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Abstract: The three-factor kinetic equation of catalyst deactivation was obtained in terms of apparent
kinetic parameters. The three factors correspond to the main cycle with a linear, detailed mechanism
regarding the catalytic intermediates, a cycle of reversible deactivation, and a stage of irreversible
deactivation (aging), respectively. The rate of the main cycle is obtained for the fresh catalyst under
a quasi-steady-state assumption. The phenomena of reversible and irreversible deactivation are
presented as special separate factors (hierarchical separation). In this case, the reversible deactivation
factor is a function of the kinetic apparent parameters of the reversible deactivation and of those of
the main cycle. The irreversible deactivation factor is a function of the apparent kinetic parameters of
the main cycle, of the reversible deactivation, and of the irreversible deactivation. The conditions of
such separability are found. The obtained equation is applied successfully to describe the literature
data on the reversible catalyst deactivation processes in the dehydration of acetaldehyde over TiO2
anatase and in crotonaldehyde hydrogenation on supported metal catalysts.

Keywords: catalyst deactivation; kinetic equation; reversible deactivation and aging; separability

1. Catalyst Deactivation: Categories and Factors

Catalyst deactivation is a complex, non-steady-state process governed by a variety of
phenomena influenced by many physicochemical factors. Different categories of catalyst
deactivation have been introduced, such as chemical poisoning, fouling (e.g., coke gener-
ation), thermal deactivation, and mechanical degradation [1]. From another perspective,
different primary categories of catalyst deactivation can be proposed:

1. Reversible and irreversible deactivation;
2. Chemical and physical deactivation;
3. ‘Intrinsic’ and ‘extrinsic’ deactivation.

Chemical deactivation is defined as the process caused by a set of chemical trans-
formations. Physical deactivation is a result of one or several structural and mechanical
changes, e.g., sintering, and surface and bulk phase transitions, which are responsible for a
change in the number of active sites.

‘Intrinsic’ deactivation can be defined as a process caused by reactants and products
of the main reaction within a chosen domain of working parameters, i.e., chemical compo-
sition, temperature, and pressure. Consequently, ‘intrinsic’ factors of deactivation include
the concentrations of reactants and products of the main reaction and the temperature. Con-
ditions of preliminary catalyst preparation and pretreatment can be considered ‘intrinsic’
factors of a catalyst as well.

‘Extrinsic’ deactivation is a consequence of the influence from factors beyond the main
process and its conditions, e.g., poisons and impurities, excessive temperature, pressure,
and flow-rates.
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In more detailed categorizations, these factors can be combined and coupled. Fur-
ther, additional processes of catalyst activity evolution can be considered, e.g., catalyst
self-regeneration as a result of interaction between the deactivated catalyst with some
‘intrinsic’ reactants/products; catalyst ‘forced’ deactivation, such as reoxidation during the
regeneration period. More rigorously, catalyst activation before the starting regime can be
included in the types of processes that determine catalyst activity.

2. Phenomenological and Semiphenomenological Models of Catalyst Deactivation:
State-of-the-Art

Within the phenomenological approach, the main characteristic of the catalytic pro-
cess is the catalytic reaction rate (r), which depends on the concentrations of reactants
(C = C1, C2, . . .), temperature (T), and catalyst activity (a),

r = fr(C, T, a). (1)

The catalyst activity a is considered a function of the reaction conditions, here C and T, and
its change can be termed as ‘catalyst deactivation’.

Szepe and Levenspiel were the first to use such a phenomenological approach [1].
They proposed the following phenomenological deactivation equation:

r(t) =r0a(t), (2)
da
dt

=− f (C, T)ad, (3)

where r0 is the reaction rate over the non-deactivated (‘fresh’) catalyst and d is an empirical
parameter.

The main assumption of this model is that the reaction and deactivation kinetics are
separable. The function f (C, T) can be empirical, or reflect the rate of deactivation according
to its assumed power-law decay kinetics.

Then, Corella et al. [2,3] analyzed the empirical parameters relevant to Equation (1),
resulting in the following expression:

da
dt

= −kdCn
i ad, d =

m + h− 1
m

, (4)

where m and h are the number of active sites involved in the limiting steps of the reaction
and of the deactivation, respectively, while n is an empirical parameter.

In [4], the authors presented the kinetic model with a description of two different
periods of irreversible deactivation.

3. Modified Phenomenological Models of Catalyst Deactivation

In catalytic literature, many models combining phenomenology and some mechanistic
considerations of deactivation have been presented, e.g., power-law kinetic dependencies
and Langmuir–Hinshelwood relationships based on the concept of adsorption equilibria,
see Butt [5] and Bartholomew [6]. Such models can be termed as semiphenomenological .

In 1989, Ostrovskii and Yablonskii proposed the semiphenomenological model of
single-route catalytic reactions assuming two types of catalyst deactivation, i.e., reversible
and irreversible (‘aging’) [7]. In deriving this model, the known principle of quasi-steady-
state (QSS) concentrations was used to obtain the concentration of the catalytic intermediate,
which deactivates during the process.

In classical chemical kinetics, this principle regarding the intermediates of a complex
chemical reaction is very popular. It is attributed to Bodenstein [8] and sometimes Chapmen
as well [9]. The physicochemical foundation of the QSS principle is a separation in time
scales, which is caused by the hierarchy in the parameters of kinetic models.

There are two types of such hierarchy:

1. A large difference between different kinetic coefficients;
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2. A large difference between the total amount of main reactants and the total amount
of intermediates.

Otherwise, for a ‘gas–solid’ catalytic reaction the total number of active catalytic
centers is much smaller than the total number of gas molecules (see Chapter 3, [9]).

The second hierarchy is specific for heterogeneous catalytic reactions [9]. In the pio-
neering paper by Michaelis and Menten, both hierarchies were considered [10]. Recently,
results of this paper were revisited and generalized by Gorban [11]. The general mathemat-
ical theory of different asymptotic regimes in chemical kinetics was presented by Gorban
et al. as ‘Asymptotology’ [12].

Mathematically, the hierarchy between parameters of a model creates so-called “small
parameters” within the subsystem of differential equations belonging to the catalytic
intermediates. Then, this subsystem transforms into a subsystem of algebraic equations.
Consequently, concentrations of the intermediates are presented as functions of model
parameters. For heterogeneous catalytic reactions, concentrations of intermediates are
very small. Basically, it is the distinguishing feature of catalytic intermediates in the QSS
regime. Later, Ostrovskii developed this approach further in the monograph [13] and
the paper [14]. We will present this approach in detail, since the goal of our paper is to
modify and generalize it. In all cases analyzed in [7,13,14], a detailed linear mechanism
was considered, i.e., only one ‘molecule’ of the catalytic intermediate participants in all
reactions of a n-step single-route mechanism. In [7,9,14], the catalytic reaction accompanied
by reversible deactivation and aging is presented by the three-building-block scheme
(Symbols adapted to match current article conventions.) in Figure 1.

Figure 1. The three-building-block scheme approach to phenomenological modeling for a linear
catalytic reaction accompanied by linear catalyst deactivation. Block one is a n-step linear catalytic
reaction. Block two is a linear reversible catalyst deactivation. Block three is aging, i.e., linear
irreversible catalyst deactivation.

For the presented scheme, the following hierarchy of rates is maintained:

r � rd ≈ rs � ra, (5)

where r, rd, rs, and ra are the rates of the reaction, deactivation, self-regeneration, and aging,
respectively; r0 is an observed reaction rate over the non-deactivated (‘fresh’) catalyst.

r = fr(C, T, Zi), 1 ≤ i ≤ n, (6)

rd = fd(C, T, Z1), (7)

rs = fs(C, T, Z0), (8)

where Z1 is the dimensionless concentration of the first intermediate of the catalytic cycle,
the intermediate of which in this scheme is the point of deactivation; Z0 and X are dimen-
sionless concentrations of catalytic intermediates, which are excluded from the reaction
cycle (deactivated and aged part of the catalyst, respectively); k f ,i, k f ,d, kr,d, and kirr are the
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apparent kinetic parameters of the corresponding steps (k f ,i = r f ,i/Zi), so that k f ,i, k f ,d, kr,d,
and ki are functions of the temperature and concentrations according to the mechanism.

The unit of these rates here and further in this paper is s−1. The traditional unit for
rates, molgas cm−3

cats
−1 can be easily converted into s−1.

The unit for rates, molgas cm−2
cats
−1, can be converted into s−1 as well, based on the

known catalyst surface per gas volume.
Apparent kinetic coefficients can be treated as the rates of corresponding reactions at

the unitary concentrations of corresponding intermediates. They may include concentra-
tions of gas species as factors. Apparent kinetic parameters depend on the temperature in
accordance with the Arrhenius law.

For the analysis of concrete cases, this equation will be presented as a function of
concentrations and temperature. We consider using such a form in further studies, see
Appendix A.

Regarding the characteristics of kinetic model (6)–(8), two groups of them can be
distinguished:

1. Characteristics that are measured experimentally (rate, R; temperature, T; concentra-
tions, Ci; relative catalyst activity, a);

2. Characteristics that are calculated (concentrations of intermediates, Zj).

Intermediates of the main reaction are obtained as functions of measured characteris-
tics using the principle of quasi-steady-state concentrations. Then, intermediates related to
catalyst deactivation are calculated via the corresponding model of differential equations.
Then, the kinetic model is supplemented by the equation of mass balance of the laboratory
reactor.

Usually, the rate of reversible deactivation is 10−2∼10−4 times the rate of the catalytic
cycle. Similarly, the rate of catalyst aging is much slower than the rate of reversible
deactivation (5). Therefore, it is considered that the reaction cycle is in a QSS regime with
respect to the reversible deactivation process. Further, the deactivation process can be
treated as a QSS one with respect to the aging process.

The temporal change of the catalyst’s deactivated form is presented as follows:

dZ0

dt
= r f ,d − rr,d = k f ,dZj − kr,dZ0. (9)

Due to the QSS regime of the reaction,

n

∑
i=1

Zi =1− Z0, (10)

Zi(t) =Z0
i (1− Z0(t)), i = 1, . . . , n, (11)

where Z0
i is the coverage of the i-th intermediate over the non-deactivated (‘fresh’) catalyst.

Note that a is defined as the relative catalyst activity, see Equation (2),

a =r/r0, (12)

a(t) =1− Z0(t), (13)

thus, Equation (9) can be transformed into

− da
dt

=
r0

k f ,j
k f ,da− kr,d(1− a). (14)

In [13,14], Equation (14)—regarding solely reversible deactivation—is termed as a
general deactivation equation for linear catalytic mechanisms. At the final state, da

dt = 0,
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r0

k f ,j
kr,das =kr,d(1− as), (15)

kr,d =
r0

k f ,j
k f ,d

as

1− as
. (16)

Parameter as corresponds to the steady-state of the reversible deactivation process, i.e., the
so-called residual activity that is achieved when the rate of deactivation (r f ,d = k f ,dZj) and
the rate of self-regeneration (rr,d = kr,dZ0) are equal.

Practically, in accordance with the statement presented in [13,14], this happens at
some t = ts, when a(tS) = as ± ε with the accuracy of the experiment (Figure 2).

Figure 2. Illustration of residual activity as.

Substituting kr,d from Equation (16) into Equation (14), another form of catalyst deac-
tivation equation is obtained

r(t) =r0a(t), (17)

da
dt

=− r0

k f ,j
k f ,d

a− as

1− as
, t < ts. (18)

It is stated that this form is more convenient for the interpretation of experimental
data on reversible deactivation [7,13,14].

Then, for the aging process (t > ts), using the separate equation was proposed [13,14],

da
dt

= − r0

k f ,j
ki

as

1− as
a, t > ts. (19)

This is valid in the period after achieving the level of residual activity aS. The solution of
Equation (18) is a simple exponential dependence:

r(t) =r0a(t), (20)

a(t)− as =(1− as) exp(−λt), λ =
r0k f ,d

k f ,j(1− as)
. (21)

4. Goals of the Paper

One goal of this paper is to develop the theory of catalytic kinetics accompanied by
reversible and irreversible deactivation. We will rigorously answer the question of whether
it is possible to present the kinetic equation in which the factors of main cycle, reversible,
and irreversible deactivation (aging) are separated. The result of our analysis will be
obtained for a main cycle that is a single-route mechanism, linear regarding the catalytic
intermediates, and under quasi-steady-state assumptions. The reversible deactivation cycle
will be taken as a one-step reversible mechanism, and the irreversible deactivation as a
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single irreversible step. The form and the conditions of separability of the deactivation
factors will be analyzed.

5. Catalyst Deactivation as a Complex Process: A Graphical Example

In the phenomenological model, the kinetic model is split into the main reaction
kinetics and the deactivation kinetics. It makes use of a separability assumption on these
two kinetic components. In this section, the simplified catalyst deactivation scheme will
be presented to highlight the features of a separable model. Such model types are used to
describe the different processes with catalyst deactivation, e.g., [15,16].

The three-building-block scheme in Figure 1 shows along which lines the phenomeno-
logical model tries to implement separability assumptions. These are obviously based on
the QSS assumptions of the catalytic cycle mentioned above. While the depicted scheme is
completely linear with respect to the catalyst intermediates, the kinetic parameters in this
scheme are apparent, i.e., they may include concentrations of reactants or products. For
simplicity reasons, the kinetic parameters are assumed to be constant, so that the model
may be treated completely linearly.

In the section, we look at a specific 2-step example. The elementary reaction steps
below describe the catalyst behavior of this example:

1. Z1 + A
κ f ,1

kr,1
Z2;

2. Z2
k f ,2

κr,2
Z1 + P;

3. Z1
k f ,d

kr,d
Z0;

4. Z0
ki X.

In this model, chemical A is the reactant and chemical P is the product. The inflow
and outflow of these two chemicals are assumed to keep the concentration of each constant.
This extra assumption has the added benefit of turning this model completely linear. For
this reason, we introduce the new parameters k f ,1 = [A]κ f ,1 and kr,2 = [P]κr,2 and, with
this, we can indeed confirm that this reaction scheme is equivalent to Figure 1 with n = 2.

For this example and the remainder of this article, the catalyst intermediate Z1 is the
point of deactivation and holds an initial relative concentration of one, while all other
intermediates initially have a concentration of zero.

Appendix B notes the mathematically exact solution for the rate equation given
these assumptions and conditions on the model. Below, Figure 3 shows the graphics of
intermediates’ dynamics, with linear kinetics both in the main reaction as well as in the
deactivation. The catalyst intermediates Zi (i = 0, 1, 2) seem to have several plateaus
within the course of the reaction. Intermediates Z1 and Z2 belong to the main reaction.
They appear to have two plateaus before they fully reduce to zero.

The kinetic behavior up to the first plateau, see Figure 4a, can be argued to approxi-
mate the behavior of a catalyst without deactivation. This claim is explored in Section 6.
Furthermore, the graphs in Figures 3 and 4 have a log-scale on their time-axes. As such,
the time in which the kinetic behavior mimics that of the catalyst without deactivation
is relatively negligible, specifically, when one is interested in the deactivation behavior
of the catalyst.
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Figure 3. Concentration profiles of a 2-step catalytic reaction with linear deactivation. Parameter
values are taken as follows: k1 = 20, k2 = 5, k3 = 0.02, k4 = 0.01, and k5 = 0.0001.

(a) A 2-step catalytic reaction without
deactivation behavior for 0 ≤ t ≤ 0.5

(b) Reversible deactivation from approx-
imate equilibrium for 0.5 ≤ t ≤ 500

(c) Ireversible deactivation from interme-
diate equilibrium for 500 ≤ t ≤ 105

Figure 4. Concentration profiles of a 2-step catalytic reaction with linear deactivation, split by separability. Parameter values
are taken as follows: k1 = 20, k2 = 5, k3 = 0.02, k4 = 0.01, and k5 = 0.0001.

If the graph in Figure 4a resembles that of a catalyst without deactivation, then,
by extension, the remaining graphs embody the deactivation. As discussed previously,
deactivation may be categorized by reversibility. A reversible deactivation would shift one
plateau value to another, while an irreversible deactivation would shift a plateau to zero.
By these attributes, we may conclude that Figure 4b shows a reversible deactivation of
the catalyst and Figure 4c shows an irreversible deactivation, i.e., aging, of the catalyst. In
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Section 7, we show that under the right conditions, reversible and irreversible deactivation
can also be represented by a separable model.

The log-scale is necessary to observe all three segments within one graph. Segment
one (Figure 4a) happens quickly and the exact curve can be negligible when studying
deactivation. Segment two (Figure 4b) happens less-fast and segment three (Figure 4c) is
the slowest. Clear separation of these segments graphically—i.e., in time—is what extends
into the separability of the mathematical model.

6. Modeling of the Main Catalytic Cycle

When modeling a catalytic reaction, one must account for the underlying reaction
mechanism. Elementary reaction steps need to be identified and assumptions are made
about the catalytic intermediates, one of which is the quasi-steady-state (QSS) assumption.
The catalytic cycle is assumed to stabilize quickly and models will describe the rate in
terms of reactants and products.

However, these types of approaches usually do not include the possibility for catalyst
deactivation. Catalyst properties like activity and selectivity are assumed constant under
the right conditions, even though the deactivation of a catalyst results in the decline of
these properties (usually) over the long term.

This section will discuss the integration of deactivation with the standard model.
It further explores the compatibility of the QSS assumption with the modeling of slow
catalyst deactivation.

6.1. Properties and Assumptions of the Main Catalytic Cycle

The (catalytic) reaction mechanism is the collection of elementary steps that describe
the process of going from reactant A to product P, i.e., the overall reaction

A P.

Such an overall reaction does not include catalytic intermediates. The main catalytic
cycle is characterized by this overall reaction and is a collection of elementary steps that
involve catalyst intermediates Zi, i = 1 . . . n. In this report, the collection of elementary
steps is assumed to be cyclic. There can be catalyst intermediates and, by extension,
elementary steps that do not contribute to this overall reaction; as such, these intermediates
are considered to be outside the main catalytic cycle and are hence neglected.

The main cycle in Figure 5 consists of a set of elementary reactions in which catalytic
intermediates are participating. This set is called a detailed mechanism of cyclic catalytic
reactions. Here, the elementary steps include only one molecule of the intermediate, and
mechanisms with this property are termed ‘linear’. However, note that in this paper,
the kinetic parameters are apparent, i.e., they may include concentrations of reactants or
products as factors. For the rest of this paper, Figure 5 is assumed to be the standard form of
the main cycle. Any model based on this main cycle will not provide the whole picture, i.e.,
it disregards possible deactivation. However, if the deactivation is comparatively slow, the
main catalytic cycle is a good model for the kinetic properties in the short term. Since slow
deactivation is not observable in the short term, it can be assumed negligible on this time
scale. As such, we have separated the main catalyst reaction from catalyst deactivation.
Fast deactivation most often affects the kinetics of the main catalytic cycle in the short term
and, thus, cannot be ignored. For this article, the focus is on slow deactivation to ensure
separability.
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Figure 5. An example scheme for a main catalytic cycle in the linear n-step form.

Similar to the previous papers [7,13,14], here, the quasi-steady-state (QSS) principle
is used in combination with the separability assumption. This principle results in the
corresponding algebraic equation

Żj = ∑
i
(ri) f −∑

i
(ri)r ≈ 0, (22)

for any given intermediate Zj.
With this information, we have the tools to detect and analyze any main n-step reaction.

Rates and concentrations can be determined up to a reasonable accuracy.

6.2. Determining the Rate of the Main Catalytic Cycle

While most of the analyses performed in this article can be extended to any catalytic
mechanism with linear deactivation, here, we keep to a scheme that is linear in both the
main cycle as well as the deactivation. Taking another look at the example from Section 5
we will discuss these different points from a mathematical approach:

1. Z1
k f ,1

kr,1
Z2;

2. Z2
k f ,2

kr,2
Z1;

3. Z1
k f ,d

kr,d
Z0;

4. Z0
ki X.

In this model, the reactant A and the product P are part of the apparent kinetic
parameters k f ,1 and kr,2, respectively.

Here, steps 1 and 2 are the main catalytic cycle, step 3 is (slow) reversible deactivation,
and step 4 is (slow) irreversible deactivation. The main catalytic cycle here is equivalent to
that of Figure 5 with n = 2. We will work with this example before presenting the results
for a general n-step cycle.

Using the separability assumption, we present the following simplified version of the
main catalytic cycle:

Z1
k f

kr
Z2,
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with k f = k f ,1 + kr,2 and kr = kr,1 + k f ,2. Applying the QSS principle and the mass
conservation law (Z1 + Z2 = 1) to the catalyst intermediates of the main cycle gives the
following expressions:

Z1 =
kr

k f + kr
, (23)

Z1 =1− Z2 (24)

Z1 =

1
k f ,1

+
1

K1k f ,2

1
k f ,1

(
1 +

1
K2

)
+

1
k f ,2

(
1 +

1
K1

) , (25)

where K1 =
k f ,1

kr,1
and K2 =

k f ,2

kr,2
are apparent equilibrium constants. From this, it can be

shown that the main catalytic cycle has (initially, when fresh) QSS rate

Rqss = Rfresh =
k f ,1kr − kr,1k f

k f + kr
=

kr,2kr − k f ,2k f

k f + kr
, (26)

=
1− 1

K1K2
1

k f ,1

(
1 +

1
K2

)
+

1
k f ,2

(
1 +

1
K1

) . (27)

In the denominator of this equation, the terms include two separate factors, one kinetic
and the other thermodynamic [17]. While the presence of small (deactivation) parameters
implies separability, the obtained concentrations and QSS rates are only good approxima-
tions on a short time scale. The next step is to continue to the next separable block in the
three-building-blocks scheme.

7. Time-Scale-Based Modeling of Deactivation

As mentioned, catalyst deactivation can be divided into a reversible and an irreversible
form. To model deactivation, it is important to distinguish between the two. Irreversible
deactivation, for example, is also referred to as aging, hinting at the permanence of this
type of deactivation. Reversible deactivation will only affect the activity and production.

We will take a look at the simple example from the previous section. Steps 1 and 2
reflect the main catalytic reaction. Steps 3 and 4 correspond to the reversible and irreversible
deactivation processes, respectively. The parameters k f ,1, kr,1, k f ,2, kr,2, k f ,d, kr,d, and ki
are apparent kinetic coefficients that, in general, can include concentrations of reactants
or products as factors. Typically, k f ,1, kr,1, k f ,2, kr,2 � k f ,d, kr,d > ki so that O(k f ,d, kr,d) =
εO(k f ,1, kr,1, k f ,2, kr,2) and O(ki) = δO(k f ,d, kr,d).

The variables 0 < ε� 1 and 0 < δ ≤ 1 determine the order of the time-scale for each
of the rates. We show this property by naming the rate equation as follows:

r1 =k f ,1Z1 − kr,1Z2 = ρ1, (28)

r2 =k f ,2Z2 − kr,2Z1 = ρ2, (29)

r3 =k f ,dZ1 − kr,dZ0 = ερ3, (30)

r4 =kiZ0 = εδρ4. (31)

The following equations show the relation of the relative concentrations of these
intermediates. The first Equation (32) is derived from the law of total mass conservation,
and the remaining equations are the rate equations of the other intermediates.
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Z2 = 1− X− Z0 − Z1, (32)
dZ1

dt
= −ρ1 + ρ2 − ερ3, (33)

dZ0

dt
= ε(ρ3 − δρ4), (34)

dX
dt

= εδρ4. (35)

From the relations above, we see that the relative concentration Z0 changes at a time-scale
τε = εt, which is of an order ε slower than the original time-scale t. Take for example
ε = 1

3600 , using timescale t over τε is a question of observing seconds over hours, respec-
tively. Furthermore, the relative concentration Z0 changes at a time-scale τδ = εδt, which
is of an order εδ slower than the original timescale t. This means that although they are
present, the deactivation effects are not observable over a timescale t.

The introduction of the time scales is the mathematical equivalent of the idea of small
parameters, they both imply separability of the model. Before starting on the second block,
let us see how the information from the first block model is implemented into the model of
the whole:

Z2 = 1− X− Z0 − Z1, (36)
dZ1

dt
= −ερ3, (37)

dZ0

dt
= ε(ρ3 − δρ4), (38)

dX
dt

= εδρ4. (39)

The mass conservation law here is Z1 + Z2 = 1− X− Z0, and by implementing this
into the model for the main cycle, Equation (24) becomes

Z1 =
kr

k f + kr
(1− X− Z0). (40)

This equality, a result of the QSS principle, will replace Equation (37) in the deactivation
model. Thus far, we have not needed to calculate the kinetics of the main cycle. Only the
QSS values are relevant for our deactivation model. So, while we looked at the simple
example from the previous section, all conclusions can be extended to the standard n-step
form given in Figure 5. This can even be taken a step further, as the main cycle does not
even need to be linear. However, the deactivation we discuss in this article is strictly linear,
and we will limit the calculations to the form presented in Figure 1.

7.1. Modeling Strictly Reversible Deactivation, the Second Block in the
Three-Building-Block Scheme

Modeling the second block in the three-building-block scheme, the reversible catalyst
deactivation, is equivalent to modeling a scheme without aging. So, here we will discuss
the approach to modeling strictly reversible deactivation that is separable from the main
catalytic reaction.

In case of solely reversible deactivation, Equations (36)–(40) are adjusted such that
δ = 0 and X = 0:
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Z1 + Z2 = 1− Z0, (41)

Z1 =
kr

k f + kr
(1− Z0), (42)

dZ0

dt
= ερ3. (43)

Note that once the initial value Z0(0) is chosen, Z0(0) = 0 here, and Z1(0) and Z2(0) are
fixed. The solution to this model is

Z0(t) =
αRfreshk f ,d

kr,d + αRfreshk f ,d

(
1− exp

(
−
(

kr,d + αRfreshk f ,d

)
t
))

, (44)

=
αKdRfresh

1 + αKdRfresh
(1− exp(−(1 + αKdRfresh)kr,dt)). (45)

With the two parameters αKd and the experimentally measured Rfresh, where

α =

1
k f ,1

+
1

K1k f ,2

1− 1
K1K2

, (46)

Kd =
k f ,d

kr,d
, (47)

Rfresh =
1− 1

K1K2
1

k f ,1

(
1 +

1
K2

)
+

1
k f ,2

(
1 +

1
K1

) , (48)

the overall rate of the main catalytic cycle follows:

R(t) =Rfresh(1− Z0(t)), (49)

=Rfresh
1 + αKdRfresh exp(−(1 + αKdRfresh)kr,dt)

1 + αKdRfresh︸ ︷︷ ︸
deactivation factor

. (50)

The physical meaning of α is the following, i.e., the apparent time of relaxation that
corresponds to the main catalytic cycle.

If the catalytic cycle is irreversible, α simplifies to 1/k f ,1 and Rfresh to 1/(1/k f ,1 +
1/k f ,2). In this case, for the general n-step cycle, we refer to Appendix A. Implementing
just the two separable blocks, the rate is given by multiplication of the rate from the first
(main cycle) block and a deactivation factor.

In the definitions, Rfresh does not depend on the deactivation parameters. At the
same time, the deactivation factor depends on the apparent deactivation parameters Kd
and kr,d, and on the values α and Rfresh of the main cycle. Therefore, the deactivation
factor encapsulates the apparent parameters of the main cycle. This is the simplest case of
hierarchical separation, in which the second factor depends on the apparent parameters of
the first.

7.2. Combination of Reversible and Irreversible Deactivation

While the strictly reversible deactivation model was easy to derive, the combination
of reversible and irreversible deactivation needs to be guided carefully. Let us look at the
following cases δ = 1 and δ� 1.
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In the first case δ = 1, the irreversible and reversible deactivation have the same time
scale. In a graphical representation, this would mean the graph can only be split into two
segments: the main catalytic cycle and deactivation. This means that aging is not separable
from the reversible deactivation. Our mathematical model would look as follows:

Z1 + Z2 = 1− X− Z0, (51)

Z1 =
kr

k f + kr
(1− X− Z0), (52)

dZ0

dt
= ε(ρ3 − ρ4),

= k f ,dZ1 − kr,dZ0 − kiZ0, (53)

dX
dt

= ερ4,

= kiZ0. (54)

The solution here is

Z0(t) =C1e−λ1t − C1e−λ2t, (55)

X(t) =C2e−λ1t − (C2 + 1)e−λ2t + 1, (56)

where

λ1 =
(1 + αRfreshKd)kr,d + ki

2
−

√
((1 + αRfreshKd)kr,d + ki)2 − 4αKdRfreshkr,dki

2
, (57)

λ2 =
(1 + αRfreshKd)kr,d + ki

2
+

√
((1 + αRfreshKd)kr,d + ki)2 − 4αKdRfreshkr,dki

2
, (58)

C1 =
αRfreshk f ,d√

((1 + αRfreshKd)kr,d + ki)2 − 4αKdRfreshkr,dki

, (59)

C2 =− 1
2
−

(1 + αRfreshKd)kr,d + ki

2
√
((1 + αRfreshKd)kr,d + ki)2 − 4αKdRfreshkr,dki

. (60)

The the overall rate for the main catalytic reaction is

R(t) =Rfresh(1− X(t)− Z0(t)), (61)

=Rfresh(−(C1 + C2)e−λ1t + (1 + C1 + C2)e−λ2t). (62)

Since δ = 1, the reversible and irreversible deactivation are not separable and, thus,
the model is based on a two-block scheme, where block one is the main catalytic cycle and
block two is the general catalyst deactivation. Given that there are two blocks, we again
see a multiplications of two factors, the rate for block one and factor linked to deactivation.

The second case δ� 1 introduces an even smaller parameter or a third time scale. As
such, here, we can introduce a third block to describe the aging.

One may assume a QSS situation for the reversible deactivation if the frame of study
lies far in time. A QSS assumption for the reversible deactivation implies that we may
substitute Equations (37) and (38) with appropriate algebraic expressions. So, Z0 will be
constant in time and equal to the limit value of Equation (45), scaled to uphold the law of
mass conservation (Z0 + Z1 + Z2 = 1− X),
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Z2 = 1− X− Z0 − Z1, (63)

Z1 =
kr

k f + kr
(1− X− Z0), (64)

Z0 =
αKdRfresh

1 + αKdRfresh
(1− X), (65)

dX
dt

= ερ4,

= kiZ0. (66)

The solution to this system of equations is

X(t) = 1− exp
(
− αKdRfresh

αKdRfresh + 1
kit
)

. (67)

To determine the rate of this three-block scheme, we take

R(t) =Rfresh(1− X(t)− Z0(t)), (68)

=Rfresh
1

1 + αKdRfresh
exp

(
− αKdRfresh

αKdRfresh + 1
kit
)

, (69)

in which three parameters occur: Rfresh, αKd, and ki.
This rate equation is a multiplication of the QSS rate of the first block, the QSS rate of

the second block, and a factor for the irreversible deactivation. Note that it was mentioned
that this approach is ideal for a long-term study.

To get a better approximation of the overall rate, we may assume that the rate for the
three-block scheme is a multiplication of the rate of the two-block scheme with the factor
for irreversible deactivation. This results in the following equation:

R(t) = Rfresh
1 + αKdRfresh exp(−(1 + αKdRfresh)kr,dt)

1 + αKdRfresh︸ ︷︷ ︸
reversible deactivation factor

exp
(
− αKdRfresh

1 + αKdRfresh
kit
)

︸ ︷︷ ︸
irreversible deactivation factor

. (70)

The irreversible deactivation factor is a function of all apparent parameters, of the
main cycle α and Rfresh, reversible deactivation Kd, and irreversible deactivation ki, but not
of kr,d. This case is another example of hierarchical separation, in which each level occurs
as a function of all previous ones.

For the general n-step cycle, we refer to Appendix A. Due to linearity, we can calculate
the exact solution for Equation (70). The exact solution will be a sum of three terms, all of
which depend on all apparent parameters, while our approximation is a product of three
factors only dependent on the apparent parameters of the respective and previous blocks.

8. Application

In this section, we are going to apply our approach to determine curves that will
describe different sets of experimental data from catalyst deactivation. Generally, the whole
catalytic process is complex and includes three subprocesses, i.e., catalyst activation, the
catalytic cycle and catalyst deactivation, reversible and irreversible. Regarding catalyst
activation, during which the catalytic center is formed, it is typically the fast adsorption–
catalytic process. The catalyst activation process is overly sensitive to conditions of the
catalyst preparation, and reliable information is sparse or completely absent. Thus, our
analysis is only about the main catalytic cycle accompanied by catalyst deactivation. We
selected examples for illustrating our approach based on the following criteria:

1. Reliable information;
2. Data with a clearly distinguished reversible deactivation process;
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3. Different types of kinetic reactors should be represented, i.e., CSTR and PFR.

8.1. Catalyst Deactivation in a Differential Reactor

First, we analyzed the differential reactor data on rapid catalyst deactivation observed
for aldol condensation with dehydration of acetaldehyde to produce crotonaldehyde on
TiO2 anatase [18]. Secondary condensations that deposit nonvolatile organic species on the
catalyst surface are responsible for the initial rapid catalyst deactivation. After 15–20 min,
the process is stabilized at an apparent steady-state level (Figure 6). Therefore, in this case,
the deactivation process is reversible, and no further irreversible deactivation is observed.
Then, it was found [18] that the deactivation rate is independent of the acetaldehyde
concentration.

Since the detailed mechanism of deactivation is not presented in [18], the equation of
reversible catalyst deactivation can be assumed to be similar to Equation (9); it reflects the
transformation of the active surface coverage ZA to the surface “nonvolatile deposits”, ZD,

dZA
dt

= −kdZA + krZD, (71)

where kd and kr are apparent parameters of catalyst deactivation and self-regeneration,
respectively.

According to Equation (11), ZA = Z0
A(1− ZD), and, since Z0

A = 1,

d(1− ZD)

dt
= −kd(1− ZD) + krZD. (72)

As given in Equations (13) and (49),

a(t) =
R(t)

Rfresh
= 1− ZD(t). (73)

Substituting this into Equation (72) results in the following equation for the relative activity,

da(t)
dt

= −kda(t) + kr(1− a(t)). (74)

The analytic solution of this equation is

a(t) =
R(t)

Rfresh
=

1
kd + kr

(kr + kd exp(−(kd + kr)(t− t0))), (75)

where Rfresh = R(t0), and it was stated in [18] that t0 = 1 min, which can also be observed
in Figure 6.

Kinetic parameters of deactivation are presented in the following Table 1.

Table 1. Kinetic parameters of deactivation per given temperature.

T, K 523 473 423

kd, min−1 0.4 0.4 0.4
kr, min−1 0.292 0.135 0.041

Rs · 103, s−1 9.7 4.8 1.3

The third parameter in Table 1 is the steady-state level of the reaction rate. It is an
asymptotic solution of Equation (75) at t→ ∞, and

as =
Rs

Rfresh
=

kr

kd + kr
. (76)
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Parameter as can be also found from Equation (74) at da
dt = 0. Then, Equation (74) can be

rewritten similarly to Equation (18), so that parameter kr is expressed in terms of as using
Equation (76),

da(t)
dt

= −kd
a(t)− as

1− as
. (77)

The solution of Equation (77) is as follows:

a(t) = as + (1− as) exp
(
− kd

1− as
(t− t0)

)
. (78)

Due to a = R(t)
Rfresh

and as =
Rs

Rfresh
, the solution can also be written as

R(t) = Rs + (Rfresh − Rs) exp
(
− kd

1− Rs/Rfresh
(t− t0)

)
. (79)

Both this equation and Equation (75) can be used to describe the experimental data.
As such, we present the analytic curve along with the data points in Figure 6. An excellent
fitting is observed.

Figure 6. Time-on-stream dependence of the acetaldehyde rate change on TiO2(tof, s−1). The bullet
points are data reconstructed from [18] and the lines are R(t) as calculated by Equation (79) (or (75)).

8.2. Catalyst Deactivation in an Integral Reactor

The integral reactor data of catalyst deactivation for crotonaldehyde hydrogenation
on supported metal catalysts was analyzed [16,19,20]. In this case, the catalyst deactivation
process is reversible due to self-regeneration by hydrogen, which is in excess within the
reaction mixture.

The problem with describing the integral reactor data on deactivation is that the
catalyst activity, as well as the reagent concentrations, changes along the catalyst bed, but
only concentrations at the reactor exit are measured. Therefore, our model for catalyst
deactivation must be modified.

In this section, the mechanism of crotonaldehyde hydrogenation is modified by adding
catalyst deactivation and self-regeneration steps (Figure 7).
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Figure 7. Schematic view of the crotonaldehyde hydrogenation. A is crotonaldehyde,
CH3 CH CH CH O; B is butyraldehyde, CH3 CH2 CH2 CH O; C is crotyl alcohol,
CH3 CH CH CH2 OH; P is butanol, CH3 CH2 CH2 CH2 OH.

In [16], based on the previous study [19], adsorbed crotonaldehyde ZA is assumed to
be the prevailing surface intermediate, so that all surface sites are completely covered by
crotonaldehyde (ZA ∼ 1). Therefore, the surface coverage of other species can be neglected
(ZE ∼ 0). This greatly facilitates the analysis of the experimental data and the derivation of
the catalyst deactivation equations as well.

Reactant concentrations are changed along the catalyst bed length (ξ) and expressed
as follows:

CA(ξ) =CA0(1− x(ξ)), (80)

CE(ξ) =CA0x(ξ), (81)

where x = (CA0−CA)
CA0

is the crotonaldehyde conversion x(ξ, t); CA and CA0 are crotonalde-
hyde concentration and inlet concentration, respectively; CE = CB + CC + CP; and ξ is a
dimensionless length coordinate.

Since dCA = −CA0dx, the corresponding differential equation has the form

dCA
dξ

=− ksτCHZA, (82)

dx
dξ

=ksτ
CH
CA0

ZA, (83)

where ks is the apparent reaction rate constant and τ is the contact time.
According to the scheme in Figure 7, the equation of catalyst deactivation represents

the dynamics of ZA as
dZA
dt

= −kdZACE + krZDCH . (84)

Deactivation in crotyl alcohol formation can be ascribed to the generation of strongly
chemisorbed asymmetric carboxylate species [20], which usually exist as dimers.

According to Equation (11), ZA = Z0
A(1− ZD). Adsorption steps (see Figure 7) are

fast and reversible; thus, it is reasonable to consider them under equilibrium conditions.
Therefore, Z0

A = KACA = KACA0(1− x); then, Equation (83) becomes

dx
dξ

=kSτ
CH
CA0

ZA,

=kSτ
CH
CA0

KACA0(1− x)(1− ZD),

=ke f f τ(1− x)(1− ZD). (85)

A similar transformation of Equation (84), given ZA = Z0
A(1− ZD) and CE = CA0x

from Equation (81), leads to



Entropy 2021, 23, 818 18 of 22

Z0
A

d(1− ZD)

dt
= −kdZ0

A(1− ZD)CA0x + krZDCH . (86)

The right-hand side of (86) represents the reaction rate, so similarly to Equation (49),
R(t) = Rfresh(1 − ZD), and again, the relative activity a is proportional to ZD, as in
Equation (73),

a(t) =
R(t)

Rfresh
= 1− ZD(t). (87)

Due to the excess of hydrogen [19], CA0 ≈ 1%, CH ≈ 99%, and Z0
A ∼ 1. These features

give the possibility to simplify Equations (85) and (86) and express them in terms of the
relative activity a,

dx
dξ

=ke f f τ(1− x)a, (88)

da
dt

=− kdCA0xa + krCH(1− a). (89)

In [16], the dynamics of catalyst activity was presented as a time-dependence of
crotonaldehyde conversion at the exit of the catalyst bed X(t) = x(ξ = 1, t), Figure 8.

Thus, X(t) can be determined by solving Equation (88),

X =1− exp
(
−ke f f τ〈a〉

)
(90)

〈a〉 =− ln(1− X)

ke f f τ
, (91)

where 〈a〉 is the integral activity of the catalyst bed. It can be found by integration of
Equation (89).

The method of converting the system of Equations (88) and (89) into a single equation
for the exit conversion, X, is described in detail in [13],

dX
dt

= kdCA0(1− X)(X + ln(1− X))

(
1− ln(1− Xs)

ln(1− X)

)
. (92)

Here, Xs is the steady-state conversion at which rates of deactivation and self-regeneration
are equal.

There is no analytical solution for Equation (92); therefore, we solve it by numerical
integration, comparing the results with the experimental data (Figure 8). Model parameters
(at CA0 = 0.01 mol/mol) are presented in Table 2.

Table 2. Model parameters of deactivation per catalyst precursor.

Catalyst (a) (b) (c)

kd, min−1 12 34 60
Xs, % 32 24 12
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Figure 8. Application of the model to the catalyst deactivation in the reaction of crotonaldehyde
hydrogenation, after reduction at 443 K, during 4 h. The bullet points are data reconstructed from [16]
and the lines are solutions of Equation (92). (a) Catalyst precursor Pt(NH3)4(NO3)2; testing after
second reduction. (b) Catalyst precursor H2PtCl6; testing after first reduction. (c) Catalyst precursor
Pt(NH3)4(NO3)2; testing after first reduction.

9. Discussion and Conclusions

In this article, we reviewed the history of the derivation of the kinetic model of catalyst
deactivation, focusing specifically on the modified phenomenological models. Based on
a detailed analysis of the application of the QSS assumption, we justified the separability
principle, which is considered in the description of catalyst deactivation.

We assumed a three-block model of catalyst deactivation. The three blocks are the
main catalytic cycle, the one-step reversible deactivation, and the one-direction irreversible
deactivation. Assuming the QSS of the main cycle, we then set up a 2-step cycle example.
The separability of the model is replicated in the separable factors that we find in the rate
equation. For a three-building-block scheme, the result is

R(t) = Rfreshψdψa, (93)

where ψd is the reversible deactivation factor and ψa is the irreversible (aging) deactivation
factor.

The reversible deactivation factor ψd is a function of the apparent parameters of the
main cycle α and Rfresh, and of the apparent parameters of the reversible deactivation Kd
and kr,d. The irreversible deactivation factor ψa is a function of all apparent parameters of
the main cycle α and Rfresh, reversible deactivation Kd, and irreversible deactivation ki, but
not of kr,d. These dependencies of the factors exhibit hierarchical separation according to
which each factor depends only on the apparent parameters of the previous ones and of
itself.

This equation is obtained under the assumption that the main cycle is a single-route
catalytic reaction with a linear mechanism. However, heuristically, this equation can be
tested beyond this assumption. In the next papers, we shall apply this three-factor equation
for the detailed theoretical analysis and description of experimental data.

The obtained equation is applied successfully to describe the literature data on the
reversible catalyst deactivation process in dehydration of acetaldehyde over TiO2 anatase
and in crotonaldehyde hydrogenation on supported metal catalysts. In the future, we will
apply our approach towards describing systems that we consider potential candidates. We
mention these systems as additional references [21,22].
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Appendix A. General N-Step Cycle

Writing [a] for the value in {1, . . . , n} that is equal to a modulo n, see [17], the general-
ization of (27) is

1− 1
K1 · · ·Kn
Rfresh

=
n

∑
i=1

1
k f ,i

(
1 +

1
K[i−1]

+
1

K[i−1]K[i−2]
+ · · ·+ 1

K[i−1] · · ·K[i−(n−1)]

)

=
n

∑
i,j=1

Tij

k f ,i
, (A1)

so that

Rfresh =
1− 1

K1 · · ·Kn
n

∑
i,j=1

Tij

k f ,i

, Tij =
1

j−1

∏
k=1

K[i−k]

. (A2)

Generalizing (25), the concentrations are then determined by

1− 1
K1 · · ·Kn
Rfresh

Zj =
n

∑
i=1

Ti,[i−j+1]

k f ,i
. (A3)

To take the deactivation into account, we need the parameter

θ1 =

n

∑
i=1

Ti,i

k f ,i
n

∑
i,j=1

Tij

k f ,i

, (A4)

which is the relative coverage of Z1 compared to the sum of all Zi present in the main
n-step reaction, namely, for those labeled i = 1, . . . , n. Expression (50) generalizes to

R(t) =
1− 1

K1 · · ·Kn
n

∑
i,j=1

Tij

k f ,i

1 + θ1Kd exp(−(1 + θ1Kd)kr,dt)
1 + θ1Kd

. (A5)

For the general n-step cyclic mechanism, (70) is
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R(t) =
1− 1

K1 · · ·Kn
n

∑
i,j=1

Tij

k f ,i

1 + θ1Kd exp(−(1 + θ1Kd)kr,dt)
1 + θ1Kd

exp
(
− θ1Kd

1 + θ1Kd
kit
)

. (A6)

Appendix B. λ Analysis

The solution for a 2-step cyclic mechanism as presented in Section 5,

R = C1e−λ1t + C2e−λ2t + C3e−λ3t, (A7)

where

C1 =(1− αRfresh)(k f + kr + αKdRfreshkr,d) + . . . (A8)

λ1 =− (k f + kr)− (1− αRfresh)Kdkr,d + . . . (A9)

C2 =− (1− αRfresh)αKdRfreshkr,d + . . . (A10)

λ2 =− (1 + αKdRfresh)kr,d + . . . (A11)

C3 =−
(1− αRfresh)αKdR f

(1 + αKdRfresh)2 ki + . . . (A12)

λ3 =− αKdRfresh

1 + αKdRfresh
ki + . . . (A13)

The first eigenvalue represents the fast-reaching of quasi-steady-state by the catalytic
main cycle; the second is determined by the reversible deactivation; the third is determined
by the irreversible deactivation.
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