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Genetic polymorphisms 
of inflammasome genes associated 
with pediatric acute lymphoblastic 
leukemia and clinical prognosis 
in the Brazilian Amazon
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The immune system plays an important role in the control of cancer development. To investigate 
the possible association of inflammasome genes to childhood leukemia we performed a case‑
control study with 158 patients with acute lymphoblastic leukemia and 192 healthy individuals. The 
IL1B and IL18 genetic polymorphisms were genotyped by Polymerase Chain Reaction‑Restriction 
Fragment Length Polymorphism (PCR‑RFLP) and NLRP1, NLRP3 and P2RX7 were genotyped using 
Real Time quantitative PCR (qPCR). The IL1B C/T rs19644 genotype was associated with the risk of 
developing ALL (C/C vs. C/T + T/T OR: 2.48 [95% CI: 1.26–4.88, p = 0.006]; C/C vs C/T OR: 2.74 [95% CI: 
1.37–5.51, p = 0.003]) and the NLRP1 A/T rs12150220 (OR: 0.37 [95% CI: 0.16–0.87, p = 0.023]) was 
associated with protection against infectious comorbidities. It was not found association between 
NLRP3 and P2RX7 polymorphisms and acute lymphoblastic leukemia in our study. Our results suggest 
that the inflammasome single‑variant polymorphisms (SNVs) may play a role in the development and 
prognostic of childhood leukemia. However, this finds requires further study within a larger population 
in order to prove it.

Acute lymphoblastic leukemia (ALL) is a hematopoietic neoplasm characterized by the exacerbated proliferation 
of blasts in bone marrow and affects mainly children aged 2 to 15 years old. In Brazil, according to the National 
Cancer Institute (INCA), it is estimated that for each year of the 2020–2022 triennium, there will be 5920 new 
cases of leukemia (Acute and chronic) in men and 4860 in women in Brazil, which corresponds to an estimated 
risk of 5.67 new cases per 100 thousand men and 4.56 for each 100 thousand  women1,2.

Due to its unknown etiology, studies associate the manifestation of ALL with the interaction of genetic and 
environmental factors, however, less than 10% of cases are attributed to  heredity3,4. New evidence indicates that 
inflammation plays an important role in all stages of cancer development. Since inflammation promotes the 
accumulation of genetic alterations that can inhibit the cell death control pathways of hematopoietic progeni-
tor stem cells (HSPCs) and contribute to the generation of pre-leukemic clones. Mel Greaves observed that a 
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low stimulation of the immune system in early childhood followed by a second response to infections, could be 
responsible for the dysregulation of the immune system and increase the chances of developing  ALL5. However, 
the process for the development of ALL remains  unknown6.

The inflammasome complex constitutes components of innate immunity involved in inflammatory pro-
cesses and has been associated with the development of autoimmune inflammatory diseases and several types of 
 cancers7,8. In acute lymphoblastic leukemia, NLRP1a-induced pyroptosis in hematopoietic progenitor cells can 
prevent cell proliferation and differentiation, contributing to the proliferation of altered blasts that will trigger 
the disease. The dysregulation of the inflammasome complex can also influence the prognosis of patients, since 
studies report that the constitutive activation of NLRP3 seems to cleave the glucocorticoid receptor, this being 
the first line of treatment for ALL, and thus increase the number of  relapses9,10. Besides, studies reported that 
the genetic variants of inflammasome related genes contribute to ALL pathogenesis and prognosis since CARD8 
rs2043211 A/T and T/T genotypes were associated with susceptibility, lower white blood cell (WBC) count and 
T-cell immunophenotype. NF-κB-94 ins/del ATTG  was associated with protection in susceptibility of ALL. In 
addition, IL1β rs16944 and IL18 rs1946518 seems to increase the mRNA expression of NLRP3 and secretion of 
downstream  cytokines11.

Although inflammasomes are associated with several types of diseases, there are few studies that demonstrate 
the relationship between the SNVs involving IL1B (Interleukin 1 beta), IL18 (Interleukin 18), NLRP1 (NLR family 
pyrin domain containing 1), NLRP3 (NLR family pyrin domain containing 3) and P2RX7 (Purinergic receptor 
P2X7) genes and their susceptibility or influence on the prognosis of ALL patients. In this study, we described 
that variants of inflammasomes were associated with the risk of developing pediatric ALL, and the resulting 
clinical prognosis in these patients.

Results
Clinical and epidemiological baseline of the patients. Demographic, clinical and laboratory data 
of ALL patients and controls are shown in Table 1. The mean age among individuals in the control group and 
patients with ALL was 38 and 12, respectively. In addition, the male gender was predominant in both groups 
(66% and 63%). The immunophenotype B-ALL was predominant (85%) in this study. Regarding the presence 
of comorbidities, 45% had some type of comorbidity on diagnosis, the most frequent being infectious diseases 
(86%) (e.g., cytomegalovirus, toxoplasmosis, rubella, varicella, parasitic diseases, among others), followed by 
other comorbidities (14%) (e.g.,  Aplasia and Burkitt’s lymphoma). Most patients relapsed during treatment 
(66%) and approximately 41% of ALL patients died  during  treatment. The hemoglobin average was 8.65  g/
dL, hematocrit 25.4 g/dL, leukocytes 4.720/mm3 and platelets 39.000/mm3.

Association of IL1B C/T rs19644 genotype with pediatric acute lymphoblastic leukemia. In 
Table 2, it is possible to observe the genotypic frequencies of all the SNVs under study. Among all the SNVs, IL1B 
rs19644 (p =  ≤ 0.001), P2RX7 rs2230911 (p = 0.042), NLRP1 rs35865013 (p = 0.000) deviated from the Hardy–
Weinberg balance. The IL1B C/T rs19644 genotype appears to be a risk factor for the development of ALL (C/C 
vs. C/T + T/T OR: 2.48 [95% CI: 1.26–4.88, p = 0.006]; C/C vs. C/T OR: 2.74 [95% CI: 1.37–5.51, p = 0.003]. This 
it is also observed when it adjusted for age and sex (OR: 2.48 [95% CI: 1.14–5.40, p = 0.001]). Supplementary 
Table S1 summarizes the results from multivariate regression analysis for all the SNVs with acute lymphoblastic 
leukemia.

The NLRP1 A/T rs12150220 genotype is associated with protection against infectious comor‑
bidities in pediatric ALL patients. In Table 3, it is possible to observe the genotype frequency of the 
SNVs under study in relation to comorbidities (infectious diseases), relapse and death. Logistic regression 
analysis was performed in order to investigate the association of genotypes with the variables under study. The 
NLRP1 A/T rs12150220 (OR: 0.37 [95% CI: 0.16–0.87, p = 0.023) was associated with protection against infec-
tious comorbidities and this it also observed in multivariate analysis adjusted for age and sex (OR: 0.34 [95% CI: 
0.16–0.73, p = 0.003). In this study, it was not observed association to relapse and death. Supplementary Table S2 
summarizes the results from multivariate regression analysis for all the SNVs according to infectious comorbidi-
ties, relapse and death.

The case and control groups showed similar proportions of allele frequencies for each SNVs, and thus, no 
significant difference in allelic frequencies was found between both groups. The major allele frequencies for each 
polymorphism are shown in Supplementary Table S3.

Discussion
Inflammasomes are multimeric molecular complexes, formed in the cytoplasm in response to endogenous and 
exogenous stimuli that promote the activation of inflammatory  caspases12. Over the years, inflammasomes have 
been linked to  autoimmune13,14 and inflammatory  diseases15 as well as several types of  cancer16. Genetic variants 
of inflammasome related genes can contribute to ALL pathogenesis and prognosis as CARD8 and NF-κB11, how-
ever, there are few studies that demonstrate the role of others genes involved in pathway inflammasome in ALL.

To investigate the possible genetic contribution to childhood leukemia in the inflammasomes, we performed 
a study for the SNVs related to inflammasome genes. When the frequency of SNVs in the case and control group 
with other populations in the world was evaluated, we observed that all subjects presented sequences similar to 
the frequencies described for the Native South-American population, except NLRP1 rs35865013 A/G (A: 0.402 
and G: 0.598), which presented a similar frequency to the population of South  Asia17. The population of the 
Amazon Region has the highest high degree of inter-ethnic admixture due to the intense miscegenation process 
that occurred in the region and the strong indigenous influence on the population. Children with admixed 
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ancestry have a higher risk of developing ALL due to the existence of genetic variations characteristic of Native 
South American. Native South American ancestry is predominantly found in the northern region of Brazil, where 
approximately 80% of the Amazon region is  located18, and the literature has already described its association 
with susceptibility to ALL in children in the Brazilian  Amazon19.

In our study, the IL1B rs16944 polymorphism was associated with the risk of developing ALL. The IL1B gene 
is located on chromosome 2q14 and contains many single-nucleotide variants. IL1B rs16944 is located in the 
promoter region and T allele is associated with the increased of transcription activity and production of IL-1β 
 cytokine20–22 and increased mRNA expression of NLRP3 and ASC11. In the literature, this polymorphism has 
been associated with susceptibility or worse prognosis in individuals with autoimmune diseases and in several 
types of  cancers21,23. In a study by Yin et al. [2016], it was shown that individuals with IL1B G/G rs16944 genotype 
are at risk of developing Myelodysplastic Syndrome (MDS)24. In addition, polymorphisms involving the IL-1β 
cytokine were associated with cytogenetic assessment of what would be considered a good prognosis in patients 
with acute myeloid leukemia (AML) (p = 0.043)25.

After infection or injury, an IL-1β  is  found  at high medullary levels by monocytes and endothelial 
cells, and promotes myeloid differentiation through activation of the NF-kB pathway that results in the expan-
sion of  HSPCs26. Chronic exposure to IL-1β significantly impairs self-renewal and the ability of HSPCs to dif-
ferentiate into lymphoid and erythroid lineage 27. Therefore, chronic sustained inflammation may elicit the stem 
cell insult by inducing a state of chronic oxidative stress with elevated levels of reactive oxygen species (ROS) in 
the bone marrow, thereby creating a high-risk microenvironment for induction of genetic alterations due to the 
persistent inflammation-induced oxidative damage to DNA in hematopoietic cells 28.

Chronic immune stimulation from infectious processes is a trigger for AML and MDS. The history of infec-
tious diseases (tuberculosis, intestinal diseases, pneumonia, septicemia, pyelonephritis, sinusitis, nasopharyngitis, 

Table 1.   Selected characteristics of the childhood leukemia and controls in the Brazilian Amazon. a g/
dL = Gram per decilitre. IQR = Interquantile Range.

Variables

Healthy individuals ALL cases

(n = 192) (n = 158)

Age (years, median [IQR])a 38 [26–52] 12 [4–17]

Gender

Male, n (%) 127 (66%) 100 (63%)

Female, n (%) 65 (34%) 58 (37%)

Ethnicity

White 40 (21%) 21 (13%)

Admixed 139 (72%) 135 (86%)

Black 7 (4%) –

Indian 4 (2%) –

Yellow 2 (1%) (1%)

Immunophenotype

B-ALL – 135 (85%)

T-ALL – 23 (15%)

Residence

Manaus 192 (100%) 90 (57%)

Interior of Amazonas – 57 (36%)

Other state – 11 (7%)

Comorbidities

Yes, n (%) – 72 (45%)

Infectious diseases, n (%) – 62 (86%)

Others, n (%) – 10 (14%)

No, n (%) – 86 (55%)

Relapse

Yes, n (%) – 105 (66%)

No, n (%) – 53 (44%)

Death

Yes, n (%) – 66 (41%)

No, n (%) – 92 (59%)

Hemoglobin (g/dL, median [IQR])a – 8.65 [6.5–10.3]

Hematocrit (g/dL, median [IQR]) a – 25.4 [20.6–30.8]

Leukocyte (g/dL, median [IQR]) a – 4.720 [2.110–39.200]

Platelets (g/dL, median [IQR]) a – 39.000 [16.225–126.500]
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hepatitis C, cytomegalovirus infection and upper respiratory tract infection) was associated with 1.3 times more 
chances of developing AML or MDS, even if the infection occurred 3 years before the onset of the  disease29. Thus, 
chronic inflammation can be identified as one of the triggers of hematological neoplasms.

IL-18 is an important cytokine resulting from NLRP3 inflammasome activation, which is involved in the 
innate and acquired immune response. In multiple myeloma, the increase in serum IL-18 is associated with 
disease progression and lower chances of patient  survival30. In this study, no association was found between 
IL18 polymorphism and ALL. However, in the study by Yalçin et al. on the Turkish population (2014), the G/C 
and C/C genotypes were associated with the risk of developing chronic myeloid leukemia, and the C/C genotype 
was associated with the risk of developing chronic lymphoid leukemia, which suggests a relationship between 
this polymorphism and the development of chronic leukemias characterized by the proliferation of mature cells, 
however, with loss of  functionality31.

Table 2.  Multivariate analysis adjusted for sex and age for the association of single-variant polymorphisms 
(SNVs) in study with acute lymphoblastic leukemia. Adjusted for sex and age (p  valueadj,  ORadj); OR: Odds 
Ratio; p value: < 0.05; 95% confidence interval; AIC: Akaike information criterion value.

Genetic models
Controls
n = 192 (%)

ALL cases
n = 158 (%) OR (95% CI) p value AIC

OR (95% CI)
adj

p value
adj AIC

IL1B rs169744

Codominant

CC 35 (0.18) 13 (0.08)

CT 95 (0.49) 97 (0.61) 2.74 (1.37–5.51) 0.003 478.9 2.48 (1.14–5.40) 0.001 236.3

TT 62 (0.33) 48 (0.31) 2.08 (0.99–4.36) 0.049 0.55 (0.20–1.49)

Dominant

TT 62 (0.32) 48 (0.30) 1.09 (0.69–1.72) 0.701 485.7 1.66 (0.81–3.40) 0.164 245.4

CT-CC 130 (0.68) 110 (0.70)

Recessive

TT-CT 157 (0.82) 145 (0.92)

C/C 35 (0.18) 13 (0.08) 0.40 (0.20–0.79) 0.005 478.3 0.31 (0.13–0.74) 0.006 239.8

Overdominant

TT-CC 97 (0.51) 61 (0.39) 1.62 (1.06–2.49) 0.025 480.9 3.13 (1.59–6.19) 0.000 235.7

CT 95 (0.49) 97 (0.61)

Log-Additive
0,1,2 192 (0.55) 158 (0.45) 0.82 (0.59–1.14) 0.244 484.5 0.86 (0.53–1.37) 0.521 246.9

Table 3.  Multivariate analysis adjusted for sex and age for the association of single-variant polymorphisms 
(SNVs) in study with infectious comorbidities in acute lymphoblastic leukemia patients. Adjusted for sex and 
age (p  valueadj,  ORadj); OR: Odds Ratio; p value: < 0.05; 95% confidence interval; AIC: Akaike information 
criterion value.

Genetic models

Infectious comorbidities

No
n = 86 (%)

Yes
n = 62 (%) OR (95% CI) p value AIC

OR (95% CI)
adj

p value
adj AIC

NLRP1 rs12150220

Codominant

AA 29 (0.34) 33 (0.53)

AT 50 (0.58) 18 (0.29) 0.32 (0.15–0.66) 0.001 194.3 0.34 (0.16–0.73) 0.003 189.8

TT 7 (0.08) 11 (0.18) 1.38 (0.47–4.03) 1.54 (0.50–4.72)

Dominant

AA 29 (0.34) 33 (0.53) 0.45 (0.23–0.87) 0.017 199.6 0.49 (0.24–0.97) 0.039 194.8

AT-TT 57 (0.66) 29 (0.47)

Recessive

AA-AT 79 (0.92) 51 (0.82)

AT 7 (0.08) 11 (0.18) 2.43 (0.89–6.69) 0.079 202.2 2.58 (0.89–7.48) 0.074 195.8

Overdominant

AT-TT 36 (0.42) 44 (0.71) 0.29 (0.15–0.59) 0.000 192.7 0.31 (0.15–0.64) 0.001 188.3

AT 50 (0.58) 18 (0.29)

log-Additive
0,1,2 86 (0.58) 62 (0.42) 0.80 (0.49–1.31) 0.375 204.5 0.85 (0.51–1.40) 0.521 198.6
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The NLRP1 inflammasome is expressed in hematopoietic progenitor cells and its activation results in a process 
of cell death which is dependent on Caspase 1 and is called pyroptosis. Some studies report that the prolonged 
cytopenia, induced by the activation of NLRP1 during infectious processes, ensures a proliferative advantage 
for the leukemic clone, as suggested by the Mel Greaves hypothesis on the development of  ALL32,33. In chronic 
myeloid leukemia (CML), overexpression of NLRP1 gene is associated with the promotion of proliferation and 
reduction of apoptosis in CML cells, in addition to inducing resistance to  imatinib34.

In this study, the NLRP1 A/T rs12150220 genotype was associated with protection against infectious diseases. 
In ALL, infections are present in 49% of patients on  diagnosis35. Studies report that susceptibility to congenital 
toxoplasmosis is significantly associated with SNVs and involves the locus of the NLRP1  gene36, which strength-
ens the Mel Greaves hypothesis that genetic changes in the uterus followed by the acquisition of infections by 
common pathogens are involved in the development of  ALL5,37.

NLRP3 is currently the best-studied member of the inflammasome family expressed in hematopoietic and 
lymphopoietic cells being responsible for the migration and spread of leukemic cells. The inflammatory process 
in leukemic patients promotes release of several chemoattractants and thus increases trafficking of leukemic cells 
and their spread within hematopoietic organs that contribute for the ALL  development38. Paugh et al. (2016) 
reported that decreased methylation of the Caspase-1 promoter results in increased transcription and activation 
of NLRP3 and Caspase1, which cleaves the glucocorticoid receptors used in the treatment of ALL, what suggests 
their association with relapse  episodes10, 39. Besides, the NLRP3 expression is increased in patients with ALL 
compared to healthy  individuals40 but decreased in CML, what suggests different roles of inflammasome activity 
in acute and chronic leukemia. The A/A genotype NLRP3 rs35829419 was associated with risk of acute myeloid 
 leukemia25 but not when it observed CML  patients41. In this study, we did not find association of NLRP3 SNVs, 
futher studies are necessary to better elucidate their role of NLRP3 in ALL.

The P2RX7 receptor is responsible for making NLRP3 sensitive to ATP, which is one of the main DAMPs 
released during inflammation and is highly expressed in tumor cells. Studies describe the high expression of 
P2RX7 in samples from ALL patients, especially those who relapse, as well as an association with dysregulation 
of the HSPCs’ normal functioning, since it affects the ability of colony formation in vitro, which impairs the 
clonal expansion process observed in the HSPCs. However, the role of this mechanism in the development of 
ALL is still unknown 42.

The P2RX7 polymorphisms cause a loss of receptor function, mainly in macrophages, and is responsible for 
a partial reduction of the channel and formation of pores in the  membrane43–45. In chronic lymphoid leukemia, 
P2RX7 rs3751143 polymorphism appears to influence patient survival, and the A/C genotype is associated with 
longer survival (104 months) than the A/A genotype (72 months)46,47. In this study, we did not find association 
between P2RX7 polymorphisms and ALL. However, one of the main infectious comorbidities found in our 
patients was toxoplasmosis, an infection caused by Toxoplasma gondii. The P2RX7 receptor is an important 
mediator in the control of infection by Toxoplasma gondii, since it prevents its proliferation by stimulating the 
production of reactive oxygen species (ROS) and facilitates the acidification of parasitophorous vacuoles in 
macrophages infected by the  parasite48. Loss of receptor function may be responsible for the susceptibility to 
Toxoplasma gondii infection in patients with acute lymphoblastic leukemia in this study, however, prospective 
studies are needed to confirm this relationship.

This study has some limitations. Despite the association of SNVs with ALL inflammasome and clinical 
data, the study population is small compared to other studies involving SNVs. Thus, prospective studies with a 
larger population are necessary in order to confirm the importance of the polymorphisms under study in ALL, 
including those in adult patients and rearrangements. The small sample size did not allow the comparison of the 
studied genotypes and alleles with the laboratory data. The absence of the analysis of gene expression and the 
determination of serum levels of proteins also limited the study, since they made it impossible to gain a better 
understanding of the influence of these molecules on the variables under study. Moreover, the control group 
was composed of blood donors. According to the Brazilian Ministry of Health, candidates of at least 16 years 
of age with the requirements of those responsible are eligible, however, the group with the highest adherence to 
donation are those over the age of 18, and these are the main components of our sample. However, the case group 
was composed of leukemic patients within the period of major incidence of disease (< 18 years). Although we 
have included this topic as a limitation of the study, we understand that when using children as a control group, 
false results could be formulated, since they could develop the disease after the study. While adults, supposedly 
would have had a longer time to develop the disease.

To our knowledge, this is the first study to describe the frequency of polymorphisms in the inflammasome 
genes in patients with acute lymphoblastic leukemia in the Amazon region. Inflammasomes are important com-
plexes in the defense of the host and contribute to neoplastic development. Thus, the variant IL1B C/T rs16944 
was associated with susceptibility to ALL in individuals from the Brazilian Amazon region. In addition, the vari-
ant NLRP1 A/T rs12150220 can promove protection from infectious diseases in acute lymphoblastic leukemia 
patients. However, future studies should be carried out in order to better elucidate the influence of these SNVs 
on the pathogenesis of ALL.

Materials and methods
Patients and sampling. In the case group, samples were included from 158 pediatric patients diagnosed 
with ALL according to the classification criteria of the World Health Organization (WHO)49, and who were 
treated at Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM). The patients had 
cryopreserved samples in the DNA library of the HLA typing laboratory of the HEMOAM, were < 18 years, of 
either gender or unrelated. Insufficient or low-concentration DNA samples, and patients with a history of bone 
marrow transplantation were excluded from the study.
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The healthy individuals (control group) consisted of 192 samples from blood donors of either gender, who 
donated at HEMOAM between January and December 2015 and agreed to participate in the research. In order to 
be considered healthy, all candidates were tested serologically for HIV, HCV, HBV, HBV, HTLV-1/2, Syphilis and 
Chagas disease and for HIV, HBV, HCV using the NAT HIV/HCV/HBV Kit. In addition, they were screened in 
interviews for diseases and other risk factors, according to the Brazilian Ministry of Health technical standards. 
Insufficient or low-concentration DNA samples and related candidates were excluded.

Ethical issues. This study was approved by the Research Ethics Committee of the HEMOAM Foundation 
under protocol number 3.335.123/2019, CAAE 12615918.9.0000.0009. Prior inclusion of all patients and con-
trols in the study, all the respective parents or legal guardians read and signed the informed consent form. This 
study was carried out in accordance with the guidelines of the Declaration of Helsinki and Resolution 466/12 of 
the Brazilian National Health Council for research involving human beings.

Biological sample and data collection. Approximately 4 mL of peripheral blood was obtained from 
ALL patients in remission using venipuncture in tubes with a vacuum system containing EDTA (BD Vacutainer 
EDTA K2®). From the control group, approximately 12 mL of peripheral blood were collected by venipuncture 
in tubes with a vacuum system containing EDTA, Sodium Citrate (BD Vacutainer Citrate Tube®) and with Sepa-
rator Gel (Gel BD SST® II Advance) for complete blood count, biochemical tests and serology, respectively. In 
addition, demographic (age, gender), laboratory (blood count, immunophenotype) and clinical (comorbidities 
[infectious diseases and others], relapse and death), data were obtained from searches of medical records in the 
medical and statistical care system (SAME), iDoctor system and statistics sector of the HEMOAM.

Infections serologically tested as  IgG+ and  IgM+ (cytomegalovirus, toxoplasmosis, rubella, varicella, parasitic 
diseases, among others) were considered as infectious comorbidities according to Silva-Júnior et al. (2019)50. 
Aplasia, Systemic Arterial Hypertension (SAH), Diabetes Mellitus and Down Syndrome were included in the 
group “Others”. In addition, patients who relapsed after induction therapy (35th day of treatment) were used as 
a relapse criterion. Death that occurred within 5 years after diagnosis was considered.

Genomic DNA extraction. Genomic DNA extraction from blood samples (case group) was performed 
with the triplePrep Kit® GenomicPrep DNA Extraction kit (GE Healthcare Life Sciences) and BIOPUR Kit mini 
spin plus extraction® (Mobius Life Sciences) following the recommendations described by the manufacturer. 
For the samples of the control group, the QIAmp DNA Kit (QIAGEN, Chatsworth, CA, USA) was used. After 
extraction, the DNA was evaluated by readings at 260 nm with the NanoDrop™ 2000/2000c spectrophotometer 
(Thermo Scientific™).

Selection and genotyping by PCR‑RFLP. Candidate gene regions were selected based on SNP databases 
(Cancer Genome Anatomy Project and SNP500 database)51. Among them, we selected upstream (IL1B rs16944 
and IL18 rs187238), downstream (NLRP3 rs10754558 and rs10802502), missense (NLRP1 rs12150220, P2RX7 
rs3751143 and rs2230911) and intron variants (NLRP1 rs35865013). SNVs based upon following criteria: func-
tional effects, minor allele frequency (MAF) (≥ 3%) and previously reported association with hematological 
neoplasm (mainly leukemia).

PCR reactions were performed according to the protocol described by Bhat et al. (2014) and Folwaczny 
et al. (2005) and the methods description partly reproduces their  wording52, 53. For IL1B rs16944, the following 
sequences were used: 5′TGG CAT TGA TCT GGT TCA TC-3′ (Forward) and 5′GTT TAG GAA TCT TCC CAC TT-3′ 
(Reverse); and for IL18 rs187238: 5′CAC AGA GCC CCA ACT TTT TAC GGG TAG A-3′ (Forward) and 3′GAC TGC 
TGT CGG CAC TCC TTGG-5′ (Reverse). The mix was composed of 17.3 μL of H2O MiliQ, 2.5 μL of 10 × buffer, 
2.0 μL of MgCl2, 1.0 μL of dNTPs, 0.5 μL of each primer, 0.2 μL of Taq DNA polymerase and 2.0 μL of Genomic 
DNA. Clicking was performed on the Applied Biosystems thermocycler (Veriti® 96-Well Thermal Cycler, Carls-
bad, USA) using the following programs: 1 cycle at 95 °C for 4 min, 35 cycles at 95 °C for 30 s, 56 °C for 30 s, 72 °C 
for 30 s and 72 °C for 10 min (IL1B) and 1 cycle at 95 °C for 10 min, 35 cycles at 95 °C for 30 s, 60 °C for 30 s, 
72 °C for 30 s and 72 °C for 10 min (IL18). The PCR product was subjected to the RFLP reaction with 7.8 μL of 
H2O MiliQ, 2.0 μL of buffer 4, 0.2 μL of the restriction enzyme IL1B rs16944 (AvaI) and IL18 rs187238 (MboII) 
(10 U/μL, Promega, Madison WI, USA) and 15.0 μL of the PCR reaction product, with subsequent incubation in 
a thermoblock at 37 °C overnight (~ 16 h). The digestion of the products was observed in a 3% agarose gel, and 
the genotyping was characterized by IL1B (T/T-304 bp), (C/C-190 pb), (C/T-304/190/114 bp) and IL18 (C/C: 
155 bp), (G/G: 116 bp) and (G/C: 155/116/39).

Genotyping by real‑time quantitative PCR (qPCR). The genotyping of the NLRP1, NLRP3 and 
P2RX7 polymorphisms was performed using the Real-Time Quantitative PCR (qPCR) technique, using allele 
specific TaqMan fluorescent probes that allow the discrimination of the studied SNVs. The qPCR reactions were 
performed in 96-well microplates with 2.25 µL of ultrapure water, 2.5 µL of the genotyping Master Mix (1×), 
0.25 μL of TaqMan® assay (20×), containing 36 μM of each primer and 8 μM of each TaqMan® probe with a final 
volume of 7 μL. The probes used in experiment are shown in Supplementary Table S4. The QuantiStudio™ Design 
& Analysis Applied Biosystems thermal cycler was used to amplify the sequences of interest and allelic discrimi-
nation under the following condition: 95 °C for 10 min for activation; 40 cycles at 92 °C for 15 s for denaturation; 
and 40 cycles at 60 °C for 90 s for annealing and extension.
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Statistical and data analysis. Association between the SNVs and ALL susceptibility was calculated by a 
Fisher’s exact test with a 95% confidence interval (95% CI) using the software GraphPad Prism v.5 (San Diego, 
CA, USA). Alleles analysis was performed via the website http:// ihg. gsf. de/ cgibin/ hw/ hwa1. pl. and the associa-
tions between the allelic/genotype frequencies among patients according to infectious comorbidities, relapse 
and death were examined under four genetic models, specifically, codominant, dominant, recessive and over-
dominant models using the package “SNPassoc” version 2.0.2 (https:// cran.r- proje ct. org/ web/ packa ges/ SNPas 
soc/ index. html) for R software version 4.0.3 (www.r- proje ct. org). The best genetic model was performed via 
Akaike information criterion (AIC). The Hardy–Weinberg (HW) balance was determined for all the SNVs. An 
univariate and multivariate logistic regression analysis was performed in order to investigate the association of 
genotypes with the presence of infectious comorbidities, relapse and death using the software STATA v.13 (Stata 
Corp, 2013, College Station, Texas, USA) after adjusting for age and sex.
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