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Abstract

Despite intensive study, most of the specific genetic factors that contribute to variation in

human height remain undiscovered. We conducted a family-based linkage study of height in

a unique cohort of very large nuclear families from a founder (Jewish) population. This

design allowed for increased power to detect linkage, compared to previous family-based

studies. Loci we identified in discovery families could explain an estimated lower bound of

6% of the variance in height in validation families. We showed that these loci are not tagging

known common variants associated with height. Rather, we suggest that the observed sig-

nals arise from variants with large effects that are rare globally but elevated in frequency in

the Jewish population.

Author summary

Rare variants with large effects have been suggested to account for some of the missing

heritability of height, but detection of such variants in genome-wide association studies

(GWAS) requires very large sample sizes due to their low frequencies. Here, we designed

a unique study of height, in which we sought to increase the effective frequency of rare

variants in our sample. This was done by assembling a cohort of very large nuclear fami-

lies, with an average of 12 and a maximum of 20 siblings per nuclear family. In this design,

any variant segregating in our cohort has a minimum expected frequency of ~1%, regard-

less of its frequency in the general population. In addition, we recruited all participants

from a founder (Jewish) population, in which some variants that are rare in a cosmopoli-

tan population can rise to high frequencies. To further increase power, we developed

methods to obtain highly accurate height measurements, genotype calls, and inheritance

pattern reconstructions. These factors allowed us to detect many more QTLs than previ-

ous family-based studies of height, despite a modest sample size of only 397 participants.

The approach described in this paper provides insights into the genetic basis of height and
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the roles of population-specific vs. cosmopolitan variants, and may serve as a complement

to GWAS for genetic investigations of other complex traits.

Introduction

Height is a classic genetically complex quantitative trait with high heritability (~80%-90%

[1,2]). Despite intensive study, the genetic basis of variation in height remains mostly unex-

plained. Genome-wide association studies (GWAS) in hundreds of thousands of individuals

have identified hundreds of common variants significantly associated with height [3,4]. How-

ever, the individual effect sizes of these variants are small, and all variants identified to date

jointly explain only ~20% of the heritability of height. One proposed explanation for the gap

between the overall heritability of height and that explained by common variants is the contri-

bution of rare genetic variants with large phenotypic effects [5]. Recent studies lend support to

this idea by identifying such variants and showing that their effect sizes are inversely related to

their frequencies [6,7]. Several examples of large-effect variants that are rare globally but are

more common in certain founder populations have been reported for height (in Sardinians [8]

and in Puerto Ricans [9]) and diabetes (in Greenlanders [10]), however, identifying associa-

tions between rare variants and traits of interest typically requires very large sample sizes [11].

For instance, 750,000 participants were required to identify 32 rare variants (those with fre-

quency<1%) that affect height [7].

Rare variants can in principle be identified in family-based linkage studies with lower sam-

ple size requirements than association studies. 21 family-based studies of height have been

conducted, mostly prior to the GWAS era [12–32]. Only a few of these studies detected Quan-

titative Trait Loci (QTLs) linked to height at the accepted level of genome-wide statistical sig-

nificance, with the three most convincing findings all reported by a single study with the

largest sample size of subjects from one ethnicity [23]. Moreover, few if any of the reported

QTLs were replicated across multiple studies [14,23,32].

We sought to overcome some of the limitations of previous linkage studies by focusing on

several factors that influence statistical power, including the minor allele frequency (MAF) of

causal variants, the strength of linkage between causal and typed variants, and the quality of

genotyping and phenotyping [33,34]. Specifically, we attempted to increase power by studying

the genetic architecture of height in very large nuclear families (10 to 20 siblings per family)

from a founder (Jewish) population. We acquired highly accurate measurements of height,

and we used dense genotyping arrays to fully reconstruct the inheritance patterns in these fam-

ilies. The use of large pedigrees drawn from a population with a small effective population size

should increase the effective allele frequency of variants of interest, enabling their detection in

a study with a modest sample size.

Results

Increasing effective allele frequencies by studying very large nuclear

families

To increase the power to detect effects of rare variants, we sought to increase their effective fre-

quency in our cohort by studying very large nuclear families. A rare variant carried by a parent

of such a family automatically rises to a frequency of ~25% among the children. However, this

effect is rapidly diluted when many unrelated small families are combined, as was done in all

previous family studies of height. To minimize such dilution, we recruited 397 participants
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from 29 very large nuclear families containing 10 to 20 siblings per family (mean = 12 siblings).

In addition, siblings in eight of the nuclear families have first cousins in several other nuclear

families in the cohort. Any variant segregating in our cohort has a minimum expected MAF of

~1% if it is present in only one family, and higher if it is present in multiple families, regardless

of its frequency in the general population. See S1 Table for more details on the cohort.

Increasing allele frequencies by studying a founder population

Another approach to increase MAF is to study a founder population, where some variants that

are rare in a cosmopolitan population can rise to high frequencies due to a small number of

founders and subsequent genetic drift. We therefore recruited our cohort from the Jewish pop-

ulation. Specifically, 80% of our cohort consists of Ashkenazi Jews (AJ). Today’s 10 million AJ

have an effective population size (Ne) of ~350 as a result of a founder event ~700 years ago

[35]. This effective population size is small even compared to other founder populations such

as Finland (Ne�3000) [36] and Iceland (Ne�5000) [37]. Two unrelated AJ on average share

~30 times more of their genome in long (>3Mbps) identity by descent (IBD) segments than

two unrelated non-Jewish Caucasians [38]. As a result, variants that are rare in other popula-

tions can rise to high frequencies in AJ. Indeed, at least 40 Mendelian genetic diseases in AJ

are caused predominantly by such founder mutations that are non-existent or rare in other

populations [39,40]. The other 20% of our sample are Jews of other ethnicities. Previous stud-

ies showed that Jews who are not Ashkenazi are on average closer genetically to Ashkenazi

Jews than to their non-Jewish neighbors [41].

To estimate the shift in allele frequencies between the European and AJ populations, we

compared allele frequencies in whole genomes of 7509 non-Finnish Europeans and 151 Ash-

kenazi Jews, both from the gnomAD database [42] (Fig 1). The database contains 90.5 million

bi-allelic high quality variants found in Europeans, and 82.5 million (91%) of these are rare

(MAF<1%). 95% of the rare variants found in Europeans are not observed in the AJ sample,

but 33,331 variants that are rare or not observed in Europeans are common in AJ (allele fre-

quency�5%), and 757 of them reach allele frequency�10%. To test whether the increase in

the frequency of rare variants in AJ is a consequence of small sample size, we used the Euro-

pean allele frequencies as probabilities for randomly sampling 151 Europeans from gnomAD

and repeated the analysis. No rare variant reached a frequency of�5% in this sub-sample

(Fig 1B).

Increasing the MAF of a variant increases the power to detect that variant in several ways.

First, power is dependent directly on MAF. Second, rare variants tend to have a lower quality

of genotyping and imputation [33], and increasing MAF allows for a higher quality of both,

especially when using a population-matched reference panel for imputation. Third, the effect

sizes of variants are typically inversely related to their frequencies in cosmopolitan populations

[6,7], and therefore causal variants that are rare elsewhere but are common in our study popu-

lation may have larger effect sizes. The combination of these factors, together with our use of

large families and accurate phenotyping (see below), has the potential to increase power to

detect Quantitative Trait Loci (QTL) that influence height.

Phenotype accuracy

Most previous height studies used measurements acquired incidentally as part of studying

other traits or diseases. Such measurements may suffer from low accuracy. To ensure pheno-

type accuracy and increase statistical power, we measured the height of each participant to the

nearest 0.1 cm, with four technical repeats, and with one researcher (D.Ze.) conducting all

measurements and using the same measurement system. We tested different methods to
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correct heights for age and sex and used a non-linear correction for age that maximized herita-

bility in our sample.

Multiple siblings and dense SNP arrays enable reconstruction of fully

informative inheritance patterns for linkage analysis

Nearly all previous family linkage studies of height [12–32] used sparse maps of microsatellite

markers, which provide incomplete inheritance information content and a corresponding

reduction in statistical power to detect QTL [43]. A dense map of single nucleotide

Fig 1. Founder effect in Ashkenazi Jews. (a) Minor allele frequency of variants in 7509 Europeans (X-axis) vs. their

allele frequency in 151 Ashkenazi Jews (Y-axis). Each dot represents one of ~90.5 million genetic variants from the

gnomAD database. Color displays density, i.e. the number of variants in that region of the plot, on a log10 scale. The

magenta rectangle encloses all variants that are rare (MAF<1%) in Europeans but common (MAF�5%) in Ashkenazi

Jews. Black line shows y = x. (b) Same as in (a), but with allele frequency in a random sub-sample of 151 Europeans

shown on the Y-axis.

https://doi.org/10.1371/journal.pgen.1008082.g001

Analysis of the genetic basis of height in large Jewish nuclear families

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008082 July 8, 2019 4 / 22

https://doi.org/10.1371/journal.pgen.1008082.g001
https://doi.org/10.1371/journal.pgen.1008082


polymorphisms (SNPs), combined with multipoint linkage analysis, can generate near-perfect

information content [43], but existing computational tools are not well-suited to carry out

multipoint analysis with hundreds of thousands of markers in very large families. To obtain

fully informative inheritance patterns at every position in the genome, we genotyped ~630,000

SNPs and developed a method for identity-by-descent (IBD) reconstruction that leverages

information from the large number of siblings in each family. Briefly, we compared genotypes

of each sibling pair to identify IBD segments, and then used these segments identified across

all pairs to reconstruct, at every genomic position, the fully informative inheritance pattern of

all four parental haplotypes in the children (S1 Fig). Every recombination event in a sibling

was identified as a change in his or her IBD relationship pattern with the other siblings.

Because the number of recombination events per chromosome per participant (typically 1–2)

is much smaller than the number of siblings in each of our families, we were able to identify

these IBD switching events with high certainty, even in the absence of parental genotypes. To

test the accuracy of the method, we calculated the average pair-wise IBD sharing for the

genome. Two siblings shared zero, one or two alleles IBD for 24.9%, 50% and 25.1% of the

genome, compared to the theoretical expectation of 25%, 50% and 25%. The IBD segments

identified by our method provide near-perfect inheritance information for linkage analysis

between genomic loci and height.

QTL mapping

To identify regions of the genome that co-segregate with height differences (QTLs), we con-

ducted linkage analysis by contrast tests (ref. [44]). Briefly, at every position in the genome, we

compared the heights of siblings that inherited one of the two possible haplotypes from a given

parent to the heights of those who inherited the other haplotype. We used permutations of

height among siblings in a family to calculate significance, which we express as an equivalent

LOD score (S2 Fig). It has been shown [45] that for sib pair analysis, genome-wide significance

at an FDR of 5% corresponds to LOD�3.6 (equivalent to p-value� 2X10-5). We identified

two significant QTLs, on chr14:71,145,000–71,855,000 bp (hg19 genome coordinates) with

LOD = 4.13, and on chr17:78,845,000–79,695,000 bp with LOD = 3.8. It is important to note

that our QTL sizes are large, spanning hundreds of thousands of base pairs (as is typical in

linkage analysis), compared to GWAS results that identify variants in LD blocks that have typi-

cal sizes of tens of thousands base pairs, and that sometimes can even indicate the causal SNPs

if they are genotyped. Permutation analysis showed that 0.11 QTLs are expected by chance at

this threshold, which corresponds to an empirical FDR of 5.5%, in close agreement with the

theoretical value.

The QTL on chromosome 14 includes two genes: PCNX, an oncogene [46] and homolog to

a drosophila component of the Notch signaling pathway [47], which functions in several devel-

opmental processes, and MAP3K9, a Mitogen-activated protein kinase. The QTL on chromo-

some 17 contains 25 genes, including an interesting candidate, RPTOR—a binding Partner of

Target of Rapamycin (TOR) which control cell growth [48]. Mutations in RPTOR have been

shown to cause significant reduction in body size in flies [49] and mice [50].

We reasoned that because height is a complex trait that is governed by multiple loci with

relatively small effects, an FDR analysis of larger sets of loci with lower locus-specific signifi-

cance would be appropriate and could increase the sensitivity of our study. This approach has

been previously employed in GWAS [51], but was not attempted in previous linkage studies of

height. To carry out such analysis, we compared the number of observed QTLs for a range of

LOD score thresholds below 3.6 to the number expected in the absence of true signals, deter-

mined from permutations. As expected, lower thresholds resulted in larger numbers of
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detected QTLs, with an increasing FDR (Fig 2A and 2B). Importantly, the total number of

detected QTLs remained significant (P<0.05 compared to permutations, Fig 2C) from the

strictest threshold (LOD = 3.6; 2 QTLs; P = 0.009; FDR = 5.5%), down to LOD = 1.1 (24 QTLs;

P = 0.019; FDR = 68%; S2 Table). We used the FDR to estimate the number of true QTLs as a

function of decreasing detection thresholds (Fig 2A). The number of true QTLs maximizes at

LOD = 1.3, where we estimate 8.8 true QTLs out of 20 that were detected (P = 0.002;

FDR = 56%).

Variance explained by QTLs

To estimate how much phenotypic variance can be explained by the detected QTLs, and to test

whether the detected loci tag common SNPs identified by previous height GWAS [52], we con-

ducted variance partitioning in a cross validation framework designed to avoid potential over-

fitting that could result from detecting QTLs and estimating their effect sizes in the same

dataset. We generated 100 training sets that each randomly sampled 2/3 of the families. In

each set, we mapped QTLs as described above. The results were similar to those obtained with

the full dataset (S3 Fig), although on average, fewer QTLs were in the training sets as a conse-

quence of the smaller sample size. We then used the 1/3 of the families held out of each train-

ing set as a test set, and simultaneously estimated the contributions of three different sources

of genetic variance to height variance in a variance components model (implemented in the

software package GCTA [53]). Specifically, the model included variance component terms for

the detected QTLs (using SNPs from the detected QTLs in the training sets), the common

SNPs associated with height by GWAS [52], and the overall genomic relatedness among indi-

viduals; the latter controls for pedigree structure, and can also capture a polygenic signal of

height. To further control for upward bias in the estimation of variance explained in the test

set due to shared environment of family members and tagging of polygenic background, we

used as a baseline the variance explained in GCTA in a similar model with the same number of

SNPs but from random genomic segments similar in size to the real QTLs (“random QTLs”).

The reported variance explained by QTLs (Fig 2D) are after subtraction of variance explained

by the “random QTLs” in the null model.

The total variance explained by the QTLs increased as the detection threshold was lowered

and a larger number of QTLs were included in the model, but the variance explained over and

above the null model initially also increased (Fig 2D). For example, at LOD�3, we detected an

average of 0.74 estimated true QTLs per training set (1 QTL at FDR = 26%), and these

explained an average of 1.3% of the phenotypic variance above the null model in the test sets.

At a lower detection threshold of LOD = 1.9, we estimated an average of 3.7 true QTLs (7

QTLs at FDR = 47.5%), and these explained on average 5.8% of the variance above the null

model. For low detection thresholds (LOD�1.3), the variance explained above the null model

decreased, presumably because too many false discoveries were included.

To test whether QTLs explained variance in height by tagging previously discovered height-

associated common variants, we ran the variance components model with and without includ-

ing the GWAS SNPs. The variance explained by the QTLs in both models was similar (0.1%

difference, t-test P = 0.72, S4 and S5 Figs). This result suggests that the QTLs we identified are

novel and are not simply tagging common SNPs that were previously identified by GWAS.

The GWAS SNPs explain in our variance components model 11.2±1.8%, uniformly across

LOD thresholds regardless of the number of QTLs they compete against. This is similar to the

amount of variance explained reported in the study which originally identified these GWAS

variants 3.
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Specific chromosomes contribute disproportionally to height and in

accordance with the QTL signals

To assess how much phenotypic variance can be explained by entire chromosomes, we esti-

mated a genomic relatedness matrix (GRM) from all the SNPs on each autosome, and let all 22

GRMs compete together at the same time in a variance components model to explain pheno-

typic variance (Fig 3). We found no correlation between variance explained and chromosome

length (Pearson r = –0.08, P = 0.71), although we cannot rule out that such a correlation exists,

as the standard errors in the estimation of single chromosome contributions are large. In con-

trast, the variance explained by chromosomes is highly correlated with the top LOD score on

each chromosome (Pearson r = 0.7, P = 2.9x10-4; Spearman r = 0.6420, P = 0.0016). This corre-

lation arises in part from the results for chromosome 14, which explains the most variance in

the variance components model (25%±7.8%) and has the single most significant QTL. To test

whether the correlation is driven solely by chromosome 14, we omitted it from the analysis.

The correlation fell but remained significant (Pearson r = 0.53, P = 0.015; Spearman r = 0.59,

P = 0.006).

These results suggest that at least in our sample, variance explained by some of the chromo-

somes captures contributions of small regions with large effects rather than solely infinitesimal

contributions distributed throughout the entire chromosomes. To investigate this further, we

simulated 100 sets of phenotypes from an infinitesimal model, in which normally distributed

small effect sizes were randomly assigned to all SNPs in the genome while maintaining the

overall heritability. For each simulated data set, we calculated the distribution of variance

explained by entire chromosomes. The correlation between variance explained and chromo-

some length in the different simulated sets was r = 0.19±0.19 (Mean±SD), stronger than the

r = –0.08 observed for the real data, although the difference was not statistically significant

(P = 0.09, S6 Fig). The observed variance explained by chromosome 14 was significantly

higher than expected from the infinitesimal model. Only 5/2200 chromosomes in the simu-

lated data sets explained as much as 25% of the variance (Bonferroni corrected P = 0.05, Fig

3C), and all of these five observations were for chromosomes that are longer than chromosome

14.

Discussion

Here, we studied height in a unique cohort of very large nuclear families from a founder popu-

lation. This strategy was designed to increase the effective allele frequency of some variants

that are otherwise rare, thereby also increasing our power to detect their effects on height. This

approach enabled us to detect significant QTLs for height in a study with modest sample size.

We also used FDR analysis to identify a larger number of QTLs that were highly significant as

a set, despite few of the QTLs achieving significance individually. Using a variance compo-

nents model, we showed that these QTLs explained 6% of the variance in height in a cross vali-

dation framework, and that they were not tagging common variants previously identified as

associated with height by GWAS. The actual fraction of variance explained by the QTLs is

likely higher because of the conservative nature of the estimation procedure. Further, we

Fig 2. QTL mapping. (a) For each LOD detection threshold, the number of detected QTLs is plotted in blue, the

expected number of false-positive QTLs based on permutation analysis is plotted in red, and the difference between

these two numbers is plotted in green. (b) Permutation-based false discovery rate at each detection threshold (c)

Statistical significance of the number of detected QTLs at each threshold, shown as–Log10(permutation-based P-

value). Red line shows P = 0.05. (d) Variance explained by QTLs in a cross-validation framework, compared to a null

model with random genomic segments of similar size. Error bars represent the standard errors (SE) of the median of

the variance explained in the 100 training/test sets.

https://doi.org/10.1371/journal.pgen.1008082.g002
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showed that the variance contributed by chromosome 14, and possibly by some of the other

chromosomes, arises at least in part from small regions with large effects (which correspond to

the detected QTLs), rather than solely from infinitesimal contributions distributed throughout

the entire chromosomes.

Taken together, these results suggest that variation in height in our sample arises from a

combination of a small number of QTLs with large effects and a large number of common var-

iants with small effects. Because the detected QTLs are not tagging previously identified com-

mon variants, they likely arise from variants that are elevated in frequency in the AJ

population. Although we have not identified the specific variants underlying the QTLs, we

speculate that candidate variants can be identified by sequencing the parents of the pedigrees

and searching for variants that are rare in other populations, common in AJ, and follow segre-

gation patterns consistent with the QTL signals. The approach described in this paper, coupled

with recruitment of additional large families (which are abundant in the Jewish population

[54,55]), may provide further insights into the genetic basis of height and the role of popula-

tion-specific vs. cosmopolitan variants, and may serve as a complement to GWAS for genetic

investigations of other complex traits.

Methods

Ethics statement

This study was approved by the IRB of Shaare Zedek Medical Center, Jerusalem, Israel

(IRB#131/12), Princeton University, Princeton, NJ, USA (IRB#0000006027), and UCLA, Los

Angeles, CA, USA (IRB#14–000357). In all cases written consent was obtained.

Participants recruitment and measurements

Participants were recruited in Israel and in the US after receiving IRB approvals in both loca-

tions. All participants gave written informed consent, then filled a questionnaire about their

growth process, medical history, lifestyle during growth years (nutrition, sleep, physical activ-

ity, etc.), and ancestry origins and heights. Participants’ heights were measured with a Seca 213

mobile measurement system to the nearest 0.1 cm with 4 repeats (participants stepped off and

on the measurement system for repeated measurements). We also measured sitting height

(±0.1 cm, 3 repeats) and arm span (±1 cm, 3 repeats). The participants donated saliva samples

into DNA Genotek OGR-500 tubes from which DNA was extracted by Ethanol precipitation.

The samples were genotyped by RUDCR (Rutgers) using Affymetrix Axiom Biobank Array

(~630,000 SNPs).

The Heights distributions in our sample were normal with 210 males at 172.7cm ± 5.7cm

(Mean ± S.D.) and 187 females at 161.6 ± 5.5 cm (Mean ± S.D.) and are representative of the

Israeli population (Mean = 173.7 cm for Israeli males and 160.3 cm for females [56]). See S1

Table for more details on the cohort.

Height correction for age

Longitudinal studies have shown that people “shrink” non-linearly with age, and that the rates

of shrinkage also differ for men and for women [57,58]. We therefore used the data of a

Fig 3. Height variance explained by chromosomes. (a) Height variance explained by each chromosome ± SE is

plotted against chromosome length. Red line shows the linear fit. (b) Height variance explained by each

chromosome ± SE is plotted against the maximum LOD score on that chromosome. (c) Histogram of variance

explained by each of 2200 chromosomes simulated under an infinitesimal model. Red arrow shows variance explained

by chromosome 14 in the real data.

https://doi.org/10.1371/journal.pgen.1008082.g003
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previous longitudinal study [57] to derive sex specific non-linear equations for height shrink-

age as a function of age. Their data included measurements of the rate of height change for

every decade for men and women separately from age 20 to 90. They showed that men and

women start shrinking around age 30 and that between age 30 and 80 the rate of height loss

increases linearly with age (i.e. constant acceleration of height loss). We plotted these rates and

used a linear fit to derive the dependence of the rate of height loss on age. Height loss rate

increases by 0.00416 cm per year for men, and by 0.00641 cm per year for women both starting

at age 30. We integrated these equations to receive quadratic formulas for height loss:

Defining:

H � Height Loss

For males:

From plotting longitudinal data [57] and fitting a linear regression:

dH
dAge

¼ � 0:00416� Ageþ 0:124

Age when starting to shrink:

dH
dAge

¼ 0! Agestart shrinking ¼
0:124

0:00416
¼ 29:8

Defining t� Age − 29.8

The rate of height loss after age 29.8:

dH
dðtÞ
¼ � 0:00416� t

Integrating to get the height loss as a function of time (after age 29.8):

H tð Þ ¼
Z

dH
dðtÞ
¼

Z

� 0:00416� t ¼ � 0:00208� t2 þ C

Hðt ¼ 0Þ ¼ 0! C ¼ 0

HðtÞ ¼ � 0:00208� t2

For females:

dH
dAge

¼ � 0:00641� Ageþ 0:18975

Agestart shrinking ¼ 29:6

t � Age � 29:6

HðtÞ ¼ � 0:003205� t2
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Finally, since participants reported ages in full years, we approximate:

Height LossðAgeÞ ¼

(
0; Age � 30

� 0:00208� ðAge � 30Þ
2
; Males;Age > 30

� 0:003205� ðAge � 30Þ
2
; Females;Age > 30

To compare our quadratic correction for age to a linear one, we first estimated the linear

correction from our data by using SOLAR [59] and applying age and sex as covariates in a lin-

ear model. The linear correction for height was 0.0995�(Age-35.084) + Height corrected for

sex. We then compared the linear and quadratic corrections by estimating (using SOLAR) the

heritability of our cohort for heights corrected by the two models. The heritability of height

after a quadratic correction to age was h2±S.E = 0.86±0.07, higher than the h2±S.E = 0.81±0.08

achieved after a linear correction. This improvement of the quadratic model over the linear

one might be an underestimation since the quadratic correction was estimated from a different

cohort of a longitudinal study, while the linear correction was estimated with the same data

that was used to estimate the heritability. For any further analysis we therefore used the qua-

dratic correction.

Height correction for sex

To correct height for sex we standardized (z score) the heights of females and males separately

and then pooled the standardized heights together.

Power analysis

To calculate power, we used ANNOVA F-test, as follows in Appendix A5 of [34]:

The non-centrality parameter (NCP):

l ¼
f � n � ðMAF � MAF2Þ � b

2

1 � 0:5 � ½h2 � 2 � ðMAF � MAF2Þ � b
2
Þ

where:

f = number of families, n = number of siblings per family, MAF = Minor Allele Frequency,

β = effect size (assumed 1 SD), h2 = heritability (assumed 80%)and:

Power ¼ Pr½Fdf1 ;df2 ;l
> Fdf1 ;df2 ;½1� a�

�

Where df1 = 2�f, df2 = f�n-3, α = significance level corresponding to the LOD detection

threshold

In R:

chi_threshold = lod_threshold � 2 � log(10)

a = pchisq(chi_threshold,1,lower.tail = FALSE)

power = pf(a,df1,df2,ncp,lower.tail = FALSE)

Quality control of genotyping

The Affymetrix Axiom Biobank Array was used for genotyping. It covers 628,679 SNPs distrib-

uted across the genome. Samples had on average 8043 ± 3291 (mean ± S.D) SNPs reported as

“No Call” (1.3% ± 0.52%), and 48,787 ± 12881 SNP calls (7.8% ± 2%) reported as “Low Qual-

ity” (P>0). To assess the experimental technical error, we genotyped one sample 4 times (in

different Axiom array 96 plates). For the 6 two-way comparisons, excluding all “No Calls” in

each compared pair, we had an error rate of 9.1x10-3 ± 2.5x10-3 (mean ± S.D) i.e. 1 SNP in
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every ~110 SNP is called wrongly. However, most of these errors were in the “Low Quality”

category, since while only ~8% of the calls had low quality scores, when they were dropped

from the comparisons, the error rate dropped ~20 fold to 4.45 x10-4 ± 2.7x10-4 or 1 SNP called

with an error in every ~2247 SNPs. Given these results, we did not use any SNP with a low

quality call score for IBD calling.

IBD reconstruction

To reconstruct the inheritance patterns in each family, we used only the informative SNPs that

are not homozygote identical in all siblings of the family. Typically, it reduced the number of

useable SNPs in a family from ~630,000 to ~180,000 SNPs, reflecting the high level of genetic

homogeneity in our population. To increase accuracy, we excluded any low quality SNP calls

(Axiom Biobank array calls with a “Confidence” value > 0 or a “No Call”, a total of approxi-

mately 4% of the SNPs of each participant). This exclusion left ~150,000 informative SNPs for

comparison between each sib pair. For each sib pair, we compared the SNP calls along the

genome to partition the genome into regions with opposite homozygous calls (indicating a

region with 0 shared alleles), regions with no opposite homozygous calls but heterozygote calls

in one sib vs homozygote calls in the other (indicating 1 shared allele) and regions with only

identical homozygote calls (2 shared alleles). To avoid false positives due to genotyping errors

we required a stretch of at least 3 SNPs of the same type (opposite homozygotes, one heterozy-

gote vs one homozygote, or two identical homozygotes) within 2Mbps, 1Mbps and 1Mbps

accordingly, to declare a region as 0, 1 or 2 alleles shared. (See S1 Fig for an example). To cor-

rect for errors of IBD calls between each sib pair we used the multiple siblings’ information by

comparing all the sib pairs IBD within a family. For example, if sib #1 and sib #2 (1–2) share 2

alleles in some region and so do sib pairs 1–3, 1–4, 2–3 and 2–4, we would expect sibs 3–4 to

also share 2 alleles in this region and therefore a 1 shared allele for this sib pair would be likely

a false negative and we should correct it to 2 shared alleles. We corrected such contradictions

by applying the minimal number of corrections to sib pairs IBD calls while prohibiting creat-

ing any new contradictions with other sib pairs by the correction.

Examining the matrix of the shared allele numbers between all sibling pairs shows the sib-

lings falling into 4 groups (4 possible values for lines in the matrix) or less, as expected by the 4

possible combinations of grandparental alleles. Advancing along a chromosome, these matri-

ces remain identical up to some chromosomal position where one of the siblings changes sud-

denly its allele shared numbers with all other siblings and move from one grandparental allele

group into another, indicating a recombination event. Further, the new grandparental alleles

combination that the sibling switch into allows us to infer in which of his two haplotypes the

recombination event occurred. An example of a fully phased IBD reconstructed map of a

nuclear family is in S1 Fig.

QTL mapping

We conducted QTL mapping by marker contrast tests ([44], chapter 16). We divided the sib-

lings of each family every 5000 bases along the genome into two groups according to which

grandparental haplotype they inherited from a specific parent (the IBD reconstruction). We

performed simple linear regression and calculated the coefficient of determination (R2)

between the two groups and the siblings’ heights. We repeated the calculation for the two hap-

lotypes inherited from the other parent at the same genomic position to get a total of two R2

scores (one from each parent) that correspond to the association of this position to height dif-

ferences (See example at S1 Fig).
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To adjust for the different number of haplotypes underlying the two correlations in differ-

ent genomic positions, we conducted permutation analysis. We permuted randomly the

heights of the siblings within each family 1000 times while keeping the genetics fixed and cal-

culated the resulting R2 scores for each genomic position. We then calculated two local P val-

ues for each genomic position for each family as the number of times a similar or larger R2 was

achieved in the permuted families compared to the real family. This procedure also normalizes

the signal for family size. We then take the lower of the two single family local P values, which

allows for capturing also dominance effects (results however were robust to taking the average)

and combine the signals from all families by taking the average of these local P values over all

the families at each position. We then repeat the same calculation for the 1000 height permuted

sets of families, and calculate an empirical genome wide P value by counting how many times

each local P value or lower from the real families appears anywhere in the genome in any of

the height permuted families’ combinations. Lastly, to make it easier to compare to previous

linkage studies, we transform the global genome wide P values into LOD scores by using the

inverse of the Chi-Square cumulative distribution function, as described in [60]. The LOD

scores for all chromosomes are plotted in S2 Fig.

Determining separation between QTLs

To estimate the genomic distance in which two nearby QTLs can be called as independent, we

investigated how far along a chromosome a LOD score is still correlated to other LOD scores

of nearby positions. We calculated the absolute difference of LOD scores between any two

positions on any given chromosome, and averaged over all chromosomes to get the mean

absolute difference of LOD scores as a function of genomic distance (S7 Fig). As expected,

close genomic regions show, on average, similar LOD scores (due to linkage), and increasingly

larger genomic distances show monotonically increasing absolute LOD differences. This holds

true up to a genomic distance of ~33Mbps where the LOD score difference reaches its median

level, and for larger distances the LOD score absolute difference fluctuates around its median

value. We infer that association between genotype and phenotype at some genomic position

has on average no influence through linkage over the association at a distance larger than

33Mbps. We therefore count regions with LOD scores above detection threshold as belonging

to the same QTL if they are less than 33Mbps apart.

Significance testing of QTLs

A Quantitative Trait Locus (QTL) is called for every linkage signal peak that is above some

LOD threshold. To avoid noise and linkage over large distances translating into multiple peaks

we count peaks that are less than 33Mbps apart as one QTL. We define the QTL confidence

interval as the region between the furthest positions from the QTL peak that are above 1 LOD

drop from the peak’s LOD score and that are no further than ±33Mbps from the peak’s

position.

To calculate the empirical P value and false discovery rate (FDR) for the total number of

QTLs, we use permutation analysis. We repeat the QTL detection procedure for the 1000 com-

binations of height permuted families and calculate the distribution of the number of QTLs

that are expected by chance anywhere in the genome. We then compare the total number of

QTLs detected for the real families to the distribution of the number of QTLs detected in the

permutation analysis. We calculate the significance (P value) of the real families’ QTLs as the

fraction of permutations that yield an equal or larger number of QTLs than the real families,

and the FDR as the ratio between the average QTL number per permutation (the expected

number of QTLs by chance) and the number of QTLs from the real families (the observed
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number of QTLs). We define the estimated total number of true QTLs as the difference

between the observed and expected QTL numbers.

The required detection threshold to call linkage as genome-wide significant with a low false

positive rate of 5% (LOD score = 3.6 for sibling pairs, or an equivalent P value = 2X10-5) was

established over two decades ago [45] and has been the gold standard for family studies. Using

this strict threshold is appropriate for Mendelian traits where one expects only a single locus to

influence the trait and given the high costs of perusing and fine mapping QTLs to find the

causal genetic variant. Height however is a complex trait and is most probably governed by

multiple loci with smaller effects. We therefore increased the power to detect QTLs by investi-

gating the space of lower detection thresholds. We start from the traditional LOD = 3.6 thresh-

old and gradually lower the detection threshold at constant increments of 0.1 LOD, thus

increasing the sensitivity and detecting more QTLs at lower thresholds. Individually, QTLs

that are identified below LOD = 3.6 might not be significant, but as a group, the total number

of detected QTLs can be significant when compared to the total number of QTLs detected in

the permutations. The increased sensitivity to identify more QTLs comes at the expense of

reduced specificity (higher FDR), i.e. more QTLs are detected at lower detection thresholds,

but a larger fraction of these QTLs are false (and it is not possible to know which specific QTLs

are the false ones). However, as long as true positives accumulate faster than false positives, the

absolute number of true QTLs that are identified increases.

See Fig 2 for the P values and FDR for the total number of detected QTLs for different

detection thresholds. See S2 Table for a list of all detected QTLs. All genomic coordinates refer

to genome build hg19.

Haplotype phasing

To correct genotyping and IBD inference errors, and to facilitate imputation, we phase the

genotypes of all participants into haplotypes. We first use the phased IBD structure that we

reconstructed in a previous step. For each SNP we compare the SNP calls of the children that

belong to the four different possible combinations of grandparental haplotypes. If the siblings

in one of these groups are homozygote for this SNP, both haplotypes are assigned with the

called allele. If they are heterozygous, we examine the SNP calls for the two other groups that

share with the group in question exactly one allele IBD.

In the cases where heterozygote calls cannot be phased in the above manner (e.g. when all

siblings are heterozygotes) we use information from the parents (if existing in the data). First,

for each chromosome we compare the haplotypes in the already solved positions to the SNP

calls of the parents in order to identify which of the parents is carrying haplotypes 1 & 2 and

which carries haplotypes 3 & 4 along the entire chromosome. We then use homozygous SNPs

of the parents to phase heterozygous SNPs of the children.

Using only the IBD we were able to phase ~95% of the SNPs. Unphased SNPs included

SNPs where not enough siblings or parents had good quality genotype calls, SNPs where no

informative homozygote participant existed or SNPs where phasing by different siblings or

parents contradicted. To phase the remaining SNPs we used the phased haplotypes of the

entire study population as reference. For each unphased SNP within a specific family, we use

all the previously solved haplotypes in other families that include this SNP. We preferably use

the longest haplotype that matches on both sides of the unknown call, and when there are con-

tradicting cases we use the call that matches the majority of the solved haplotypes. When there

is no usable information (<0.1% of cases) the call is determined to be the B allele (due to the

Affymetrix definition of the A and B allele on their chip).
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Quality control of IBD reconstruction and haplotype phasing

To test the accuracy of our IBD reconstruction and haplotype phasing we compared the raw

genotype calls as read from the Affymetrix Axiom Biobank array, to the genotype calls that can

be inferred back from the calculated haplotypes. Since the reconstructed IBD is used for phas-

ing the haplotypes, mismatches between the experimentally read genotypes and the inferred

genotypes can be caused either by experimental errors in genotyping, or by analysis errors in

the IBD reconstruction or haplotype phasing. We observed two types of mismatch patterns.

First, blocks of continuous mismatches between the observed and inferred genotypes, that are

immediately adjacent to inferred recombination positions. Such blocks most likely indicate

errors in the IBD calling due to errors in identification of the exact recombination position.

The rate of this type of error was low, as blocks of mismatches covered <1% of all chromo-

somes of all participants. We reduced it further by correcting manually IBD calls that created

mismatch blocks larger than 1Mbps and then iterated the haplotype phasing pipeline and the

above quality control. The second type of errors is sparsely distributed mismatches. Since our

nuclear families are large and typically at least several siblings share at each genomic position

the same two grandparental haplotypes from their parents, if our IBD reconstruction is cor-

rect, the inferred genotypes can be in theory more accurate than the experimentally measured

ones since experimental errors in one sibling could be corrected by the other siblings that share

the same two grandparental haplotypes, or by other families who share a haplotype in this geno-

mic region. When experimentally low quality SNP calls (Confidence value> 0 in the Affymetrix

array reading) were included, the frequency of SNP calls differing between the experimentally

measured and analytically inferred for the 397 participants was 9.1x10-3 ± 2.5x10-3 (mean ± S.

D), practically identical to the experimental error rate measured as mismatches between techni-

cal repeats. This suggests that most SNPs with experimental genotyping errors due to low qual-

ity are indeed corrected by the multiple siblings and parents IBD information. When low

quality genotype calls are excluded from the comparison, the mismatch rate drops ~8 fold to

1.2x10-3 ± 4.9x10-4 (mean ± S.D), i.e. from 1 error in every ~110 SNPs to 1 in every ~866 SNPs.

The total number of mismatches that we observe between experimentally genotypes and analyt-

ically inferred genotypes is on average ~726 errors per sample for the 628,456 SNPs on the array

(excluding the Y chromosome and mitochondria), of which ~280 errors are expected to be

errors coming from experimentally determining genotypes (based on the expectation of an

experimental error of 1 in every ~2247 SNPs), and ~446 errors are expected to come from errors

in the IBD reconstruction and haplotype phasing pipeline. Overall these quality control calcula-

tions suggest a low error rate of 446/628,456 = 7.1x10-4 for our IBD reconstruction and haplo-

type phasing pipeline (1 in every 1409 SNPs), while correcting most of the individual sample

genotyping experimental errors and SNPs that were not called. This is important as the inferred

genotyped and not the experimentally measured genotypes are used for the downstream analy-

sis of variance partitioning and predictions of height.

Estimation of the variance explained by the QTLs

To assess how much phenotypic variance can be explained by the QTLs, we conducted vari-

ance partitioning in a cross validation framework. We divided randomly our data into 100

training and corresponding test sets. Each training set contained 19 families and the corre-

sponding test set the other 10 families. We constrained the random choice of families so that

each training set contained two thirds of all participants and each test set one third of all partic-

ipants (±2 participants).

We conducted linkage analysis as detailed above on each training set and identified QTLs.

We used only the autosomal QTLs for the next steps.
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We took the coordinates of the QTLs into a corresponding test set, and from the genotypes

of the test set participants took 100 SNPs closest to each QTL peak (~1Mbps per QTL) and

concatenated these SNPs together (e.g. for 7 QTLs we took the genotype calls of 700 SNPs).

We chose to use 100 SNPs since using less SNPs explained less variance, probably since there

are not enough SNPs to capture the exact genetic relatedness between participants in these

regions (e.g. two participants can be identical by state (IBS) for several SNPs, while not identi-

cal by descent (IBD), for example if they are both homozygote to a common variant with high

frequency). Increasing the GRMs to include more than 100 SNPs per QTL did not result in

explaining more variance, suggesting that the genetic variance relevant to the trait is captured

in the 100 SNPs (~1Mbps) around a QTL.

We used the SNPs in the QTLs as input to the software GCTA [53] to create a Genomic

Relatedness Matrix (GRM), representing the genetic similarity between all participants in the

test set for the specific coordinates of the QTLs (hence the QTL GRM). To control for pedigree

structure, the overall genetic similarity between participants and shared environments, we

built a second GRM based on all the genotyped SNPs of the genome (~350,000 informative

SNPs, hence whole genome GRM). To control for QTLs explaining variance through tagging

of known common variants for height, we constructed a third GRM from 650 GWAS [3]

known common variants that we could genotype or impute (hence GWAS GRM). We fit a

joint variance component model, where variance in height is the sum of the random effects

from GRMs (covariance structures) built from QTLs, the whole genome, and GWAS snps, as

described above using GCTA [53], with the EM algorithm. Since the QTLs GRM might

explain some phenotypic variance simply because is correlated to the whole genome GRM and

the GWAS GRM, we repeated the analysis for each test set 100 times, but with a random QTLs

GRM made from random regions in the genome that have equal number (100) of SNPs as in

the real QTLs GRM. We constrained these randomly chosen regions so that they maintain a

minimal distance between QTLs similar to the one between real QTLs. We calculated the esti-

mated variance explained by QTLs for each threshold, as the median variance explained by the

100 test set with the real QTLs, minus the median of the 10,000 sets with the random QTLs. It

is important to note that random QTLs can be on top or in linkage with real QTLs, therefore

our final estimation of variance explained by the real QTLs (after deduction of the variance

explained by the random QTLs) might be an underestimation, especially for the low LOD

detection thresholds where many regions of the genome are picked as QTLs and the chances

that random QTLs are overlapping real QTLs is higher.

Imputation

Of the 697 SNPs that were previously identified to be associated with height [3], only 145 were

on our genotyping array. In order to impute the other 552 SNPs, we used the IMPUTE2 soft-

ware [61,62], with two reference panels—the 1000 genomes (5008 phased haplotypes) [63] and

a reference panel of Ashkenazi Jews (256 phased haplotypes) [35]. Despite the much smaller

sample size of the Ashkenazi Jews panel, it yielded higher imputation accuracy as tested by the

IMPUTE2 concordance tables (internal cross validation that IMPUTE2 conducts by imputing

SNPs that are genotyped by the array). For SNPs that were confidently imputed by IMPUTE2

(maximum posterior probability� 0.9) the concordance between the imputed and genotyped

SNPs was on average 98% when using the Ashkenazi Jews reference panel, compared to 97%

when using the 1000 Genomes reference panel.

Using the Ashkenazi Jews panel, we could impute 513 of the 552 missing SNPs, and the last

39 SNPs could be imputed by the 1000 Genomes reference panel.
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Supporting information

S1 Fig. IBD reconstruction and correlations to height differences. (a) An example of IBD

inference for two siblings, on a chromosomal segment. Dots represent similarity in genotypes

between the two siblings—blue dots for all genotype calls, black dots for only high quality

genotype calls. Opposite homozygous calls (e.g. sib 1 is AA and sib 2 is BB) are at the 0 alleles

shared level. One homozygous and one heterozygous calls are at 1, and identical homozygous

or identical heterozygous are at 2. Red lines represent the inferred IBD. (b) The inferred

phased IBD for an entire family on a chromosomal segment. Siblings are ordered from tallest

to shortest. Green and black segments represent the two grandparental haplotypes from the

mother side. Blue and red represent the grandparental haplotypes from the father side (c)

Example of a correlation between height and genotypes inherited from the mother at a specific

genomic position (d) Same as (c) but for haplotypes inherited from the father.

(TIF)

S2 Fig. Linkage analysis results for all families combined.

(TIF)

S3 Fig. Autosomal QTLs in 100 training sets, each set containing 2/3 of families in the

cohort. (a) Median number of autosomal QTLs detected for each LOD detection threshold in

the 100 training sets (blue), the median number of QTLs estimated to be false (red) and true

(green) according to the permutation analysis. (b) Median false discovery rate calculated from

the permutation analysis for each detection threshold (c) Median significance of the total num-

ber of detected QTLs for each threshold. Red line for P value = 0.05 level.

(TIF)

S4 Fig. Height variance explained by QTLs. (a) Boxplots of variance explained by the

detected QTLs in 100 test sets (blue), and variance explained by random QTLs (red). (b) Dif-

ference between the medians in (a). (c) Significance of a rank-sum test for a difference between

the distributions in (a), shown as–Log10(P).

(TIF)

S5 Fig. Height variance explained by QTLs when competing against whole genome GRM

only (no GWAS GRM). (a) Boxplots of variance explained by the detected QTLs in 100 test

sets (blue), and variance explained by random QTLs (red). (b) Difference between the medians

in (a). (c) Significance of a rank-sum test for a difference between the distributions in (a),

shown as–Log10(P).

(TIF)

S6 Fig. Infinitesimal model simulations. Distribution of the correlation coefficients between

chromosome length and variance explained per infinitesimal model simulation. The red line

points to the Pearson r of the real data.

(TIF)

S7 Fig. The effect of LOD scores over genomic distance through linkage. The average differ-

ence in LOD score is larger for more distant positions along a chromosome (blue line), up to a

distance of ~33Mbps (green dotted line), where it reaches its median value (red dotted line),

and then fluctuates around this value afterwards. Note that there are less data points to calcu-

late the function as distance increases (e.g. fewer positions in the genome are 200Mbps apart

than 100Mbps apart).

(TIF)

Analysis of the genetic basis of height in large Jewish nuclear families

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008082 July 8, 2019 18 / 22

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008082.s001
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008082.s002
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008082.s003
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008082.s004
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008082.s005
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008082.s006
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008082.s007
https://doi.org/10.1371/journal.pgen.1008082


S1 Table. Cohort information.

(PDF)

S2 Table. All detected QTLs. All genomic coordinates refer to genome build hg19.

(XLSX)
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