and protocols for the validation of

methodologies have been generated at an international level,
among which are those developed by the Food and Drug
Administration (FDA), World Health Organization (WHO),
European Medicines Agency (EMA), International Council on
Harmonization (ICH), current good manufacturing practice
(cGMP), International Organization for Standardization
(ISO), and Association of Analytical Chemists (AOAC),
among others.
However, regarding peptide analysis and validation, no

specific validation guide has been established for this group of
substances so far. For this reason, different investigations of
peptides in doping have been published where the validation
process has been carried out using as guidelines the official
WADA documents (ISL, TD IDCR, and TD MRPL),
Eurachem guidelines, ICH Technical Requirements, the
FDA’s Guidelines for the Validation of Analytical Methods,
ISO/IEC standards, and small molecule validation documents.
Lange et al. used dried blood spot (DBS) sample

preparation, followed by SPE for the detection of 46 low-
molecular-weight peptide molecules (<2 kDa) by LC-
HRMS.90 The method was validated using the official
WADA guidelines for the validation of initial testing
procedures (ITPs) for nonthreshold substances, determining
the LOD (between 0.5 and 20 ng/mL), linearity (ranging from
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coefficients of correlation r between 0.9862 and 0.9999),
precision (at 20, 50, and 100 ng/mL), recovery at 20 ng/mL,
carryover after 100 ng/mL, and the matrix effect.90

In addition, Min et al. developed and validated an LC−MS/
MS-based method for the simultaneous analysis of seven

different GHRPs (alexamorelin, GHRP-1, -2, -4, -5, -6, and
hexarelin) and three GHRSs (anamorelin, ibutamoren, and
ipamorelin) in human urine.97 For this purpose, they followed
the WADA and ISO/IEC17025 guidelines. They validated the
selectivity, linearity (ranging from coefficients of correlation r
between 0.9984 to 1), matrix effect (50.0%−141.2%), recovery
(10.4%−100.8%), intra- and interday precision (CV < 20% for
intraday and CV < 25% for interday precision), and LOD (for
screening 0.05−0.5 ng/mL and for confirmation 0.05−1 ng/
mL), thus demonstrating that the validated method can be
useful for the simultaneous qualitative determination of these
peptides.97

These same guidelines were used by Seo et al. for the
validation of a method for the quantification of insulin growth
factor I (IGF-I), a biomarker for GH misuse, in human serum
samples using LC-HRMS following a rapid sample preparation
method.98 In this regard, they validated the linearity
(correlation r 0.9994), selectivity, intra- and interday precision
(CV < 2% and CV < 6% respectively), recovery (>95%),
accuracy (>99%), LOQ (20 ng/mL), and LOD (15 ng/mL),
and compared the method with those usually applied for
detecting IGF-I, finding that their method was faster and
cheaper and required a low sample volume.98

The use of Eurachem validation guidelines was reported to
determine the LOD, selectivity, and specificity of desmopressin
in 10 human plasma samples and in 10 urine samples.99 For
human plasma samples, the LOD was established at 50 pg/mL,
and additionally it was found that the method exhibited good
selectivity, since an adequate separation was achieved between
desmopressin, the ISs, and the carrier peptide. Finally, for the
urine samples, an LOD of 25 pg/mL was found, likewise
achieving a good separation between desmopressin, the ISs,
and the carrier peptide.99

Leuprolide was used to develop and validate a quantification
methodology in human plasma based on LC−MS. The
validation was carried out in accordance with the ICH
guidelines (Technical Requirements for Registration of
Pharmaceuticals for Human Use, 2005). The assay exhibited
a linear dynamic range of 0.0500−40 ng/mL for each analyte,
with a lower limit of quantification (LLOQ) of 0.0500 ng/mL.
The method presented a linear dynamic range of 0.0500−40
ng/mL, with a lower limit of quantification (LLOQ) of 0.0500
ng/mL. Additionally, the specificity, selectivity, precision,
accuracy, extraction recovery, and matrix effect were
established.100

Tables 4a and 4b summarize the experimental conditions
(pretreatment of the samples, worked matrix, analytical
methodology, and equipment configuration), and the estab-
lished validation parameters (LOD, LOQ, linear range, %
recovery, matrix effect, among others), respectively.
Finally, several studies in which the analytical methodology

has been validated have challenged the developed method in
different ways, to guarantee optimal results in real-life tests (in
addition to the tests in which the matrix is fortified with the
peptide or the peptides of interest). In this sense, the
application of these methods has been reported against
biological samples (such as human urine, serum, and plasma),
in which some of these peptides have been previously
administered (with their respective informed consent).
Lang et al. conducted a study in human serum, which

involved the subcutaneous administration of the peptides
GHRP-2 and GHRP-6. The evaluation of the levels of both
peptides in serum was carried out at three different times,

Table 3. WADA Classification, Sequence, and HRMS-
Related Characteristics of the Main Small Peptides Used in
Doping

Compound
WADA
list Sequence

Charge state/target ion
(confirming ion) [m/z]

alarelin S2 pGlua-HWSYdALRP-
NH(Et)

2+/584.3065 (584.8080)

alexamorelin S2 AH-dMrpa-AWdFK-
NH2

2+/479.7560 (480.2574)

buserelin S2 pGlua-HWSY-dStBu-
LRP-NH(Et)

2+/620.3353 (620.8367)

deslorelin S2 pGlua-HWSYdWLRP-
NH(Et)

2+/641.8276 (642.3291)

desmopressin S5 Mpaa-YFQNCPdRG-
NH2 (disulfide Bridge
Mpa1-Cys6)

1+/
1069.4342 (1070.4370)

felypressin S5 CFFQNCPKG-NH2
(disulfide Bridge Cys1-
Cys6)

2+/520.7257 (521.2271)

fertirelin S2 pGlua-HWSYGLRP-
NH(Et)

2+/577.2987 (577.8001)

GHRP-1 S2 AH-2Nala-AWdFK-NH2 2+/478.2505 (478.7520)
GHRP-1
(3−6)b

S2 dNala-AWdF-OH 1+/620.2883 (621.2913)

GHRP-2 S2 dA-dNala-AWdFK-NH2 2+/409.7210 (410.7240)
GHRP-2
(1−3)b

S2 dA-dNala-A-OH 1+/358.1761 (359.1792)

GHRP-3 S2 Aiba-dWdPdIR-NH2 1+/655.4038 (656.4067)
GHRP-4 S2 dWAWdF-NH2 1+/608.2980 (609.3010)
GHRP-5 S2 YdWAWdF-NH2 1/+771.3613 (772.3643)
GHRP-6 S2 HdWAWdFK-NH2 1/+437.2296 (437.7312)
GHRP-6
(2−5)b

S2 dWAWdF-OH 1/+609.2820 (610.2850)

goserelin S2 pGlua-HWSY-dStBua-
LRP-AzaGlya-NH2

2+/635.3280 (635.8294)

hexarelin S2 H-dMrpa-AWdFK-NH2 2+/444.2374 (444.7388)
hexarelin
(1−3)b

S2 H-dMrpa-A-OH 1+/427.2088 (428.2117)

histrelin S2 pGlua-HWSY-dHBzla-
LRP-NH(Et)

2+/662.3409 (662.8423)

ipamorelin S2 Aiba-H-dNal-dFK-NH2 2+/356.7001 (357.2016)
ipamorelin
(1−4)b

S2 Aiba-H-dNal-dF-OH 1+/585.2820 (586.2850)

leuprolide S2 pGlua-HWSYdLLRP-
NH(Et)

2+/605.3300 (605.8314)

leuprolide
(5−9)b

S2 YdLLRP-NH(Et) 2+/344.7289 (345.2303)

LHRH S2 pGlua-HWSYGLRPG-
NH2

2+/591.7938 (592.2953)

LHRH
(2−10)b

S2 HWSYGLRPG-NH2 2+/536.2778 (536.7792)

nafarelin S2 pGlua-HWSY-dNala-
LRPG-NH2

2+/661.8251 (662.8279)

nafarelin
(5−10)b

S2 Y-dNala-LRPG-NH2 2+/401.2239 (401.7253)

peforelin S2 pGlua-HWSHDWKPG-
NH2

2+/630.2889 (630.7903)

TB500 S2 Ac-LKKTETQ-OH 2+/445.2531 (445.7546)
triptorelin S2 pGlua-HWSYdWLRPG-

NH2

2+/656.3227 (656.8241)

aAbbreviations: Aib, aminoisobutyric acid; AzaGly, azaglycine; HBzl,
benzylhistidine; Mpa, mercaptopropionic acid; Mrp, methyltrypto-
phane; Nal, 2-naphthyl-alanine; pGlu, pyroglutamic acid; StBu,
tercbutylserine. bMetabolite.
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finding that the peptides were at detectable levels up to 90 min
postadministration.90 GHRP-6 peptide was also analyzed in a
phase 1 clinical trial by Gil et al., where they were able to
evaluate the peptide in human plasma, above the LLOQ, up to
12 h after administration.103

Knoop et al. carried out the subcutaneous administration of
a single dose of sermorelin, finding that at none of the
evaluated times the whole peptide could be found, but at 30
min it was possible to identify one of its metabolites
[sermorelin (3−29)]. Additionally, the authors report that
the results were comparable for plasma and serum samples,
which confirms the possibility of using both biological matrices
in doping control studies.102

Thomas et al. performed an excretion study in urine
samples. The authors used two different routes of admin-
istration (oral and intranasal), seeking to compare the
bioavailability profiles for both routes of administration and,
additionally, establishing a detection range for Desmopressin

of up to 20 h, with maximum concentrations recorded between
3 h and 7 h.104

The use of samples from athletes has also been reported,
although to a lesser extent compared to clinical trials or
pharmacokinetic studies. Seo et al. reported the use of 209
serum samples collected from athletes to establish and
compare IGF-1 concentration levels. Although the method
was successfully validated and compared with current method-
ologies, the authors report that a limitation in these assays
involved the lack of samples with high concentrations of IGF-
1.98

8. CONCLUSIONS
The analysis of prohibited substances used to improve athletic
performance is an analytical challenge that requires the
continuous optimization of methodologies in terms of
sensitivity, precision, accuracy, recovery rate, decrease in the
number of false positives, and analysis time, among others. The

Table 4b. Validation of Methodologies to Analyze Peptides Used in Doping

Analyte Guide Validation parameters

GHRPs and GHSs WADA-ISO/
IEC 17025

selectivity, matrix effects, recovery, linearity, intra- and interassay
precisions, and LOD

linearity (r = 0.9984−1)

matrix effect = 50.0%−141.2%
recovery = 10.4%−100.8%
intra- and interday precision (CV < 20% and
CV < 25%, respectively)

LOD (for screening 0.05−0.5 ng/mL; for
confirmation 0.05−1 ng/mL)97

mixture of peptides
used in doping

ISO-17025 selectivity, linearity, precision, accuracy, LOQ, and LOD linearity (r > 0.999)

LOD (μg/mL): GHRP-2 = 0.05; GHRP-6 = 0.05;
leuprolide = 0.1; buserelin = 0.1; sermorelin = 2.5

LOQ (μg/mL): GHRP-2 = 5; GHRP-6 = 5;
Ipamorelin = 5; sermorelin = 40101

mixture of peptides
used in doping

WADA selectivity, matrix effects, recovery, linearity, intra- and interassay
precisions, carry over, and LOD

linearity (r = 0.9862−0.9999)

matrix effect = 33%−156%
LOD (ng/mL): 0.5−20
carryover (after 100 ng/mL) = 0%−9.9%
recovery (at 20 ng/mL) = 8.0%−69.6%90

mixture of peptides
used in doping

WADA-ISO/
IEC 17025

selectivity, recovery, matrix effect, precision, sensitivity (limit of
detection), cross contamination, carryover, robustness, and stability

LOD (ng/mL): 0.1−1

matrix effect = 12%−80%
recovery SPE = 17%−95%55

GHRHs N.R. specificity, linearity, recovery, LLOD, imprecision, and ion
suppression/enhancement effects

lower limit of detection (LLOD) (pg/mL) =
sermorelin < 50; CJC-1295

recovery = sermorelin 23%; CJC-1295 19%102

GHRP-6 FDA sensitivity (LOQ, carry over), calibration range and response,
accuracy and precision, and sample stability

lower limit of quantification (LLOQ) = 5 ng/mL

linearity 5−50 ng/mL (r = 0.988)103

IGF-1 WADA-ISO/
IEC 17025

linearity, selectivity, carry over, LOD, LOQ, intra and interday
precision, recovery, and accuracy

linearity (r = 0.9994)

LOD = 15 ng/mL
LOQ = 20 ng/mL
recovery > 95%
carryover < 0.03%98

leuprolide ICH specificity, linearity, LLOQ, selectivity, precision, accuracy, extraction
recovery, matrix effect, and stability

linear dynamic range = 0.0500−40 ng/mL

lower limit of quantification (LLOQ) =
0.0500 ng/mL100

desmopressin and
vasopressin

N.R. specificity, recovery, linearity, precision (intra/inter-day), LOD,
LOQ, ion suppression, robustness, accuracy, and stability

linearity (r > 0.99)

LOD = 20 pg/mL
LOQ = 50 pg/mL
recovery = 81%−103%104
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role of peptides in research focused on antidoping presents
extensive challenges for the future, mainly because it is
necessary to obtain reference materials that allow the
continuous development of analytical methodologies for their
adequate detection. Although many efforts have been made in
this field, the chemical synthesis of peptides has been a
relatively unexplored area. Therefore, we believe that solid-
phase peptide synthesis (SPPS) using the Fmoc/tBu strategy
can be an important alternative for obtaining in-house
reference materials with high percentages of yield and purity,
which could be an additional step in the fight against doping,
and that it would be suitable for the routine analysis of
peptides with possible use as a doping agent.
The detection and/or quantification of synthetic peptides

used in doping poses an additional analytical challenge due to
factors such as emergence of new peptides, very short lifetimes,
and low concentrations in the body, and they can mimic
naturally produced molecules, trigger biological processes
indirectly, etc. Although significant progress has been made
in the pretreatment of samples and the instrumentation, which
has allowed the development of more sensitive, precise, and
accurate analytical methods, there are still some aspects that
need improvement, such as detection and quantification of
peptides with low concentrations in complex matrices and
identification and characterization of biomarkers, especially for
peptides with short half-lives, to obtain reference materials,
especially those synthesized at home, in order to create
strategies for the rapid detection of peptides, which are
continually entering the doping market, among others.
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