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Quantifying free behaviour in an 
open field using k-motif approach
Marein Könings1, Mark Blokpoel   1,2, Katarzyna Kapusta3, Tom Claassen1, Jan K. Buitelaar   3, 
Jeffrey C. Glennon3 & Natalia Z. Bielczyk   3*

Quantification and parametrisation of movement are widely used in animal behavioural paradigms. 
In particular, free movement in controlled conditions (e.g., open field paradigm) is used as a “proxy for 
indices of baseline and drug-induced behavioural changes. However, the analysis of this is often time- 
and labour-intensive and existing algorithms do not always classify the behaviour correctly. Here, we 
propose a new approach to quantify behaviour in an unconstrained environment: searching for frequent 
patterns (k-motifs) in the time series representing the position of the subject over time. Validation of 
this method was performed using subchronic quinpirole-induced changes in open field experiment 
behaviours in rodents. Analysis of this data was performed using k-motifs as features to better classify 
subjects into experimental groups on the basis of behaviour in the open field. Our classifier using 
k-motifs gives as high as 94% accuracy in classifying repetitive behaviour versus controls which is a 
substantial improvement compared to currently available methods including using standard feature 
definitions (depending on the choice of feature set and classification strategy, accuracy up to 88%). 
Furthermore, visualisation of the movement/time patterns is highly predictive of these behaviours. By 
using machine learning, this can be applied to behavioural analysis across experimental paradigms.

Open Field Paradigms In Translational Psychiatry
Rodent behavioural research analyses patterns of behaviour as face and predictive validity measures for human 
psychiatric and neurological conditions. These behavioural paradigms are relevant to a number of cognitive 
disorders, including schizophrenia, depression, bipolar disorder1, anxiety and autism2. The open-field para-
digm is commonly deployed for the study of movement, learning, sedation and anxiety-related aspects3. In the 
open-field paradigm, an animal is placed in a constrained environment (a well-lit circular, square or rectan-
gular area, bounded either by insurmountable walls or deep gaps) which it is free to explore. Its behaviour is 
then recorded over time. The characteristics of the environment can differ between experiments and may deploy 
objects to study interaction between the animal and object to examine reactions to novel and stressful situations. 
An open field with objects can also be used to examine repetitive checking behaviour, an important aspect of 
obsessive-compulsive behaviours4. Commonly recorded variables include horizontal locomotion (based on a 
count of transitions between marked areas within the field, vertical activity (based on the animal’s rearing and 
leaning behaviour), as well as the latency (time) spent in certain areas and more specific behaviours such as head 
shakes and grooming3. Automated systems record all of the necessary variables with high precision and flexibil-
ity5, by recording the animal’s position using a video camera and processing the resulting footage with specialised 
software such as Noldus EthoVision 3.06. The open field is also often divided into a grid of zones for the analysis 
which can be of differing sizes dependent on the size of the open field. Typically this is divided into 5 by 5 zones. 
A range of experimental designs is used within the open-field paradigm. Subjects are divided into experimen-
tal groups which undergo different interventions. Differences between groups in terms of observed open-field 
behaviour are then assumed to result from the difference in intervention deployed. These experimental interven-
tions include changes to the objects in the open field, introduction of another animal, differences in the amount/
type of food available or administration of drugs expected to induce behavioural changes7.
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Automated Methods For Quantifying Rodent Behaviour
To accurately assess the differences in behaviour between experimental groups, the objective quantification of 
the behaviour is important. Although currently available software such as Noldus Theme can extract raw behav-
ioural variables from video footage, little has been done to automate and optimize further analysis of the collected 
datasets. These approaches detect T-patterns, which denote the repeating sequences of fields visited by the animal 
during the experiment8,9. This method while useful also involves a large number of significance tests, thereby 
increasing the risk of false-positive results10. In addition, the T-patterns method assumes that all areas of the open 
field are equally likely to be visited. In reality, the opposite is true: some areas are visited far more often than oth-
ers. Furthermore, zone transitions are computed using the T-pattern method with no regard to the temporal rela-
tion between crossings. That is, the time that a subject spends within a zone is of no consequence, only the order 
in which zones are visited, counts. This is problematic as this does not enable a distinction between behaviours 
that are time-sensitive (e.g. spending time near an object as opposed to just passing by it). This is a consequence of 
the T-pattern method performing only spatial and not temporal segmentation. Finally, the T-pattern method only 
utilises the absolute position of the subject and does not account for other factors such as objects in the open field 
or the distance between the animal and the open field boundary. As such, behaviours dependent on the relative 
location of these objects cannot be detected using T-patterns. If the location of an object changes, for example 
between subjects, the T-pattern method cannot discover a pattern if both subjects display the same behaviour 
relative to the object but in different absolute positions. Lastly, the T-pattern method is only available as a part of 
commercial software, Theme by Pattern Vision (http://patternvision.com/products/theme/), which is a black-box 
software with a basic interface and does not allow for accessing the source code.

The K-Motif Approach
Here we sought to design a new method for quantifying behaviour in the open environment. In an attempt to 
overcome the above issues, we proposed a method which takes into account the temporal dynamics of the move-
ment as well. This method adapts the k-motifs algorithm to search for the hierarchical structure of repeating 
patterns in behaviour. The most common patterns were then used to train a classifier to distinguish between 
experimental groups between quinpirole and vehicle-treated rats in the open field. Here, we improve the classifi-
cation of experimental groups (further referred to as classes) based on behavioural differences in the open field.

In section 2.1, we provide a detailed description of the experimental datasets used for developing the classifier. 
In section 2.2, we introduce the k-motifs approach. Then, in section 3, we report the results of classification with 
use of k-motifs as features and compare this classification performance with classifiers using standard features. 
Lastly, in section 4, we critically discuss the results and potential applications for this methodology. We made all 
the tools developed for this paper accessible in open source.

We dedicate this work to researchers looking for data-driven biomarkers of behaviour in the open field. 
These patterns can help in better understanding of the characteristics of disorders related to movements, such 
as Obsessive-Compulsive Disorder, Tourette Syndrome, Parkinson’s Disease, Huntington’s Disease or Autism 
Spectrum Disorders. The k-motif method proposed in this manuscript can also help to measure effects of phar-
macological therapy with higher sensitivity as the performance in classification between experimental and control 
group achieved with our method is the highest among all the available methods.

Materials and Methods
The experimental datasets.  The experimental datasets include open field recordings in rats, collected at 
the Radboud University Nijmegen Medical Centre under ethical approval number DEC-2012-281. The sample 
included 6 subjects in the experimental group and 6 controls. All subjects were male Sprague Dawley rats (Charles 
River, Germany). The open field setup includes an open square area of size 160 × 160 [cm], placed 60 [cm] from 
the ground. An additional virtual circuit 20 [cm] wide around the table is added to the open field size to record 
behaviour where the subjects’ head or tail reaches out over the table. The resulting area of 200 × 200 [cm] is 
divided into 25 40 × 40 [cm] zones. The area contained four small fixed objects (cubes or cylinders) to encourage 
exploration in animals (Fig. 1A, B). The objects were distributed as in11, and included two black and two white 
objects. The experimental sample included 6 subjects in an experimental intervention group and 6 controls. In 
total, data was recorded from subjects across 13 30-minute sessions in the open field, which amounts to a total of 
156 recorded sessions. Injection and training sessions took place every day for 13 consecutive days. Before each 
open field session, the subjects within the experimental intervention group received an injection of quinpirole 
(0.5 mg/kg i.p.). The behaviour in the open field was recorded with an overhead video camera. The resulting foot-
age was then processed by a video tracking system Ethovision 3.0 from Noldus Information Technology BV, the 
Netherlands (Wageningen, The Netherlands)6, which produced a multivariate time series for each 30-minute ses-
sion, representing multiple variables (Supplementary Table 1, Supplementary Material 1: Experimental datasets). 
The time resolution of the video recordings was 0.040[s]. The set of available variables is represented here by V. 
The collection of time series resulting from processing video footage from one session in one subject, corresponds 
to a single d in D (Eq. 1). Examples of the visualisations of the movement are presented in Fig. 1. Additionally, 
an exemplary visualisation containing single datapoints plotted every 1.0 second (every 40 data frames) is pre-
sented in Supplementary Fig. 5. This visualization better shows the dynamics as it better indicates that the subject 
spends most of the time around the objects placed in the open field. The datasets were preprocessed according to 
a preprocessing scheme is introduced in Supplementary Material 2: Data preparation. After cleaning the data, 10 
out of 13 sessions, for 5 quinpirole subjects versus 3 controls were retained in the data (Supplementary Table 2), 
yet we augmented the datasets by sectioning every session into 10-minute segments (Supplementary Material 3).

∈ = ∈d D d v V{ } (1)v
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K-motif method.  To address the limitations of T-patterns mentioned in Section 1, in this work, the k-motifs 
method is employed for feature extraction: finding recurring patterns12,13 in the data. This method involves 
the subsequent use of two methods: Symbolic Aggregate Approximation representation (SAX14,) and Sequitur 
grammar induction algorithm15. The first part, SAX, segments the data both in the temporal domain and in the 
spatial domain. The second part, grammar induction using Sequitur, finds patterns in the resulting approxima-
tion by constructing a hierarchical grammar. The k-motifs algorithm successfully yields frequent patterns from a 
time series, which can be used to characterise the data. However, to enable classification of time series data, each 
series must be reduced to a feature vector. A feature vector is a list of numbers of a set length, where each number 
describes an aspect of the data. These numbers can then be compared between series, to determine their relative 
similarity. To use the patterns extracted by k-motifs, a conversion strategy to feature vectors must be devised. 
Additionally, while patterns in raw movement data are useful, even more patterns may be found by exploiting the 
animal’s position relative to different aspects of the open field. Finally, k-motifs produces a very large number of 
patterns, so to ensure the conciseness of the quantification method, some subset of the patterns must be selected 
for the final feature vector. All these topics will be discussed in the following sections.

Symbolic aggregate approximation (SAX).  Discretizes the real-valued time series x(t) of the animal x position 
(e.g., as seen in Fig. 1, blue series), starting by slicing it into segments of duration w. For each segment, the values 
contained within are averaged. This leads to a new time series t(t) of length | |x

w
. Note that if the length of x(t) is not 

divisible by w (length of x(t) is not a multiple of w), x is padded with the last value of x until its length is divisible 
by w (this is the case in the version of SAX used in our methods; see also generalization of the SAX code by16,17 
which handles also lengths non-divisible by w).

Next, the range of the values of t(t) is divided into many sections (further referred to as ‘bins’). The bins are 
defined using z-scores from a normal distribution with mean and standard deviation derived from the original 
data x(t). We denote the number of bins by α, and each bin is represented by the lower limit in its value range. For 
example, if the values fall between −4.0 and 4.0, and α = 4, the bins are: [−4.0, −2.0] represented by −4.0, [−2.0, 
0.0] represented by −2.0, [0.0, 2.0] represented by 0.0, and [2.0, 4.0] represented by 2.0.

Additionally, the bins are given unique labels. In this work, bins are labeled from 0 to α − 1, using the ordering 
of the bins from the lowest to the highest. Then, each value in t(t) is replaced by the label of the associated bin to 

Figure 1.  Movement of example subjects during single sessions. (A) The spatial, ‘top-down’ view of the path 
taken by an exemplary control subject during an exemplary session. The borders of the open field are shown 
in red, with the four objects shown as red circles. (B) The same plotted for an exemplary subject from the 
quinpirole group. (C) The same path as shown in (A), x and y as in coordinates over time are shown as time 
series.
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which is belongs - namely, the highest bin whose lowest value is lower than the given value in t(t). The obtained 
result is an approximate symbolic representation of the original time series. This transformation is formalised in 
Eq. 2. An example segmentation is demonstrated in Fig. 2A.
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where i = min(binsi).
Assuming normal distribution of the input datasets, this ensures that each value in t is equally likely to fall 

into each bin, and thus that each event (falling into a bin 0 to α − 1) occurs equally often. This is explained in 
Fig. 2, where α = 4. In this example, the value range in the time series, is dissected into four equiprobable bins, 
centred on the mean of the time series. Note that, for any considered variable (e.g., the animal’s x position on 
the open field table), the bins are precomputed using all available datasets: the bins are defined for the merged 
datasets from all the subjects within the experimental group. The purpose of this step is to have one, uniform 
output sentence for all subjects. An example set of bins, computed for all two-dimensional positional data in our 
datasets, is presented in Fig. 2B. An advantage of using bins based on the normal distribution derived from the 
datasets - rather than equally-sized bins - is that the proportion of visits in all bins becomes more uniform (this 

Figure 2.  The SAX representation14. (A) The real-valued input data is presented in black. The numbers given 
on X-axis represent the subsequent data points, in which the real-valued input variable is measured. It the time 
resolution of the recording is high, this may be a near-continuous sequence. In this example, parameter w is set 
to such a value that the input is divided into segments of 1.2 time units. The mean value of the time series within 
each segment is used to produce the approximation sequence (presented in green). Finally, for each mean value, 
the corresponding bin is determined. In this example, there are four bins (α = 4) delineated using dotted red 
lines. Bins width is determined in terms of standard deviations from the mean value. The final output in this 
example, is a sequence of labels 2 0 3 1 2. (B) Standard division into 25 zones (as implemented in the T-pattern 
method). (C) The division of open field with use of SAX (α = 10, which means 10 bins along each dimension), 
with all positional data. Note the underlying normal distribution of visits is reflected in the sizing of the bins. In 
less popular areas, larger bins are available and less detail is recorded.
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may be evaluated by comparing the entropy of the visit counts, with a higher entropy meaning a more uniform 
distribution).

To apply the SAX algorithm, we reimplemented the original version of the algorithm using Python, the code is 
included in the open GitHub repository, at https://github.com/MareinK/kmotifs-paper-code.

Grammar induction using sequitur.  The output of SAX algorithm can be interpreted as a series of symbols. 
Sequitur is an algorithm for inducing a hierarchical grammar from a given sequence of symbols, thereby com-
pressing the input to a smaller representation15. This outcome small representation is, again, a series of symbols. 
Some symbols are terminal. A terminal symbol is a symbol that was also present in the original sequence. Other 
symbols are non-terminal. A non-terminal symbol is an outcome of the compression, and there is an associated 
rule which determines how to ‘expand’ this symbol to again a series of (non)-terminal symbols. A grammar is 
defined as a set of rules for repeatedly expanding all non-terminal symbols in this way will eventually reproduce 
the original sequence, with no more non-terminal symbols present. A special ‘start symbol’ (denoted by S in 
this text) determines the initial rule to use when starting the expansion. The Sequitur algorithm constructs a 
grammar from the input sequence by processing input symbols sequentially, and adding them to the grammar 
one by one. An example of an output grammar is given in Table 1. The symbol-to-rule mapping is given by 
R:symbol → sequence.

The Sequitur algorithm processes input symbols sequentially, adding them to the grammar one by one, while 
maintaining two grammar properties:

•	 Digram uniqueness: Every pair of symbols (terminal or non-terminal) occurs not more than once in the 
grammar. If the same pair of symbols occurs twice at some point, a new rule is created mapping a non-ter-
minal symbol to this sequence of two symbols, and the two occurrences of the pair are replaced by the new 
non-terminal symbol. This property ensures that the grammar gets compressed once a repetition is found. It 
also imposes a hierarchical structure on the grammar.

•	 Rule utility: Every rule is used at least twice. Because of the digram uniqueness property, a pair consisting of 
a non-terminal symbol and another symbol may be condensed as a new rule. This causes that non-terminal 
symbol’s occurrence count drops by one, which might become the only occurrence of the non-terminal sym-
bol. In this case, the rule is removed, and its non-terminal symbol is replaced by the corresponding sequence. 
This property not only ensures that no useless rules (with only one occurrence) exist, but also allows for for-
mation of rules longer than two symbols, which would otherwise not be possible.

By maintaining these properties, and using the proper data structures, the Sequitur algorithm runs in linear 
time in the length of the input sequence15. The output grammar can then be used to determine the relative fre-
quency of sub-sequences by their occurrence count, so that they may be used in the quantification method.

In the context of finding common patterns in the SAX output, we are interested in the occurrence count of 
the different non-terminal symbols, since these represent common sequences. Given a grammar, let s denote a 
non-terminal symbol in that grammar. Then we can find the occurrence count c(s) of that symbol by finding all 
the rules that s occurs in, and taking the total occurrence count of the symbols associated with all those rules. S 
always has an occurrence of 1 (Eq. 3).
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For example, in Table 1, the most frequent sub-sequence (longer than 1 symbol) is a b, as it occurs four times 
in the input. We introduced the occurrence count and added to the algorithm to apply Sequitor to this particular 
research problem, namely finding patterns in the SAX output data.

Feature vectors.  The k-motifs method, using SAX and Sequitur, yields frequent motifs for a certain time series, 
which may be used to give insights into rodent behaviour. However, these motifs are not suited for classification 
since they do not take the form of a feature vector. Specifically, there is no obvious comparison between motifs 
derived from different time series.

To resolve this issue, the following method is applied: given a set of time series from which feature vectors 
need to be extracted, first find the k most interesting motifs (defined hereafter) for the complete dataset. We fur-
ther refer to this set of interesting motifs as D( )k  (Eq. 4). Now, to create a feature vector for a single time series, 
 ∈d D( )k , we need to determine the frequency of each motif discovered in that time series (Eq. 5). This method 
yields feature vectors that are comparable for classification, element-wise.

s R(s) expanded c(s)

S → 1 1 a b c a b d a b c a b d 1

1 → 2 c 2 d a b c a b d 2

2 → ab a b 4

Table 1.  Example grammar produced by Sequitur for the input sequence a b c a b d a b c a b d, demonstrating 
rules, expanded sequences and occurrence counts. Note that a, b, c, d are terminal symbols, and S, 1 and 2 are 
non-terminal symbols in this example.
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=D k D( ) most interesting motifs in (4)k

∈ =d D m D( ) [count of mind for in ( )] (5)k kF M

In the context of this manuscript, the classification relates to discrimination between the experimental inter-
vention group compared to the control (vehicle-treated) group (based on open field data). These groups, in 
machine learning terminology, are referred to as classes. In many classification problems, the uneven size of 
classes is an issue. To account for this, k frequent motifs should be extracted from the sessions of each class sepa-
rately. Given n classes, this will yield k · n frequent motifs. As before, a feature vector representing d ∈ D is created 
by determining the frequency of each of the motifs in the session. Thus, the length of the feature vector is depend-
ent on the number of classes n as well as the number of extracted motifs k.

Interestingness.  Using combinatorics, the number of possible motifs grows very fast with the length of the 
sequence. Therefore, one should define some rules for motif preference. This can be achieved by defining ‘inter-
estingness’ of motifs. Given a motif m, three interesting properties may be defined, each of which one may wish 
to maximise when searching for interesting motifs. To evaluate a motif ’s interestingness I(m), some (non-linear) 
combination of these three properties can be used. The k most interesting motifs could then be selected as those 
with the highest interestingness.

•	 Frequency If (m): The number of times this motif occurs in the data; the more frequent a motif is, the more 
suitable it will be as a feature. Of course, certain motifs which happen to be rare, can still carry meaningful 
information and be useful for classification but in practice, there is no efficient way to select these motifs 
because using rare motifs would facilitate over-fitting (i.e., building a classification tool that contains more 
parameters than can be justified by the data, and will fail to predict future observations).

•	 Length Il(m) = |m|: the number of symbols in the motif. Longer motifs are more interesting because they 
expose more detailed patterns. A motif of length 2 only shows a linear movement from one position to 
another, while longer movements will describe more detailed aspects of the animal’s behaviour.

•	 Diversity Id(m): the number of unique symbols in the motif. A long motif may only contain a few unique 
symbols, which means the motif describes a movement with a high amount of repetition. Since such a pattern 
is clearly a combination of other motifs, it might be more interesting to focus on motifs which cannot be easily 
decomposed. This is encouraged by preferring motifs with a high number of unique symbols.

Certain relations hold between these properties. Given any motif m and symbol s, a new motif may be con-
structed as n = m + s by appending s to m. Regardless of the choice of m and s it is clear that n cannot be more fre-
quent than m, since for each occurrence of n there is also an occurrence of m contained within. Thus, If (m + s) ≤ If 
(m) and |m + s| > |m| for any m and s. This means that frequency is inversely proportional to length: If (m) ∝ |m|−1. 
Note also that |m| ≥ Id(m), meaning that length must grow with diversity, and so If(m) ∝ Id(m)−1.

This means that, when using these three properties and k-motifs to define a quantification method, high 
accuracy (If) and high interpretability (Il and Id) are mutually exclusive. It is not clear whether this holds for quan-
tification methods in general. In any case, the best way to combine the three properties into a single measure of 
interestingness I(m) is not obvious. In this work, four different ways of combining the three measures are explored 
(Eqs. 6–9). While I1 combines the three measures with equal weight, the other functions favour one measure 
while devaluing the other measures by scaling them logarithmically.

= ⋅ | | ⋅I m I m m I m( ) ( ) ( ) (equal weight) (6)f d1

= ⋅ | | ⋅I m I m m I m( ) ( ) log( ) log( ( )) (focus on frequency) (7)f d2

= | | ⋅ ⋅I m m I m I m( ) log( ( )) log( ( )) (focus on length) (8)f d3

= ⋅ ⋅ | |I m I m I m m( ) ( ) log( ( )) log( ) (focus on diversity) (9)d f4

The choice of combination matters because they can result in different sets of leading motifs.

Spatial relations.  Although the k-motifs algorithm may be applied to any time series, only the X centre and Y 
centre variables from V are used to construct the feature vectors. The choice to restrict the number of variables 
was made to reduce the size of the feature vector, thereby increasing interpretability. The choice for these specific 
variables was made since they are the variables used by other methods, e.g., T-patterns. Then, we should account 
not only for the subject’s position in space, but also for the relationship to objects and the boundaries of the open 
field. Therefore, the k-motifs algorithm must not only be applied to a time series tracking the subject’s position, 
but also to time series reparameterised concerning objects. Each of these transformed time series is called a spa-
tial relation (including the original position).

This extension of the feature space further increases the length of the feature vector to k · n · r, with r the num-
ber of relations we wish to capture. The spatial relations that we chose, are presented in Table 2 (although of 
course, more possibilities exist). In our specific dataset, n = 2 (control versus quinpirole) and r = 4 (absolute 
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position, relative position, minimum distance to any object, minimum distance to the boundary). The length of 
the feature vector, then, becomes 8 k.

Note that some spatial relations are two-dimensional (absolute/relative position) while others are 
one-dimensional (distance). While using the k-motifs algorithm in application to one-dimensional data is 
straightforward, in case of two-dimensional data it becomes is less obvious. We took the following approach. 
First, the two dimensions are processed by SAX individually, resulting in two separate symbolic time series. These 
two time series are then recombined to create a time series consisting of pairs of symbols. This new time series can 
then be processed by Sequitur, interpreting each pair as an individual symbol.

Free parameters.  The complete quantification method, combining k-motifs, creation of the feature vector 
and spatial relations, involves several free parameters (Table 3).

Hill-climbing is a technique for optimising a cost-function characterising certain problem, by iteratively 
adjusting its input parameters18. This technique can be used to determine the optimal values in the parameter 
space (w, α and k), whereas exhaustive search is performed to optimise I. To evaluate the results of this opti-
misation, the complete dataset is split into two portions: 90% that is used for hill-climbing based on classifier 
performance (which in turn splits the data into training and test sets) and 10% that is held out for final evaluation 
(there are 10 sessions × 3 segments in each session = 30 data segments per animal which means that 3 segments 
per animal were saved for validation). To summarize, the schematic representation for the full k-motifs pipeline 
is given in Fig. 3.

Evaluation.  Four popular classifiers are used to compare four different quantification methods. 
Implementation of these classifiers comes from sklearn package for Python19:

•	 Gaussian Naive Bayes: Assuming independence between features, Bayes’ theorem can be applied to the data. 
This method learns probabilities with each combination of class and feature from the data, and from this 
evaluation, the most probable class can be inferred for a new observation20.

•	 Decision Tree: In this method, several if-then-else decision rules are learned with the purpose to accurately 
divide the data into classes based on feature values. A new observation is then classified by evaluating the 
decision rules on its features21.

•	 Multilayer Perceptron: A feed-forward network of artificial neurons with nonlinear activation functions is 
used to model the relationship in the data between features and classes through connectivity weights between 
neurons. A new observation is then classified by feeding a set of features representing this observation into 
the network, which returns the predicted class at the output22.

•	 k-Nearest Neighbours: All observations in the data and their associated classes are stored in memory. Given 
a new observation, its class it determined by majority vote of the k data points closest to the observation in 
the feature space23.

We chose the default parameters as implemented in the sklearn package. To determine the relative perfor-
mance of classifiers, the label-frequency based macro F1 score was used as a measure of test accuracy. As a vari-
ation of the commonly used F1 score, this measure combines the classifier’s precision P (also known as positive 
predictive value, PPV) and recall R (also known as sensitivity) with equal weights to evaluate the performance of 
the classifier. The F1 score is computed individually for each class c, then the average between these scores is com-
puted, with each score weighted by the size of the corresponding class |c| (Eq. 10)24. This ensures that imbalance 
in class size does not influence the score.

Name Dimensions Description

absolute position 2 2 location of the animal on the table in Cartesian coordinates

relative position 2 change in (x, y) location of the animal as compared to the previous time point

nearest object 1 the distance from the animal to the nearest object

nearest boundary 1 the distance from the animal to the nearest point on the boundary of the table

Table 2.  Chosen spatial relations.

Component Symbol Domain Description

k-motifs w >0 segment size used for dividing the input sequence

k-motifs α >0 number of bins

vector creation k >0 number of most interesting motifs to select per class

vector creation I {I1, I2, I3, I4} measure of interestingness

Table 3.  An overview of the free parameters for the full k-motifs pipeline.
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Figure 3.  Schematic visualisation of the approach proposed in this work, based on k-motifs. The pipeline starts 
with the raw dataset (1), containing movement data from multiple open field sessions. Each of these sessions is 
then transformed into multiple spatial relations (2). For each spatial relation, the SAX bins are computed, using 
parameter α determining a total number of bins (3). The spatial relations are then separated based on the class 
of the session (4). For each class, every data point is processed using k-motifs, using the parameter w and the 
SAX bins computed earlier (5). For each data point, this results in a set of motifs, and all motifs of a class are 
gathered into a list. The motifs are sorted according to a measure of interestingness (I). Subsequently, certain 
number k of top motifs is selected to represent the class (6). The top motifs from each class are then combined 
to create the final set of motifs (7). These can then be used to create a feature vector for any data point (from the 
original data or otherwise), by counting the number of occurrences of each motif within that segment (8).
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To obtain reliable classification results, stratified k-fold cross-validation was used. In non-stratified k-fold 
cross-validation, the data is randomly divided into k subsets of equal size. Then, for each subsample i, the subsam-
ple is used as a test set while the other k − 1 subsamples are used for training. This results in k classifiers with each 
a classification score, which may be averaged to obtain the final score. This method ensures that all individual data 
samples are used for testing exactly once. Additionally, in stratified k-fold cross-validation, each subset is selected 
in a way that the distribution of classes is as near as possible to that of the complete data25 (here, it means a ratio 
1:1 between cases and controls). This prevents confounding the results by the class labels. In this project, k = 10 
is used.

Comparison with other methods.  In this work, we further compare k-motif approach with other meth-
ods which also define how a single experimental session is reduced to a simpler representation:

	 1.	 Established T-pattern method8 which interprets patterns as sequences of visited discrete fields (in this case, 
on the square experimental table divided into 25 square zones) within certain time-frame.

	 2.	 Full data method: no reduction is performed and the complete set of points visited during the session is 
taken as the representation of that session.

	 3.	 Means and variances method: the data of a session is reduced to just four numbers: the mean and the vari-
ance, per dimension (one of each for x-coordinates and y-coordinates).

	 4.	 Behavioural method: the data of a session is reduced by applying several hand-crafted heuristics to it that 
are thought to be useful descriptions of an animal’s behaviour. This results in a collection of numbers that 
describe behaviour displayed during the session. For a full description of this method, check26.

Ethical approval.  The animal experiments in rats with use of quinpirole, were carried out following local 
guidelines and regulations within the Netherlands. All animal procedures were approved by the Ethical 
Committee on Animal Experimentation of Radboud University Nijmegen (under RU-DEC, number 2012-281) 
and the Dutch Ethical Committee on Animal Experimentation, and following the EU guidelines for animal 
experimentation.

Results
Normalising bins with SAX algorithm.  Using the T-pattern method with linear zone divisions, the 
entropy of the proportion of visits per zone is 2.90. In contrast, using the bin divisions based on SAX algorithm, 
the entropy is 2.63 (Fig. 4A).

Leading motifs depending on interestingness measure.  The 8 most interesting motifs obtained with 
use of every of the four measures of interestingness defined in Section 2.2.4, are presented in Fig. 5. An example 
of a feature vector based on these most interesting motifs is presented in Table 4.

A summary of all 20 (2 classes × 10 motifs) feature vectors obtained using the I2 measure for all the data seg-
ments in our dataset (concatanated for the whole cohort) can be found in Supplementary Fig. 4. The hill-climbing 
method found w = 15, α = 10, k = 10 and I = I2 as parameters yielding the highest classification performance. 
Note that k = 10 was the highest allowed value in the hill-climbing setup. This suggests that segments of 625 [ms] 
in length and 10 bins per dimension should be used as an input to the SAX algorithm. Further, top 10 motifs 
should be delegated to represent each class and since I2 was the leading method for quantifying interestingness, 
motifs should be chosen primarily due for their frequency, rather than due to their length or diversity. Also, per-
formance accuracy is robust concerning α, w and k (Fig. 4B).

Comparison with other methods.  The full summary of the performance of different classifiers can be 
found in Table 5. The new quantification method was able to achieve an average score of 0.86, and as such, it 
outperforms all of the other classifiers. Note that although the average classification score is the highest, not 
all the individual scores are the highest. In particular, the MultiLayer Perceptron classifier did not yield a high 
score for the k-motif method (0.69), while T-patterns scored high in that case (0.84). The highest score of any 
method-classifier combination was achieved by the k-motif method using k-Nearest Neighbors (0.94).

In this classification study, the validation was performed using stratified 10-fold cross validation (imple-
mented with use of sklearn Python package). According to our results, the k-motif approach is significantly better 
than using full datasets, and using means and variances from raw experimental variables, but not significantly 
better than either the behavioural method26 or the T-pattern method8. Significant differences between methods 
are visually presented in Fig. 4C (significance was assessed using one-sample t-test at confidence level of p = 0.05, 
with Bonferroni correction for multiple comparisons).

Discussion
The current approach examined the utility of the k-motif approach as a means to improve automated behavioural 
analysis in the open field. Our results suggest that this is an efficient technique which returns a sparse set of behav-
ioural patterns best discriminating between experimental groups and gives higher classification performance 
than the available methods.
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Normalising bins.  The results were contrary to expectations, meaning that dividing the table into linear 
zones gives better performance than normalising divisions in creating a uniform distribution of zone visits. 
However, it is unclear whether this effect is specific to this particular dataset and additional validation with other 
datasets would be useful. While the literature suggests that normalising bins should aid in creating uniform visit 
distributions, it would be interesting to investigate the method further in other datasets.

Motifs, feature vectors and interestingness.  The motifs yielded by k-motifs were interesting, although 
they may be difficult to interpret systematically. Most probably, motifs are specific to the particular shape and 
orientation of the open field arena used and the associated objects, and in another experimental setup, another 
set of motifs might come out as most predictive of the subject class. The k-motif approach, in the form proposed 
in this work, is an exploratory technique but is adaptable to different contexts. One noticeable property of motifs 
obtained in this study is that most of them, describe mostly linear motion or repetitions of linear motions. For 
example, many of the motifs in Fig. 5 show a single oscillation of a repeating motion, or else they show an almost 
linear movement. These movements are not very complex, and may, perhaps, be also picked up by a more con-
strained and computationally cheaper method. Some of the features of the motifs presented in Fig. 5 are particu-
larly interesting. Of note, the motifs obtained from interestingness I1 and I2 are identical. Since the difference 
between these measures lies in the way that length and diversity of motifs are valued, while the value put on motif 
frequency is constant, this suggests that even in measure I (the equal-weight measure) the frequency has more 
influence on the final selection. It may be useful to normalise the three properties before combining them into one 
measure, so that any of them has equal range of values, before taking the sum.

Furthermore, the nature of each measure of interestingness is reflected in the presented motifs. Both the meas-
ure focusing on length and the measure focusing on diversity do produce longer motifs, while the measure focus-
ing on diversity additionally finds motifs with a larger number of unique values. Interestingly, multiple motifs are 
shared between different measures of interestingness focusing on length I3 and diversity I4, while seemingly no 
motifs are shared between these and the measure focusing on frequency I2. This can be explained by the fact that 
frequency of motifs should be inversely proportional to both motif length and diversity. It should be noted that 
the most-interesting motifs presented in Fig. 5 include motifs of all relation types (positions and distances) except 
for the ‘relative position’ type. This means that no motif of this type was among the 8 most interesting based on 
any of the four interestingness measures. This may be explained by the fact that the relative position may have the 
highest variance of all of the spatial relations, meaning that patterns are less likely to occur.

In this study, I2, the measure focusing on frequency, increases classifier performance results more than meas-
ures based on length (I3) and/or diversity (I4). This might be associated with the fact that we are investigating 
quinpirole model of the obsessive-compulsive behaviour. In the future research, it might be investigated whether 
the measures focusing on frequency (I2) also to the highest classification performance in paradigms based on 
drugs with a different mechanism of action, e.g. repeated checking behaviour has also been associated with ser-
otonin 5HT2C ligands27.

Furthermore, in our study, repetitive and stereotypical behaviours indeed were revealed as the most informa-
tive features, which is expected given that we studies biomarkers of obsessive-compulsive behaviours. We cannot 
hypothesise about possible outcomes of this research when applied to other cohorts representing animal models 
of other cognitive disorders. Indeed, in paradigms in which we expect decreased general mobility and we do not 
anticipate any specific patterns of behaviour (such as models of depression), the outcome set of motifs would 
probably be more simplistic - but this is a subject to further research.

Figure 4.  Results. (A) Proportion of visits to each bin after using SAX with parameters α = 5 and w = 15. 
(B) Robustness of the k-motifs algorithm using k Nearest Neighbors using I2 definition of interestingness, 
concerning parameters α, w and k. (C) Significance of differences between method performances. Yellow fields 
denote significant differences in performance between two corresponding methods, while purple means non-
significant. Significance was assessed using one-sample t-test at confidence level of p = 0.05, with Bonferroni 
correction for multiple comparisons.
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Figure 5.  8 Most interesting motifs resulting from the four different combinations of the three measures of 
interestingness as defined in Section 2.2.4. Note that one-dimensional features (distances) are presented in time 
scale, while two-dimensional features (movement) are shown in space. Relative movement patterns originate at 
the central position (0, 0). Where possible, bins (i.e. zones) are indicated with red lines (this is not possible for 
relative movement as the bins re-orient with each step).

29 22 5 19 5 21 2 21 17 16 22 29 19 21 21 17 13 18 17 20

Table 4.  An example feature vector resulting from the quantification method, describing a single data segment. 
This vector contains 20 features, since there are two classes and k = 10, so 10 motifs from each class are used. 
Each number indicates the number of times a particular motif occurs in the data segment of interest.
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Supplementary Fig. 4 demonstrates some interesting properties of the feature vectors. The sessions are sep-
arated by class along the vertical axis, and a clear separation is visible in the values of the feature vectors. This 
visually shows the source of the classification accuracy as found in the evaluation. However, the main difference 
between the two groups seems to be that many motifs are frequent in the quinpirole treated group, while few 
motifs are frequent in the control group. Although this facilitates classification, it is contrary to expectations: 
since 10 motifs were taken from the top motifs in each class, the expectation would be for half of the motifs to be 
frequent in all sessions of one class, and the other half in the other class. One possible explanation for this phe-
nomenon is the fact that motifs derived from the control class, although common in the control class, are even 
more frequent in the quinpirole treated class.

Parameters.  Parameters optimized in the hill climbing algorithm specified twice as high number of bins 
per dimension, than it is specified in the T-pattern method. It would be interesting to explore how the T-pattern 
method would perform if using a higher number of bins. Although k = 10 was the optimum value, this was also 
the highest allowed value for k in the chosen parameter range. If higher values were allowed, the performance 
would likely keep increasing with k, since an increase in the number of features can only increase the classification 
performance. However, a higher value of k would also negatively impact the computational complexity of the 
algorithm. In addition to the four aspects of the method that were parameterised, some more possibilities exist 
that were not explored, e.g., a choice of which spatial relations to include. Also, interestingness of a motif could 
be defined in multiple other ways.

Evaluation.  Our results indicate that - although the k-motif method performs significantly better than meth-
ods based on full data, and data compressed to means and variances - it does not perform significantly other 
than either of the two other, more complex methods. However, it should be taken into consideration that the 
parameters of the k-motif method were fine-tuned to our dataset, while the other methods were not privileged in 
a similar fashion. This manifests in the fact that the performance on the held-out data was only 0.75. The perfor-
mance was lowest for the Multilayer Perceptron classifier, which is known to be sensitive to overfitting28,29, which 
could also contribute to this effect. In the future, cross-validation of the results on another experimental cohort 
might be performed, although each cohort behaves differently in the open field environment and the classification 
performance would certainly drop.

In rodent studies in the open field, there are multiple confounding variables. Firstly, there are many different 
open field designs, and the items placed on the table can look and smell in various ways. Even if the objects are 
identical, the orientation of the table in space can matter to rodents, as the rodents are very sensitive to geograph-
ical directions30. Locomotion patterns in rodents also depend on the day-night cycle31. Furthermore, rodents 
bred in different local conditions, fed with a different fodder, and in contact with different experimenters while 
maturating, can potentially exhibit different behaviours in an open field. These confounding factors cannot be 
fully mitigated.

For this reason, one can expect that some of the leading k-motifs will overlap between various open field 
experiments while some other motifs could differ from experiment to experiment. It would be very valuable to 
conduct a follow-up, comparative study in which the method is applied to a few experimental groups, and the 
results are compared.

One aspect of classification that was not explored in this project, but which would be very interesting for the 
future, is the evaluation of the relative contributions of features in the process of classification. It would be inter-
esting to know which motifs, or which spatial relations, contribute most to determining classes in order to refine 
the k-motif algorithm further.

Conclusion
In this manuscript, we propose a novel concept for a data-driven quantification of behaviour with the use of 
k-motifs approach. We further apply this method to the dataset collected from an open-field experiment in the 
quinpirole rate model of obsessive-compulsive behaviour and demonstrate that the frequency-based motifs 
in behaviour lead to classification performance highly outperforming currently used methods for quantifying 
behaviour in the open field. In the future, the method could also be validated using cohorts of rodents exposed to 
a different experimental manipulation, e.g.:

Method Mean
Guassian 
Naive Bayes

Decision 
Tree

Multilayer 
Perceptron

k-Nearest 
Neighbors

Full Data 0.64 ± 0.16 0.72 ± 0.22 0.70 ± 0.14 0.56 ± 0.16 0.59 ± 0.13

Variable means and variances 0.68 ± 0.13 0.71 ± 0.15 0.66 ± 0.12 0.66 ± 0.16 0.68 ± 0.10

Behavioral method26 0.76 ± 0.12 0.77 ± 0.14 0.78 ± 0.10 0.74 ± 0.14 0.78 ± 0.09

T-patterns 0.83 ± 0.16 0.80 ± 0.13 0.88 ± 0.15 0.84 ± 0.16 0.81 ± 0.20

k-motifs 0.86 ± 0.10 0.88 ± 0.07 0.87 ± 0.09 0.69 ± 0.17 0.94 ± 0.05

Mean 0.76 ± 0.13 0.77 ± 0.15 0.78 ± 0.12 0.71 ± 0.14 0.76 ± 0.12

Table 5.  Classification performances of the different quantification methods for each of the considered 
classifiers.

https://doi.org/10.1038/s41598-019-56482-z


13Scientific Reports |         (2019) 9:19873  | https://doi.org/10.1038/s41598-019-56482-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

	 1.	 NMDA antagonists such as phencyclidine and MK-801, which are known to produce complex behaviours 
in rodents such a stereotyped circling32,

	 2.	 amphetamines (DAT blockade and VMAT transport reversal33),
	 3.	 genetic rodent strains which are known to present with altered stereotyped behaviours such as self-groom-

ing, e.g. BALB/cJ mice, BTBR mice, VDR knockout mice, Shank2 knockout mice, RLA rats.

Furthermore, our results suggest that taking data-driven approaches to the quantification of movement in the 
open field, is a good general direction for future research in this area. However, as there are multiple methods for 
finding patterns in the time-series data34,35, and k-motifs is one of many possibilities, in the future, other possible 
approaches to detecting patterns in the behavioural recordings might also be explored.

Our method is also well-suited for assessing stereotypical and repetitive behaviours. One of such behaviours 
often studied in animal models of cognitive disorders, is patterns of locomotion from home base and back. Home 
base is defined as the place in which the animal stays for the longest cumulative time36. For instance, home base is 
the pivotal point of many animal models of depression1. In further research, we might consider a study in which 
we focus solely on motifs which contain the home base, and investigate whether in certain behavioural para-
digms, these motifs are predictive for the disorder.

Data availability
All the codes developed for this manuscript, are publicly available at https://github.com/MareinK/kmotifs-paper-
code. The behavioural datasets are handled by the TACTICS consortium and are not publicly available, and not 
published. For access to this data, please contact Dr. Jeffrey Glennon at jglennon77@outlook.com.
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