
Research Article
Deformation of a Capsule in a Power-Law Shear Flow
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An immersed boundary-lattice Boltzmann method is developed for fluid-structure interactions involving non-Newtonian fluids
(e.g., power-law fluid). In this method, the flexible structure (e.g., capsule) dynamics and the fluid dynamics are coupled by using
the immersed boundary method. The incompressible viscous power-law fluid motion is obtained by solving the lattice Boltzmann
equation. The non-Newtonian rheology is achieved by using a shear rate-dependant relaxation time in the lattice Boltzmann
method. The non-Newtonian flow solver is then validated by considering a power-law flow in a straight channel which is one
of the benchmark problems to validate an in-house solver. The numerical results present a good agreement with the analytical
solutions for various values of power-law index. Finally, we apply this method to study the deformation of a capsule in a power-law
shear flow by varying the Reynolds number from 0.025 to 0.1, dimensionless shear rate from 0.004 to 0.1, and power-law index from
0.2 to 1.8. It is found that the deformation of the capsule increases with the power-law index for different Reynolds numbers and
nondimensional shear rates. In addition, the Reynolds number does not have significant effect on the capsule deformation in the
flow regime considered. Moreover, the power-law index effect is stronger for larger dimensionless shear rate compared to smaller
values.

1. Introduction

Flow induced deformation of a capsule consisting of a
membrane enclosing an internal medium such as a gel or a
liquid is an important problem in fundamental research as
well as bioengineering applications. For example, a capsule
in shear flow is a fundamental process that is related to
erythrocytes (or red blood cells), leukocytes (or white blood
cells), and platelets in blood flow [1–6]. Deformation is
essential for red blood cells to perform their physiological
functions in the circulation of capillary blood vessels and thus
affects the rheology of the blood [6–8]. The deformations of
white blood cells and red blood cells can, respectively, affect
the immune response and the oxygen load release [9, 10].
The synthetic microcapsules with polymerized interfaces are
designed for drug delivery, cosmetic production, and other
technical usages [11, 12].Therefore, great effort has beenmade
to study this problem (e.g., [1, 4, 6, 8, 10, 12–14]).

Both experimental and numerical methods have been
conducted to observe capsule behaviors and the relevant
underneath fluid-structure interaction physics. Schmid-
Schönbein and Wells [15] and Goldsmith [16] observed that

red blood cells tumble like rigid particles at low shear rates
while they deform to a steady configuration and direction
after which the membrane rotates around the internal liquid
(tank-treading movement) at high shear rates. Later, Gold-
smith and Marlow [17] and Keller and Skalak [18] found that
the viscosity ratio between the liquids inside and outside the
cell may also affect the type of behaviors. A higher viscosity
insidewould cause unsteady tumbling-rotatingmotion,while
a smaller viscosity inside would lead to the tank-treading
movement with a stationary shape. These phenomena were
captured by Xu et al. [14]. More recently, Dupire et al. [19]
reported rolling motion in addition to other behaviors. A
hysteresis cycle and two transient dynamics driven by the
shear rate (i.e., an intermittent regime during the “tank-
treading-to-flipping” transition and a Frisbee-like “spinning”
regime during the “rolling-to-tank-treading” transition)were
highlighted.

There are several numerical methods that have been
used to study capsule dynamics. Examples are the bound-
ary element method (e.g., [20]), arbitrary Lagrangian-Euler
method (e.g., [21–23]), immersed finite element method
(e.g., [24]), and immersed boundary method (IBM) (e.g.,
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Figure 1: Schematic illustration of a circular liquid capsule im-
mersed in a fluid.

[12–14, 25–34]). Specifically, Zhou and Pozrikidis [20] stud-
ied the transient and large deformation of capsules with
position-dependent membrane tension. Choi and Kim [21]
simulated the motion of red blood cells freely suspended in
shear flow to investigate the nature of pairwise interception
of red blood cells using a fluid-particle interaction method
based on the arbitrary Lagrangian–Eulerian method. Villone
et al. [22, 23] studied the effect of the non-Newtonian fluid
on flexible particle deformation and migration in shear and
channel flows by using the arbitrary Lagrangian–Eulerian
method. The Navier–Stokes equations and cell-cell interac-
tion were coupled in the framework of the immersed finite
element method and mesh-free method by Y. Liu and W.
K. Liu [24] to model complex blood flows with deformable
red blood cells within micro and capillary vessels in three
dimensions. The transient deformation of a liquid-filled
elastic capsule in simple shear flow was studied by Sui et al.
[1, 4, 35, 36]. The fluid inertia on the dynamics of deformable
particles has been studied by Krüger et al. [32] and Kaoui and
Harting [34]. More recently, optical force based separation
of particles/capsules was simulated by Chang et al. [37–39].
Still, as far as known to us, the existing numerical simulations
seldom consider the non-Newtonian rheology effects on the
capsule behaviors, while blood and most fluids involved in
biomedical engineering are non-Newtonian fluids [6, 8, 40,
41].

Following the work by Sui et al. [1] and Xu et al.
[14], we develop an immersed boundary-lattice Boltzmann
method (IB-LBM) to study the non-Newtonian effects on
the deformation of a capsule in a shear flow. As a typical
rheology, the power-law fluid is used. In this method, the
capsule dynamics and the fluid dynamics are coupled by using
the IBM, and the incompressible viscous power-law fluid
motion is acquired by solving the lattice Boltzmann equation
(LBE).

The rest of this paper is organized as follows. Section 2
briefly introduces the governing equations of the fluid and
solid structures and describes the numerical approach. Sec-
tion 3 presents the numerical results. Final conclusions are
given in Section 4.

2. Mathematical Formulation and
Numerical Method

2.1. Physical Model and Mathematical Formulation. In this
work, a two-dimensional liquid capsule enclosed by an
elastic membrane and immersed in an incompressible non-
Newtonian fluid is considered, as illustrated in Figure 1 where𝑠 is the arch length coordinate, n denotes the surface normal

that points into the outer fluid, t denotes the tangent unit
vector that points to the increasing arc length, and 𝑈0 is
the velocity applied at both top and bottom walls to form a
simple shear flow. The incompressible non-Newtonian fluid
dynamics is achieved by using LBM [42, 43]. Great effort has
been made in using LBM to solve the complex flows (see
several reviews [42–44] for the effort). Many publications
have presented the details of LBM; thus we just provide a brief
description in this paper and discuss the extension for non-
Newtonian fluids. The details of LBM and its applications are
referred to the references provided. Using the IB-LBM, the
lattice Boltzmann equation (LBE) that governs the viscous
flow dynamics and incorporates the traction jump across the
interface due to the elastic membrane is written as [1, 14, 42,
43, 45, 46]

𝑔𝑖 (x + e𝑖Δ𝑡, 𝑡 + Δ𝑡) − 𝑔𝑖 (x, 𝑡)
= − 1𝜏LB [𝑔𝑖 (x, t) − 𝑔

eq
𝑖 (x, t)] + Δ𝑡𝐺𝑖, (1)

𝑔eq𝑖 = 𝜔𝑖𝜌[1 + e𝑖 ⋅ u𝑐2𝑠 + uu : (e𝑖e𝑖 − 𝑐2𝑠 I)2𝑐4𝑠 ] , (2)

𝐺𝑖 = (1 − 12𝜏LB)𝜔𝑖 [
e𝑖 − u𝑐2𝑠 + e𝑖 ⋅ u𝑐4𝑠 e𝑖] ⋅ f , (3)

f (x, 𝑡) = ∫ΔF (𝑠, 𝑡) 𝛿𝐷 (x − X (s, 𝑡)) 𝑑s, (4)

where 𝑔𝑖(x, 𝑡) is the distribution function for particles with
velocity e𝑖 at position x and time 𝑡, Δ𝑡 is the size of the
time step, 𝑔eq𝑖 (x, t) is the equilibrium distribution function,𝜏LB represents the dimensionless relaxation time, 𝐺𝑖 is the
term representing the body force effect on the distribution
function, 𝜔𝑖 are the weights, u = (𝑢, V) is the velocity of the
fluid, 𝑐𝑠 is the speed of sound defined by 𝑐𝑠 = Δ𝑥/√3Δ𝑡 withΔ𝑥 being grid spacing, f is the body force acting on the fluid,ΔF(𝑠, 𝑡) is the Lagrangian force density on the fluid by the
elastic boundary, X is the position vector on the membrane,
and 𝛿𝐷(x − X(s, 𝑡)) is Dirac’s delta function.

In the present work, a two-dimensional nine-speed
(D2Q9) model is used, as shown in Figure 2. In this model,
the nine possible particle velocities are given by

e0 = (0, 0) ,
e𝑖 = (cos 𝜋 (𝑖 − 1)2 , sin 𝜋 (𝑖 − 1)2 ) Δ𝑥Δ𝑡 ,

for 𝑖 = 1 to 4,
e𝑖 = (cos 𝜋 (𝑖 − 9/2)2 , sin 𝜋 (𝑖 − 9/2)2 ) √2Δ𝑥Δ𝑡 ,

for 𝑖 = 5 to 8.

(5)

The values of e𝑖 ensure that, within one time step, a particle
moves to one of the eight neighboring nodes as shown in
Figure 2 or stays at its current location. The weights, 𝜔𝑖, are
given by 𝜔0 = 4/9 and 𝜔𝑖 = 1/9 for 𝑖 = 1 to 4 and 𝜔𝑖 = 1/36



Computational and Mathematical Methods in Medicine 3

e0
e1

e2

e3

e4

e5e6

e7 e8

g0

g1

g2

g3

g4

g5g6

g7 g8

Figure 2: Nine base vectors representing 9 possible velocity direc-
tions in the D2Q9 lattice model.

for 𝑖 = 5 to 8. In addition, the relaxation time is related to the
kinematic viscosity in the Navier–Stokes equations in terms
of

𝜏LB = 0.5 + ]𝑐2𝑠 Δ𝑡 , (6)

where ] = 𝜇/𝜌 with 𝜇 being the dynamic viscosity of the
ambient fluid and 𝜌 being the fluid density.

When the particle density distributions are known, the
fluid density, velocity, and pressure are then computed from

𝜌 = ∑
𝑖

𝑔𝑖,

u = ∑𝑖 e𝑖𝑔𝑖 + 0.5fΔ𝑡𝜌 ,
𝑝 = 𝜌𝑐2𝑠 .

(7)

Theoretically the LBM introduced above simulates the com-
pressible viscous flow instead of incompressible viscous
one, because the spatial density variation is not zero in
LBM simulations. In the applications, the Mach number
(Ma = 𝑢0/𝑐𝑠) should be low (e.g., Ma ≤ 0.3) so that the
incompressible viscous flow can be correctly simulated. The
deduction process from LBE to the incompressible viscous
flow governing equations can be found in [47].

The dynamics viscosity is a constant for a Newtonian
fluid, while it is dependent on the local shear rate for a non-
Newtonian fluid. Without loss of generality, the power-law
fluid is taken as a representation of non-Newtonian fluids in
the present paper.The rheological equation of state for power-
law fluids is defined by [48]

𝜇 = 𝜂�̇�𝑛−1, (8)

�̇� = max (√2𝐸𝑖𝑗𝐸𝑖𝑗, �̇�𝑚) , (9)

𝐸𝑖𝑗 = 12 ( 𝜕𝑢𝑖𝜕𝑥𝑗 +
𝜕𝑢𝑗𝜕𝑥𝑖 ) , (10)

where 𝜂 is the power-law consistency index, 𝑛 is the power-
law fluid behavior index, �̇� is the shear rate, and �̇�𝑚 is the
minimum shear rate that is applied to avoid the numerical
singularity caused by the zero shear rate.Thepower-lawfluids
of 𝑛 < 1, 𝑛 > 1 and 𝑛 = 1 are, respectively, the shear-thinning,
shear-thickening, and Newtonian fluids. In (9), the Einstein
summation convention is applied. In LBM implementation,𝐸𝑖𝑗 can be either calculatedmacroscopically by using the finite
difference method or locally in mesoscopic scale by using 𝑔eq
and f [49]. To achieve the non-Newtonian rheology, a shear
rate-dependant relaxation time is usedwhich can be obtained
by applying the effective viscosity determined by (8) in (6).

Because of the deformation, the membrane develops
a transverse shear tension 𝑞 and a bending moment 𝑚.
In addition, due to the stretching motion, a tension, 𝜏,
is induced. Consider the force balance of membranes; we
acquire

ΔF = 𝜕𝜕𝑠 (𝑞n + 𝜏t) ,
𝑞 = 𝜕𝑚𝜕𝑠 .

(11)

Please note that ΔF is the Lagrangian force on the fluid
exerted by the elastic body boundary and is opposite to the
fluid force on the boundary. To evaluate 𝑚 and 𝜏 for the
thin membrane, we use Hooke’s law which is a relatively
simpler constitutive law for modeling small deformation of
capsules. Hooke’s law states that the tension and the bending
moment are linearly related to the stretch and the curvature,
respectively. It can be written in the form

𝑚 = 𝐸𝐵 (𝜅 − 𝜅0) ,
𝜏 = 𝐸𝑆 (

𝜕X𝜕𝑠0
 − 1) ,

(12)

where 𝐸𝐵 is the bending coefficient, 𝐸𝑆 is the stretching
coefficient, 𝑠0 is the initial arch length, 𝜅 is the curvature of
membrane, and 𝜅0 is the curvature in the resting configura-
tion. If 𝐸𝑆 is large so that the stretching deformation is small,
Hooke’s law works well. Following the work by Sui et al. [1],
the capsule membrane is assumed to be infinitely thin so that
the bending effect is neglected; that is, 𝐸𝐵 = 0. Actually, the
effect of 𝐸𝐵 is similar to that of 𝐸𝑆 when 𝐸𝐵 is small compared
to 𝐸𝑆 [1, 35]. If 𝐸𝐵 is large, the capsule may undergo flipping
motion [35].

The velocity of a point on the capsule is interpolated from
the flow field, and the position of the capsule is updated
explicitly; that is,

U (𝑠, 𝑡) = ∫u (x, 𝑡) 𝛿𝐷 (x − X (𝑠, 𝑡)) 𝑑x, (13)

𝜕X (𝑠, 𝑡)𝜕𝑡 = U (𝑠, 𝑡) , (14)

where U(𝑠, 𝑡) is the velocity of the capsule.
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In this work, we choose the flow shear rate (e.g., 𝑈0/ℎ),
density, and the radius of the capsule to nondimension the
governing equations and obtain two dimensionless parame-
ters: the Reynolds number Re and dimensionless shear rate𝐺, which are defined by

Re = 𝜌𝑈2−𝑛𝐿𝑛𝜂 = 𝜌 (2𝑎)2𝜂 (𝑈0ℎ )2−𝑛 , (15)

𝐺 = 𝜂𝑎𝐸𝑆 (
𝑈0ℎ )𝑛 , (16)

where 𝑎 is the radius of the undeformed capsule. 𝐺measures
the ratio of shear force to the elastic force. For applications
where inertia force is important, we can also use Re ⋅ 𝐺
to nondimension the elastic property, which measures the
ratio of fluid inertial forces to stretching elastic forces. Please
note that the two-dimensional model is used in this work,
while red blood cell deformation is a three-dimensional
problem; however, the results obtained in this research should
show some features common with the three-dimensional
simulations, as demonstrated in [1].

2.2. Numerical Method. Similar to [1], the capsule is dis-
cretized by 𝑁𝑓 nodal points which are initially distributed
with equal distances. The position of the 𝑚th node at time
level 𝑛 is denoted by X𝑛𝑚. To compute the stretching force at𝑚th node, a finite difference scheme is used; that is,

𝜕𝜕𝑠 [𝜏 (𝑠) 𝜕X𝜕𝑠 ]𝑚 =
𝜏𝑚+1/2t𝑚+1/2 − 𝜏𝑚−1/2t𝑚−1/2Δ𝑠 , (17)

where Δ𝑠 is the Lagrangian grid spacing on the membrane
and the tension 𝜏 and tangent vector, t = 𝜕X/𝜕𝑠, at the
segment center,𝑚 + 1/2, are both computed using a second-
order central difference scheme.

The time integration of (14) is calculated according to

X𝑛+1 = X𝑛 + Δ𝑡U𝑛+1. (18)

In the IBM, a smooth approximation [50] of Dirac’s delta
function, 𝛿ℎ, is used,

𝛿ℎ (x) = 1Δ𝑥Δ𝑦𝜙( 𝑥Δ𝑥)𝜙( 𝑦Δ𝑦) ,

𝜙 (𝑟) = {{{
[1 + cos (𝜋𝑟/2)]4 |𝑟| < 2,
0, |𝑟| ≥ 2.

(19)

In the present simulations, Δ𝑥 = Δ𝑦 = Δ𝑡 (in lattice units) is
used.

Now, the computational algorithm can be summarized as
follows. Given all values at time step 𝑛, the values at time step𝑛 + 1 can be undated by the following:

(1) Calculate the Lagrangian force densityΔF𝑛+1 fromX𝑛
by using (11)-(12).

(2) Spread the Lagrangian force density ΔF𝑛+1 onto the
ambient fluid nodes by using (4), and obtain f𝑛+1.

x
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Figure 3: Sketch of the power-law fluid flow in a channel.

(3) Solve flow field with body force by using the LBM
method described by (1)–(3) and (6)–(10).

(4) Update U𝑛+1 by using (13).
(5) And finally, update X𝑛+1 by using (18).
In the present work, the above-mentioned computational

simulation algorithm is implemented in the Fortran 90
programming language.

2.3. Validation. The IB-LBM in this work has been validated
and verified in our previous studies (see, e.g., [14, 46]) and
has been used to study filament(s) flapping in viscous fluids
[51–53], sperm swimming, and cell/particle flows [10, 54].
In the present work, we focus on the validation of non-
Newtonian flow by considering a power-law flow in a straight
channel which is one of the benchmark problems to validate
an in-house computational fluid dynamics solver. As in our
previous work [41], we consider a two-dimensional steady
laminar developing flow of power-law fluid with a uniform
incoming velocity 𝑈∞ through a rectangular channel of
height ℎ and length 𝐿, as shown in Figure 3. The physically
realistic initial and boundary conditions are given as

𝑢 (𝑥, 𝑦) = 0,
V (𝑥, 𝑦) = 0,
𝑝 (𝑥, 𝑦) = 0,

𝑡 = 0, (𝑥, 𝑦) ∈ Ω1,
(20)

𝑢 (𝑥, 𝑦) = 𝑈∞,
V (𝑥, 𝑦) = 0,

𝑡 > 0, (𝑥, 𝑦) ∈ I,
(21)

𝑢 (𝑥, 𝑦) = 0,
V (𝑥, 𝑦) = 0,

𝑡 > 0, (𝑥, 𝑦) ∈ 𝜕Ω1,
(22)

𝑝 (𝑥, 𝑦) = 𝑝0,
𝑡 > 0, (𝑥, 𝑦) ∈ R. (23)

The computations are performed with the dimensionless
domain size (𝐿/ℎ × 1) of 40 × 1 discretized by 2001 × 51
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Figure 4: Comparison of the present numerical results of the fully
developed velocity profiles in a channel with the corresponding
analytical profiles (24) for Reynolds number of Re = 100 and power-
law indices 𝑛 = 0.6, 1.0, and 1.4.

uniform Cartesian nodes. The numerical results in terms
of the fully developed velocity profiles are obtained for the
Reynolds number (defined by 𝜌ℎ𝑛𝑈2−𝑛∞ /𝜂) of 100 and for
three power-law indices; that is, 𝑛 = 0.6, 1.0, and 1.4.
The simulations are performed for sufficiently long time
so that the flow in the channel attains a steady state. The
fully developed velocity profiles predicted by the numerical
simulations are compared in Figure 4 with the corresponding
analytical solution for fully developed velocity profile [41, 48]
for power-law fluid flow in a channel which is given as

𝑢 (𝑦, 𝑛)
𝑈∞ = 2𝑛 + 1𝑛 + 1 (1 − 1 −

2𝑦ℎ

(𝑛+1)/𝑛) . (24)

From Figure 4, it is found that the present numerical results
show a good agreement with the analytical solutions for
various values of power-law index, giving us confidence in
the reliability and accuracy of the present numerical solution
procedure. It is noted from Figure 4 that the shear layer is
thinned for 𝑛 < 1 and thickened for 𝑛 > 1 compared to the
Newtonian fluid case (𝑛 = 1).
3. Numerical Results

We first consider the power-law index effect on the defor-
mation of a cylindrical capsule in a shear flow. The Reynolds
number is 0.05, which is in the range of normal physiological
conditions. The dimensionless shear rate 𝐺 is 0.04. The
computational domain ranges from 0 to 20𝑎 in both 𝑥-
axis and 𝑦-axis. The capsule is at the center of the domain,
and its membrane is equally discretized into 80 Lagrangian
nodes. The grid resolution is Δ𝑥 = Δ𝑦 = Δ𝑡 = 0.1𝑎.

The characteristic velocity is set as 𝑈0 = 0.05 so that the
dimensionless relaxation time is 0.5 < 𝜏LB < 3.0. Such setup is
consistent with that used in [1]. To study the power-law index
effect, 𝑛 is set in the range of 0.2 < 𝑛 < 1.8, covering the shear-
thinning, Newtonian, and shear-thickening fluids. In order
to quantify the deformation of the capsule, the Taylor shape
parameter𝐷𝑥𝑦 is introduced [1],

𝐷𝑥𝑦 = 𝐿 − 𝐵𝐿 + 𝐵, (25)

where 𝐿 and B are, respectively, the length and width of a
cross-section of the cylindrical capsule.

Figure 5 shows the deformation of the flexible capsule in a
shear flow for Reynolds number of Re = 0.05, dimensionless
shear rate of 𝐺 = 0.04, and power-law index of 𝑛 = 0.2 to
1.8. There are several interesting observations from Figure 5.
First, the capsule deforms to a steady shape and then the
membrane rotates around the liquid inside (tank-treading
motion), which is further indicated by the streamlines in
Figure 6. Second, the deformation increases with the power-
law index.When the fluid is shear-thinning (i.e., 𝑛 < 1.0), the
deformation is smaller compared to the Newtonian fluid case
(𝑛 = 1.0), while the deformation is larger compared to the
Newtonian fluid case for the shear-thickening fluid; that is,𝑛 > 1.0. This can be explained by the power-law rheology.
When 𝑛 < 1.0, the effective viscosity near the capsule is
smaller compared to the Newtonian fluid, while the effective
viscosity near the capsule is higher than that of Newtonian
fluid for 𝑛 > 1.0. Based on the definition of𝐺 in (16), the local𝐺 is larger for 𝑛 > 1.0 and smaller for 𝑛 < 1.0 compared to
that of Newtonian fluid. As presented by Sui et al. [1], a larger𝐺 corresponds to a larger 𝐺𝑥𝑦, that is, larger deformation of
the capsule. Third, the Taylor shape parameter 𝐺𝑥𝑦, which is
used to quantify the deformation, increases with the power-
law index. Finally, it is noted that 𝐺𝑥y is approximately linear
function of 𝑛, as shown in Figure 5(b).

In order to study the Reynolds number effect on the
deformation of the capsule, we simulate two additional
Reynolds numbers, Re = 0.1 and 0.025. Figure 7 shows
the deformation of the flexible capsule in a shear flow for
Reynolds number of Re = 0.1 and 0.025, dimensionless
shear rate of 𝐺 = 0.04, and power-law index of 0.2 ≤ 𝑛 ≤1.8. It is found that the deformation (𝐷𝑥𝑦) for Re = 0.1
is larger compared to the cases of Re = 0.05 and 0.025.
However, the difference is quite small, implying that, in the
low Reynolds number regime, for example, Re ≤ 0.1 in
this work, the deformation of the capsule is not significantly
affected by the Reynolds numbers used, as the inertial force
is ignorable here, and the shear forces and capsule elastic
forces are dominant. Therefore, the dimensionless shear rate
(𝐺) should significantly affect the deformation of the capsule,
whichwill be further verified by the simulations shown below
by varying 𝐺.

Finally, we study the shear rate effect on the deformation
of the capsule by using 𝐺 = 0.004 and 0.1 at Re = 0.05.
The deformation of the flexible capsule in a shear flow for
dimensionless shear rate of 𝐺 = 0.1 and 0.004, Reynolds
number of Re = 0.05, and power-law index of 𝑛 = 0.2
to 1.8 is shown in Figure 8, from which several interesting
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Figure 5: Deformation of the flexible capsule in a shear flow for
Reynolds number of Re = 0.05, dimensionless shear rate of 𝐺 =0.04, and power-law index of 𝑛 = 0.2 to 1.8: (a) capsule shapes for
difference power-law indices (the dashed line is for the Newtonian
fluid case where 𝑛 = 1.0) and (b) Taylor shape parameter as a
function of power-law index.

Figure 6: The streamline pattern inside and outside the capsule at
steady state for Re = 0.05, 𝐺 = 0.04, and 𝑛 = 1.0.

observations are obtained. First, the capsule deformation
is sensitive to the dimensionless shear rate. This can be
explained by the definition of 𝐺 in (16): 𝐺measures the ratio
of shear (viscous) forces to the stretching elastic forces, which
is the dominant physical process here. A change of this ratio
would cause significant difference in the capsule deformation.
Second, the power-law index effect is stronger for larger 𝐺,
as indicated by the slopes of the 𝐺𝑥𝑦 functions shown in
Figure 8(c).This can be explained by the fact that the physical
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(b)
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Figure 7: Deformation of the flexible capsule in a shear flow for
Reynolds number of Re = 0.1 and 0.025, dimensionless shear rate
of 𝐺 = 0.04, and power-law index of 𝑛 = 0.2 to 1.8: (a) capsule
shapes for difference power-law indices at Re = 0.1 (the dashed line
is for the Newtonian fluid case where 𝑛 = 1.0), (b) capsule shapes
for difference power-law indices at Re = 0.025, and (c) Taylor shape
parameter as a function of power-law index. 𝐺𝑥𝑦 for Re = 0.05 is
shown in (c) for comparison.

process changes from a shear force dominant to an elastic-
force dominant process when 𝐺 varies from 0.1 to 0.004. For
low𝐺, for example, 0.004, the elastic forces are dominant, and
thus the shear force change caused by the change of the non-
Newtonian rheology is smaller compared to that for larger𝐺,
for example, 0.1. Finally, the deformed capsule is obviously
biased from elliptical cylinder for large 𝐺 and 𝑛; for example,𝐺 = 0.1 and 𝑛 ≥ 1.2. This is caused by the shear-induced
torque on the deformed capsule and the decrease of effective
bending resistance caused by the shear-induced elongation.

To further discuss the non-Newtonian effect, 𝜒 = −𝜇𝜔,
which measures the local shear stress, is introduced [40].
Figure 9 shows contours of 𝜒 for 𝐺 = 0.04, Re = 0.025,𝑛 = 0.6, and 1.4. It finds that 𝜒 near the long axial ends
is larger (i.e., the local shear stress is larger) for 𝑛 = 1.4
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Figure 8: Deformation of the flexible capsule in a shear flow for dimensionless shear rate of𝐺 = 0.1 and 0.004, Reynolds number of Re = 0.05,
and power-law index of 𝑛 = 0.2 to 1.8: (a) capsule shapes for difference power-law indices at 𝐺 = 0.1 (the dashed line is for the Newtonian
fluid case where 𝑛 = 1.0), (b) capsule shapes for difference power-law indices at 𝐺 = 0.004, and (c) Taylor shape parameter as a function of
power-law index. 𝐺𝑥𝑦 for 𝐺 = 0.04 is shown in (c) for comparison.

(a) (b)

Figure 9: Contours of 𝜒 = −𝜇𝜔 for 𝐺 = 0.04 and Re = 0.025: (a) 𝑛 = 0.6 and (b) 𝑛 = 1.4.

compared to that for 𝑛 = 0.6. This is a further explanation
of larger deformation for larger 𝑛.
4. Conclusion

A numerical approach combining the immersed bound-
ary method and the lattice Boltzmann method has been
developed for fluid-structure interactions involving non-
Newtonian fluids. Without loss of generality, the power-law
fluid is taken as a representation of non-Newtonian fluids

to present the method. This method couples the flexible
structure (e.g., capsule) dynamics and the fluid dynamics by
using the immersed boundary method and calculates the
incompressible viscous power-law fluid motion by solving
the lattice Boltzmann equation. In order to achieve the non-
Newtonian rheology, a shear rate-dependant relaxation time
is employed.

The non-Newtonian flow solver has been validated by
conducting a power-law flow in a straight channel. The
power-law index has been varied from 0.6 to 1.4. The present
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numerical results show a good agreement with the analytical
solutions for various values of power-law index, giving us
confidence in the reliability and accuracy of the present
numerical solution procedure.

To study the non-Newtonian effects on the deformation
of a capsule in a power-law shear flow, we have performed
simulations by varying the Reynolds number from 0.025 to
0.1, dimensionless shear rate from0.004 to 0.1, and power-law
index from 0.2 to 1.8. It is found that the capsule deformation
increases with the power-law index for different Reynolds
numbers and nondimensional shear rates. In addition, the
Reynolds number does not have significant effect on the cap-
sule deformation in the flow regime considered. Finally, the
power-law index effect is stronger for larger dimensionless
shear rate compared to smaller values.
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