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Continuous Compressed Sensing 
for Surface Dynamical Processes 
with Helium Atom Scattering
Alex Jones1,*, Anton Tamtögl2,*, Irene Calvo-Almazán2 & Anders Hansen1

Compressed Sensing (CS) techniques are used to measure and reconstruct surface dynamical 
processes with a helium spin-echo spectrometer for the first time. Helium atom scattering is a well 
established method for examining the surface structure and dynamics of materials at atomic sized 
resolution and the spin-echo technique opens up the possibility of compressing the data acquisition 
process. CS methods demonstrating the compressibility of spin-echo spectra are presented for several 
measurements. Recent developments on structured multilevel sampling that are empirically and 
theoretically shown to substantially improve upon the state of the art CS techniques are implemented. 
In addition, wavelet based CS approximations, founded on a new continuous CS approach, are used to 
construct continuous spectra. In order to measure both surface diffusion and surface phonons, which 
appear usually on different energy scales, standard CS techniques are not sufficient. However, the 
new continuous CS wavelet approach allows simultaneous analysis of surface phonons and molecular 
diffusion while reducing acquisition times substantially. The developed methodology is not exclusive to 
Helium atom scattering and can also be applied to other scattering frameworks such as neutron spin-
echo and Raman spectroscopy.

Helium atom scattering has proven to be an invaluable technique to study the structure and dynamics of a 
wide variety of surfaces ranging from simple metals to reactive and metastable surfaces1–3. Helium Spin-Echo 
(HeSE) spectrsocopy is a novel technique4,5 which combines the surface sensitivity and the inert, completely 
non-destructive nature of He atom scattering with the unprecedented energy resolution of the spin-echo method6. 
HeSE is the ideal tool for studying surface dynamical processes within a time window from sub-pico second up 
to nanosecond time scales. This involves atoms and molecules diffusing on the surface7,8, phonon vibrations9,10, 
etc. Thanks to the work of Van Hove et al.11 a theoretical framework exists which describes the dynamics of atoms 
and molecules through the relation of position and time (r, t) to momentum and energy transfer (Δ​K, Δ​E) as a 
Fourier pair.

In this paper we present a Compressed Sensing (CS) approach for compressing this measurement process, 
showing that the time needed to reconstruct HeSE spectra can be reduced by several orders of magnitude com-
pared to standard Discrete Fourier Transform (DFT) reconstruction techniques. CS, pioneered by Candès, 
Donoho, Tao et al.12–15 has long been associated with Nuclear Magnetic Resonance (NMR) based applications 
such as Magnetic Resonance Imaging15,16 and NMR Spectroscopy17. Recently, compressed sensing has also seen 
applications focusing on Raman spectroscopy measurements18 and in molecular dynamics simulations19.

Spin-echo spectroscopy shares clear similarities with these fields, such as Fourier transforms arising naturally 
in data acquisition, however there are also significant differences. In particular, one of the goals of spin-echo spec-
troscopy is to determine dynamical processes by monitoring the change of polarisation data. Here we consider 
the whole process of data processing, from polarisation data measurements to the extraction of the molecular 
dynamics information. Unlike NMR and many other spectroscopy-based applications, after we have performed 
compression on the initial Fourier transform step we cannot directly use the output data, it must instead undergo 
several further transforms. Crucially, this includes a non-linear change of variables to momentum/energy space 
(Δ​K, Δ​E). This precludes the use of standard DFT-based CS techniques as this transform distorts the (necessarily 
discrete) set of values that we can solve for.
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Instead a new continuous CS approach, recently introduced by Adcock, Hansen et al.20–22, is used to recon-
struct a continuous approximation that avoids discretising entirely. With this method one has the freedom of 
evaluating the reconstructed function at any point they desire while still having the speed-up benefits of compres-
sive sampling. Such an approach could be used to handle other inverse problems that require further transforma-
tions after reconstruction. Moreover, as demonstrated in refs 20–22 the continuous model avoids the so-called 
wavelet and inverse “crimes” and hence provides superior reconstructions compared to the classical approach.

Figure 1 shows the process of converting sampled polarisation data to the intermediate scattering function 
(ISF) I(Δ​K, t) alongside the application of this new CS technique. Note that CS reconstructions in red for the 
wavelength intensity and scattering functions match the true signal with 9% of the data traditionally used to 
reconstruct such spectra using direct Fourier inversion without compression.

Moreover, in standard NMR experiments the smallest group of data that is taken in one measurement is 
typically a line (or path) of data points in k-space, with the exception of new realisations such as electron spin 
echo envelope modulation23. However, in HeSE each measurement corresponds to a single point. This gives us 
an additional degree of freedom in the data acquisition process which makes the application of CS particularly 
effective, as one can utilize the new approach of structured multilevel sampling in21 to its fullest to boost perfor-
mance. In particular, by also taking the structure of the signal into account when designing the sampling strategy 
one can outperform the classical compressed sensing results (see refs 24 and 25 for experimental validation) that 
are dictated by the estimate on the number of samples m to be

m s Nlog( ),

where s is the number of non-zero or important coefficients and N is the dimension of the vector (The notation 
⋅ ⋅f g( ) ( ) means there is a universal constant C >​ 0 such that f(⋅) ≥​ Cg(⋅)).

However, if a signal has s =​ M1 +​ s2 +​ …​ +​ sr non-zero coefficients where M1 denotes the number of the first 
consecutive non-zero coefficients in the first levels of a wavelet expansion and sj is the number of non-zero coef-
ficients in the j-th level of the wavelet structure then, by using a multilevel sampling procedure21, one needs only

 + + + … + .m M s s s N( )log( )r1 2 3

measurements21. Typically, the coefficients corresponding to M1 are the most important, and most of the energy in 
the signal is contained in these. This is very convenient as we do not have to pay a log factor for these coefficients. 
In practice this means substantial gain over the standard approaches as demonstrated in recent puplications24,25.

Compressing Spin-Echo Spectra
To understand how continuous CS differs from conventional DFT CS we start with a typical 1D Fourier problem 
where we measure Fourier samples P of a wavelength intensity function ρ we want to reconstruct:

∫κ ρ λ λ λ κ= ∈ .π κ λ⋅P e( ) ( ) d , , (1)
2 i

From the above it is immediately recognised that P is a Fourier Transform of ρ and therefore ρ can be obtained 
by the inverse Fourier transform of P. For a general function ρ this would require knowing P(κ) at every point 

κ ∈  which is unrealistic.
In practice however, the wavelength intensity function ρ is treated as a periodic function

Figure 1.  Diagram outlining the various stages of data transformation from measurement in polarisation 
to the intermediate scattering function (ISF). The upper plots denote the full 2D data while the lower plots 
are 1D projections/slices with one variable kept constant. The decaying oscillations in the polarisation/ISF are 
caused by surface phonons. Surface diffusion gives rise to an exponential decay in the polarisation/ISF and 
a broadening of the peak at Δ​E =​ 0 of the scattering function. The stages highlighted in red correspond to 
the target data we wish to reconstruct. The plotted intensities are in consistent arbitrary units (a.u.). Current 
spacing/resolution is 2.7 ⋅​ 10−4A/10233 points and 930 points (≈​9%) are subsampled. The experimental variable 
κ is proportional to current I according to (9).
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over a fixed interval [a, b]. This is convenient because it permits changing the problem to one of handling a 
Fourier transform to that of handling a Fourier series expansion:
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The upshot of (3) is that we now only need the values ε ∈P l l( ), , to obtain the wavelength intensity function 
ρ, rather than κ κ ∈P ( ), .

Typically the next step is to truncate the Fourier series expansion, meaning that one makes the approximation

∑ρ λ ρ λ ρ χ χ λ λ≈ = 〈 〉 ∈ε ε
=−

 
a b( ) ( ) , ( ), [ , ],

(4)N
l N

N

l l, ,

for some fixed ∈N . The problem is now feasible as only finitely many data points l are required to determine 
ρ
N .

Up to this point both continuous CS and conventional DFT CS agree. Conventional DFT CS then breaks up 
the interval [a, b] into a uniform grid of N points

λ = +
−
+

a b a
N

j
2 1 (5)j N,

and solves for ρ λ = ... +


j N( ), 1, , 2 1N j N, . The advantage of doing this is that (4) becomes a vector-matrix 
equation of the form g =​ Af where ρ λ=


g ( )j N j N, , A is a DFT matrix and f corresponds to samples of P. This can 

be inverted to give f =​ A−1 g where A−1 is still a DFT matrix, and therefore an isometry, which facilitates the appli-
cation of CS.

The drawback of this approach is that important information could be lost by only considering ρ λ


( ),N j N,  
= ... +j N1, , 2 1  instead of (4). The Fourier series approximation could have been evaluated at any point in the 

interval [a, b] and suddenly the best we can do is reconstruct the ρ λ


( )N j N, , even though we are still working with 
the same number of Fourier samples. Do we really have to pay this price in order to be able to compress this prob-
lem? The answer is: no.

Motivated by the Fourier series (4), one can try approximating ρ in terms of a new Reconstruction Basis 
σ ∈n,n

∑ρ λ ρ σ σ λ λ≈ ∈ .
=


a b( ) , ( ), [ , ]

(6)n

M

n n
1

Apart from the benefit of keeping the problem continuous, one also has the freedom to choose which basis σn 
to work with, making the approach more versatile than a straight DFT approach. Note that this is similar in spirit 
to the work on finite rate of innovation26 as well as to the concept suggested by Markovich et al.27.

Since one is still sampling data that corresponds to Fourier coefficients of ρ, it is impossible to exclusively work 
with their choice of basis σn. Instead one has to convert Fourier series coefficients into coefficients in the basis σn. 
This is achieved by working with the infinite change of basis matrix for the two bases:

N Zσ χ= 〈 〉 ∈ ∈ .εB n l, , , (7)l n n l, ,

Using this matrix to reconstruct the coefficients 〈​ρ, σn〉​, n =​ 1, ..., M we can then use (6) to approximate ρ λ


( ). 
As long as we assume the σn form an orthonormal basis then the matrix B is an infinite-dimensional isometry 
which also allows the application of CS thanks to the work of refs 20 and 22.

This continuous approach has two significant advantages:

•	 The approximation ρ


 is now a continuous function (as opposed to discrete) that can be evaluated at any point 
and hence this allows the non-linear change of variables going from the wavelength distribution to the scat-
tering function S (as shown in Fig. 1). Such a transform is not possible with conventional discrete CS 
techniques.

•	 The approximation ρ


 is computed with the actual coefficients in the new expansion of the wavelength func-
tion, and hence this approximation has the characteristics of the approximation in the new basis rather than 
the truncated Fourier series. This means reducing Gibbs ringing and other artefacts coming from Fourier 
approximations (see refs 20–22 for details).

Details on the theoretical background of CS, what basis to use, the convex optimisation problems we solve and 
how to subsample the Fourier data are provided later on in the paper.
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Paper Outline.  After a short introduction into HeSE spectroscopy and compressed sensing/continuous com-
pressed sensing we focus on the first Fourier transform step shown in Fig. 1. CS is used to demonstrate the com-
pressibility of phonon detection.

In Surface Diffusion Using Continuous CS, we consider the full cycle of transforms shown in Fig. 1, from 
polarisation data to the determination of diffusion processes. Thereafter we elaborate on the advantages of the 
continuous CS technique in order to measure processes that appear on different energy scales.

Helium Spin-Echo Spectroscopy
The principle of the Helium spin-echo apparatus is the following: A beam of thermal 3He is generated from the 
source in a fixed direction. The nuclear spins are polarised and then rotated by the initial or incoming solenoid 
before being scattered from the target crystal surface. Afterwards any scattered He atoms heading in the direction 
of the detector are then rotated by the final or outgoing solenoid and passed through another polarisation filter. 
Thereby the apparatus achieves an energy resolution of 3 μeV and dynamical processes within a time window 
spanning from the sub-picosecond regime up to nanoseconds can be observed. While a schematic sketch of the 
machine used at the Cavendish laboratory can be found in the Supplementary Information further details can be 
found in Jardine et al.4.

Key variables that the operator can freely adjust include:

•	 The currents Ii, If that run through the initial and final solenoid respectively.
•	 The scattering geometry, namely the angle of the surface normal relative to the source/detector setup.

The incoming monochromatic He beam can be viewed as a plane wave with propagation wavevector ∈k 3 
and angular frequency ω:

 ψ ω= ⋅ − ∈ ∈ .t t tr k r r( , ) exp(i( )), , (8)3

Here, r denotes position and t is time. The wavevector k and wavelength λ are related to particle’s momentum 
p by the de Broglie relations via p =​ k and |p| =​ p =​ 2π/λ. Furthermore, the frequency ω is related to the particle 
energy E by the relation E =​ ω. Using these relations we can treat k as representing momentum and ω as energy. 
Notice that by Formula (8) we have identified two Fourier pairs (k, r), (ω, t).

Upon scattering from a dynamic surface, the wavevector k and the energy of the He atom E before and after 
the scattering will typically change. By measuring the probability of a He atom to go from an initial state i to a final 
state f information about the surface dynamical processes can be gained. Therefore, we need to measure the prop-
erties of the initial and final He beam which is in practice done by changing the current through the solenoids.

In the following we show how the solenoid currents are related to the scattering wavelengths (λi, λf). This 
section follows closely the review of Alexandrowicz and Jardine5 and a more detailed description can be found in 
the Supplementary Information.

Solenoid Currents and Spin Polarisation.  The solenoid currents (Ii, If) and scattering wavelengths (λi, λf)  
share a direct Fourier relationship. Recall that we have two solenoids that generate magnetic fields which rotate 
the polarisation of the He beam. The solenoid current determines the strength of the magnetic field but it is more 
convenient to use the experimentally controllable parameter κ which is proportional to the current in the sole-
noids via:

κ
γ
π

κ
γ

π
= =

m B I
h

m B I
h2

,
2

, (9)i
i

f
feff eff

where γ is the gyromagnetic ratio of the He atom, m is its mass and Beff is an apparatus specific constant. The 
polarisation of the He beam in terms of amplitude and phase can be conveniently written as a complex number. 
When using the scaled variables of (9) the measured polarisation of the He beam in the detector can be repre-
sented as the two-dimensional Fourier transform of ρ(λi, λf):

∫κ λ λ λ κρ λ λ κ κ= = = ∈ .κ λπ ⋅P e( ) ( ) d , ( , ), ( , ) (10)i f i f
2 i 2

Here ρ(λi, λf) denotes the Wavelength Intensity Function describing the distribution of He atoms that reach the 
detector according to initial and final wavelengths.

The change in wavelength can be caused by the creation or annihilation of surface phonons. A short descrip-
tion of the scattering upon surface vibrations can be found in the Supplementary Information. An example of 
a wavelength intensity function is displayed on the right-hand side of Fig. 2a showing four prominent features. 
Assuming the features in the plot originate from phonon phenomena on the crystal surface, the classification into 
creation/annihilation/elastic is according to the energy change Δ​E28:


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Looking at Fig. 2a as an example, we see that the key features of the wavelength intensity function can be bro-
ken down into lines of various slants which suggests that treating the function as one-dimensional would be 
advantageous. It is precisely because of this decomposition into slanted regions that the two-dimensional problem 
is often reduced to a one-dimensional one using the Fourier slice theorem: Instead of the two-dimensional (λi, λf) 
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space one considers the projection onto a particular line defined by the angle α. By restricting the measurement 
of P along the line κ α κ α κ− ∈{( cos , sin ), } the Fourier transform (10) becomes:

∫κ α κ α ρ τ π κ τ τ− = αP ( cos , sin ) ( ) exp(2 i ) d , (12)i i i1 1 1

where ρα(τ1) denotes the integral of ρ(λ) along the line τ τ τ ∈αR{ ( , ): }1 2 2 . For a more detailed derivation of the 
Fourier slice theorem please refer to the Supplementary Information.

Figure 2a shows how the Fourier slice theorem applies to the wavelength intensity function. Notice that differ-
ent angles of integration produce different results, especially when it comes to discerning different features. Since 
we know beforehand that an elastic peak lies along the line λi =​ λf we expect that an integration angle of α =​ π/4 
will produce the best results for resolving this feature as a single spike.

With this projection, we can treat the problem (12) as a one-dimensional version of (10) with a new wave-
length intensity function ρα(λ)

∫κ ρ λ λ λ κ= ∈ .α α
π κ λ⋅P e( ) ( ) d , , (13)a

b 2 i

Compressed Sensing.  In this section we shall assume that we have already reduced the problem to one 
dimension and write Pα, ρα from (13) as P, ρ.

One can discretise (13) by breaking up the interval [a, b] into a uniform grid of N points λj,N as in (5), leading 
to the following matrix equation:

∑ ρ λ= = ... =
=−


g A f j N g, 0, , 2 , ( ),

(14)j
l N

N

j l l j N j N, ,

where fl =​ Constant(l) ⋅​ P(lε) and A is a DFT matrix.
Currently, to obtain the full vector (gj)j = 0, ..., 2N we need to know the entire vector (fl)l = −N, ..., N. If we only had 

knowledge of a fraction of the entries of f we can no longer use (14) to determine g directly as the problem is now 
underdetermined. Therefore, the problem is not well posed and has to be modified.

The matrix equation (14) can be inverted to give

∑= = − ... .
=

−f A g j N N, , ,
(15)j

l

N

j l l
0

2

,
1

Now suppose that Ω ⊂​ {−​N, ..., N} denotes the set of indices corresponding to the samples of f that are meas-
ured and PΩ f denotes the projection onto these samples. With this notation PΩ f denotes the vector of samples that 
are measured. Therefore when we subsample from {−​N, ..., N} equation (15) becomes

Figure 2.  Illustration of a typical wavelength intensity function and the Fourier slice theorem (left panel). 
The right panel shows a demonstration of the CS for a 1D example shown on the left. (a) The wavelength 
intensity function (on the right) is the two-dimensional Fourier transform of the polarisation data (on the left). 
The Fourier slice phenomenon is demonstrated by the green lines on the right which indicate the direction 
of integration with the corresponding projections shown as lines in blue. The green lines on the left hand side 
represent the one-dimensional Fourier transforms of the projections shown on the right. The polarisation data 
intensity is shown on a log scale for the sake of readability. (b) Demonstrating CS for the 1D 45° projection 
shown in Fig. 2a, using uniform and multilevel sampling. Samples are taken from the Fourier data according to 
the sampling histograms shown. (Note that the frequency term in the sampling histogram relates to the values 
of κ at which P(κ) is sampled). Sampling pattern A is unreliable in reconstructing the rightmost feature as it is 
the least sparse of the four peaks while sampling pattern B remedies this by taking more of the lower frequency 
values that it depends upon. Reconstructions are at a resolution of 512 data points.
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= .Ω Ω
−P f P A g (16)1

The classical CS approach is to solve this problem via the now well established 1 recovery problem


=

∈
Ω Ω

−


Wg P f P A gmin subject to ,
(17)g

1
N

1

where W is some transformation that should make g sparse. Typically this is a wavelet transformation. We can 
then solve this kind of problem quickly and conveniently using convex solvers such as the (SPGL1) algorithm29.

The classical idea of CS is that Ω should be chosen uniformly at random. In this case the number of samples 
m =​ |Ω| must satisfy

 µ⋅ ⋅ ⋅− −m N A W s N( ) log( ), (18)1 1

in order to guaranty successful recovery with high probability, where µ = | |≤ ≤B B( ) max i j N i j1 , ,
2. In the case where 

B =​ A−1W−1 as above with any wavelet transform W we have that μ(B) =​ 1. In this case, as well as many others, 
uniform random sampling may give suboptimal results and one has to sample with (structured) variable density 
sampling, see21 and references therein. The key problem is that the optimality of variable density sampling 
depends on the signal itself21,24,25, and thus designing the best sampling pattern is a very delicate task. We will give 
a short demonstration below.

How to do structured sampling.  The key to understanding structured sampling is to understand the 
structure of the signal. For example, the coefficients of a signal in a wavelet basis typically have a very specific level 
structure. This is known as sparsity in levels.

Sparsity in levels.  Let x be a N  vector. For ∈r  let = … ∈M MM ( , , )r
r

1  with 1 ≤​ M1 <​ …​ <​ Mr and 
= … ∈s ss ( , , )r

r
1 , with sl ≤​ Ml −​ Ml−1, l =​ 1,…​, r, where M0 =​ 0. We say that x is (s, M)-sparse if, for each 

l =​ 1,…​, r, Δ​k: =​ supp(x) ∩​ {Ml−1 +​ 1, …​, Ml}, satisfies |Δ​l| ≤​ sl. This known structure can be utilised when design-
ing the sampling strategy and is the motivation behind multilevel sampling.

Multilevel sampling.  Let ∈r , = … ∈N NN ( , , )r
r

1  with 1 ≤​ N1 <​ …​ <​ Nr, = … ∈m mm ( , , )r
r

1 , with 
ml ≤​ Nl −​ Nl−1, l =​ 1, …​, r, and suppose that Ωl ⊆​ {Nl−1 +​ 1,…​, Nl}, |Ωl| =​ ml, l =​ 1, …​, r, are chosen uniformly at 
random, where N0 =​ 0. We refer to the set Ω =​ ΩN,m =​ Ω1 ∪​ …​ ∪​ Ωr as an (N, m)-multilevel sampling scheme. The 
key is that in the case of Fourier sampling, represented by the B above, combined with a wavelet transform W such 
that the recovery problem becomes (17), the multilevel sampling should match the level structure of the wavelets. 
More precisely, N =​ M. In this case, if x is (s, M)-sparse with total sparsity s =​ s1 +​ …​ +​ sr and s1 =​ M1 =​ m1, then 
the total number of samples needed is

= + … + + + + … + .m m m s s s s N( )log( ) (19)r r1 1 2 3

In particular, by utilizing the level structure in the sampling, one can outperform the standard CS results. For 
a more in-depth analysis and explanation see refs 21 and 25. See also refs 14 and 30 for early versions of this kind 
of sampling.

Continuous Compressed Sensing.  The motivations behind continuous CS are: (i) to obtain a continuous 
approximation in the CS reconstruction, as opposed to a discrete approximation, as this allows for an easy 
non-linear change of variables to obtain the scattering function and the intermediate scattering function. (ii) If an 
alternative basis to the Fourier representation yields a better representation of the function to be recovered, one 
wants the freedom to use that. In particular, one can try approximating the wavelength intensity function ρ in 
terms of a new Reconstruction Basis σ ∈n,n :

∑ρ λ ρ σ σ λ λ≈ ∈ .
=


a b( ) , ( ), [ , ]

(20)n

N

n n
1

For technical reasons, one often requires these functions to form an orthonormal basis of L2[a, b], e.g. 
Legendre polynomials, splines, wavelets etc., although this condition can be relaxed to other groups of functions 
like frames31. For this paper we shall be using Daubechies wavelets32 exclusively as our reconstruction basis. Let 
us quickly discuss why one would want to work with another basis.

Apart from the benefit of keeping the problem continuous, one also has the freedom to choose which basis σn 
to work with, making the approach more versatile than a straight DFT approach, where we are essentially forced 
to work with a pixel basis every time.

Furthermore, the notion of sparsity is now in terms of the coefficients 〈​ρ, σn〉​, which means we have the addi-
tional advantage of choosing a basis that makes the function ρ sparse. As we shall see, this opens up the possibility 
of using compressed sensing where traditional sparsity does not hold. In addition, this approach is closer to the 
philosophy that ρ being sparse should relate to ρ having low information content; a choice of basis σn that makes 
ρ sparse tells us how to (approximately) express the function ρ with a few non-zero coefficients.

Since one is still sampling data that corresponds to Fourier coefficients of ρ, it is impossible to exclusively work 
with their choice of basis σn. Instead one has to convert Fourier series coefficients into coefficients in the basis σn. 
This is achieved by working with the infinite change of basis matrix for the two bases:
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N Zσ χ= 〈 〉 ∈ ∈ .εB n l, , , (21)l n n l, ,

As opposed to (17), we now end up solving the infinite dimensional convex optimisation problem of finding


∈ =

∈
Ω Ω



⁎h h P Bh P fargmin{ : },
(22)h ( )

12

Again PΩ denotes the projection onto the samples we have taken. In practice we cannot solve for the infinite 
solution to (22), therefore we truncate the reconstruction basis in a similar fashion to how we truncate the Fourier 
basis. This means we end up computing


∈ =

∈
Ω Ω

⁎h h P BP h P fargmin{ : },
(23)h

N1N

where PN denotes the projection onto the first N functions in the reconstruction basis. This problem is now 
numerically feasible since the submatrix PΩBPN is now finite (see21 for estimates on how to choose N). The solu-
tion to (23), let’s say h*, is recognised as the (approximate) wavelet coefficients of the intensity function. We can 
then use these wavelet coefficients to compute an approximation to ρ evaluated at any point on the interval [a, b] 
by following (20):

∑ρ λ σ λ λ≈ ∈ .
=

⁎h a b( ) ( ), [ , ]
(24)n

N

n n
1

From here one can use the same multilevel sampling techniques as the discrete case to reconstruct (s, M)-sparse 
coefficients. Moreover, the sampling rule (19) also applies in this case. Note, however, that solving (23) is very 
different from solving (17). Indeed, B in (21) is an infinite matrix, moreover PΩBPN ≠​ PΩA−1W−1 where we recall 
A−1 and W−1 from (17). Both approaches, (23) and (17), are approximations to the true continuous problem (22), 
however, the discretisation is done differently. The discretisation in (17) turns out to be suboptimal, which can be 
seen as follows. As discussed in Compressing Spin-Echo Spectra, if g =​ Af, where f is a finite vector consisting of 
the samples of P from (1), then g is a vector that is a rasterised version of the truncated Fourier series approxima-
tion to ρ (the true solution we are seeking). Thus, if we apply a discrete wavelet transform W to g, we see that the 
result =h Wg  is precisely the vector of the wavelet coefficients of the truncated Fourier series approximation to 
ρ. This means that whatever artefacts the truncated Fourier series approximation suffers from, such as Gibbs 
ringing, are also transferred to Wg. Hence, by solving (17) we will, at best, recover the wavelet coefficients of the 
truncated Fourier series that may be a suboptimal approximation. The wavelet coefficients of the truncated 
Fourier series are of little interest. What we want are the wavelet coefficients of the true solution ρ. This can be 
formulated via the infinite linear system =f Bh, where f  is the infinite vector of all samples of the values P(lε), 

∈l , and h is the infinite vector of all the true wavelet coefficients of ρ. In comparison, the discretisation based 
on the DFT yields = − −

f A W h1 1 , where h is the vector of wavelet coefficients of the truncated Fourier series. Note 
that (22) is an infinite-dimensional problem, thus, we need to approximate it via (23). However, as N grows, any 
solution to (23) converges to a solution to (22).

(23) is not based on the traditional DFT, however, it is possible to find a fast n log(n) implementation for 
applying the matrix PΩBPN, the finite section of the infinite matrix B, to any vector. For further explanation and 
numerical examples demonstrating the benefits of the continuous approach and the differences with the discrete 
approach, see20–22.

CS for Phonon Detection
In this section we look at the performance of the CS approach described in the previous section by looking at 
examples of phonon detection. We shall first look at its effects on the one-dimensional projections shown previ-
ously and then focus on a real 3He spectrum for scattering of gold where more exotic signal behaviour is present.

Simulated 1D Example.  For consistency with previous sections we shall first work with the 45° projection 
shown earlier. Although this is a simplified model it clearly demonstrates some of the basic properties of com-
pressed sensing. Reconstructions are shown in Fig. 2b.

Recall that we project along a 45° angle in an attempt to reduce the spread caused by the inaccuracy of the 
wavelength of the incident He3 beam. In particular, since we know that there will always be an elastic feature 
in the wavelength intensity function which itself is slanted at 45°, this choice is seen as ideal for refocusing the 
various phonon features to be closer to that of a delta spike. Not only is this useful in preventing features from 
overlapping each other but this also increases sparsity which is ideal for compressed sensing; if features are sparse 
then by the rule (18) we can subsample to a great degree since the signal itself is very sparse. In this case, a change 
of basis may not be needed.

If one goes for a uniformly random approach to subsampling (as in Reconstruction A), as opposed to mul-
tilevel sampling discussed above, then there is only so far that one can go before problems occur. At around 
20% subsampling, the reconstruction becomes unreliable in recovering the least sparse of the features on the far 
right. With 30% the rightmost feature is typically reconstructed but it is nonetheless unreliable. There is how-
ever an even more effective way of reliably reconstructing the rightmost feature by using multilevel sampling 
(as in Reconstruction B). The theory on how to design optimal structured multilevel sampling strategies is very 
new21,24,25 and this is a highly unexplored topic. We do not attempt to seek optimality here, as this paper is about 
establishing the effectiveness of CS in HeSE. Note that, since there is no wavelet change of basis (W =​ I, the 
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identity, in (17)) in this case, the theoretical understanding of the effect of multilevel sampling is not fully under-
stood. This is still work in progress together with optimality conditions.

Real Phonon Spectrum.  As we have already mentioned, real phonon spectra contain more exotic features 
than the simulation given in the previous example. Naturally noise adds to the data due to some experimental 
uncertainties of the measurement, but more unusual are the relative sizes and shapes of the various features.

In Fig. 3a we have uniform sampling reconstructions for a typical gold(111) spectrum (for more details see 
Supplementary Information) with projection at 45° to focus on the elastic peak, which is the only clearly visible 
feature in the graphs. The peak is extremely fine and is in fact even smaller than the pixel resolution used for 
reconstruction (2048) which can be determined from the observation that the Fourier data has yet to decay to 
zero near the highest frequencies. Consequently this is an ideal situation for CS since this feature is almost as 
sparse as can be. Hence, one can subsample to a much greater degree (e.g. 1%) than in the previous example.

However, what has happened to the other inelastic features in this spectrum? At first one might come to the 
conclusion that they are not there at all, but, focusing on a small part of this spectrum reveals features that are 
over 200 times smaller than the measured intensity of the large elastic spike. Figure 3b shows various CS recon-
structions zoomed in on this region. Notice that we still have the elastic peak visible, along with a couple of more 
(and less sparse) features. Like in the previous example, we expect the smooth features to be more dependent 
upon the lower frequency samples. Therefore, when we attempt to take just the first 10% of samples all from the 
lowest frequencies (the linear reconstruction) we find that these features are at the very least present, unlike the 
10% uniform sampling approach where only the central peak remains. On the other hand, the central peak suffers 
from Gibbs artifacts which manifests themselves as wave like features near the central peak as well as broadening 
of the peak itself.

Instead, one can opt for a mix of these methods by taking the first 5% of samples from the lowest frequencies 
and the other 5% taken uniformly from the rest. This approach empirically performs the best out of the three 
methods, resolving the low resolution features without the Gibbs artefacts of the linear approach. Note that, as 
demonstrated in21,24, the optimal sampling procedure is signal structure dependent. How to choose optimal mul-
tilevel sampling is beyond the scope of this paper, and we have deliberately chosen a simple two-level sampling 
pattern, which is a reasonable all rounder, in order to demonstrate the effectiveness of the sampling technique.

Comparing CS Techniques.  In this section we look at an example of how the continuous wavelet approach 
to compressed sensing can be used to tackle problems that are beyond the capabilities of the traditional com-
pressed sensing approach described earlier.

Prior to data acquisition the spacing in current (equivalent to spacing in κ) must be chosen, which in turn 
determines the length of the wavelength window [a, b] that the wavelength intensity function ρ is constructed 
over. If ρ is not truly supported on this window, then by (2) we instead reconstruct the periodised version of ρ. In 
particular, if peaks in the intensity function decay particularly slowly relevant to the window then the intensity 
function will stay considerably above zero throughout that window. Because of this, the traditional compressed 
sensing approach applied earlier cannot be used successfully here as the function is maximally non-sparse.

Figure 3.  Compressed sensing reconstructions for a measured gold(111) phonon spectrum.  
(a) Compressed sensing reconstructions for a gold phonon spectrum (a.u.): With this choice of viewing range, 
only the elastic peak can be clearly seen. In this figure the sampling is performed uniformly at random which 
recovers the highly sparse central peak. This is suboptimal compared to the multilevel sampling in Fig. 3b. 
Frequencies sampled are from the range {−​1024, ..., 1023} and reconstructions are at a resolution of 2048. 
(b) Compressed sensing reconstructions for the same gold phonon spectrum as in Fig. 3a, zoomed in so that 
features beside the elastic peak are visible. Notice that the smaller features shown here are over 200 times  
smaller than the elastic peak. Reconstructions shown here are not only uniform (as in the bottom left graph) 
but also linear (i.e. straight Fourier series) and non-linear examples using roughly the same number of samples 
across each.
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However, if one recalls the wavelet reconstruction bases that are used, then one quickly notices that they both 
have a constant function as the first basis function. This effectively means that the base level caused by slow decay 
is captured by this single basis function, which keeps the function sparse in these bases.

Figure 4 compares the two compression techniques for the diffusion of cobalt phthalocyanine (CoPc) on 
Ag(001) with an observable baseline feature. The full set of polarisation data points only corresponds to the first 
101 frequencies and therefore there are noticeable Gibbs artefacts around the elastic peak in the Fourier series 
approximation. This strongly suggests that the Fourier series approximation here is not a particularly accurate 
approximation to the true intensity function.

Furthermore, the wavelet approximation aims to reconstruct the true underlying continuous wavelength 
intensity function, unlike the DFT approach which attempts to reconstruct a discretised form of the Fourier series 
approximation. Consequently, even with full sampling, the wavelet reconstruction is noticeably different to the 
Fourier series approximation. This reflects the fact that, as we are handling real data, we cannot directly compare 
to the true underlying wavelength intensity function.

Regardless we clearly observe that the baseline feature is preserved under subsampling using wavelets where 
the DFT approach clearly fails, matching predictions based on sparsity observations earlier. Note that both tech-
niques use exactly the same samples. While we are able to subsample to a reasonable degree here (≈​33%), one 
should ideally work with a larger range of frequencies to truly exploit the benefits of this approach, i.e. subsam-
pling from polarisation data with thousands of points rather than hundreds.

Surface Diffusion Using Continuous CS.  Surface diffusion, in contrast to phonon studies, deals with 
species (atoms, molecules) adsorbed on surfaces which diffuse over large distances. It aims to identify the main 
mechanisms governing the motion on surfaces (i.e. the energetic landscape governing the adsorbate dynamics) 
and, therefore, to characterize their diffusive behaviour.

The Van Hove formalism of correlation functions in time and space11, initially developed for neutron scatter-
ing (see Sec. S.5 in the Supplementary Information for more details), provides us with a theoretical formalism to 
understand and interpret the experimentally determined ISF I(K, t) in terms of diffusive regimes. (Here we have 
omitted the Δ​ in the notation of the momentum transfer Δ​K for the sake of simplicity.) The Van Hove correlation 
contains all the information related to the dynamics of particles in the system but it cannot be directly measured. 
However, its properties can be inferred from partial knowledge of the SF/ISF (see Fig. 5). In particular, different 
diffusive regimes can be identified through the dephasing rate α(K), which describes the decay in time t of the ISF 
as a function of K33:

α = > = | .−t I t IK K K( ) inf{ 0: ( , ) e ( , 0) } (25)1

Its Fourier pair is the so-called quasi-elastic broadening Γ​(K) and is defined as the half-width-half-maximum 
of the quasi-elastic profile in the SF, i.e in the peak centred around Δ​E =​ 0 of the SF in Fig. 5.

Therefore, it is essential to determine the “true” ISF from the measured polarisation P(κ). The processing of 
the data from P(κ) to the ISF requires to go through a series of Fourier transformations and change of variables as 

Figure 4.  (Continuous vs discrete CS) Reconstructions of a spin-echo spectrum (a.u.) of CoPc molecules 
deposited on Ag(001) with a noticeable baseline feature. (See Supplementary Information for details on 
the sample preparation). In the DFT reconstructions the baseline level of around 0.1 is no longer flat leaving 
bumpy artefacts while the wavelet reconstructions preserve this flat feature. As we are only subsampling from 
101 frequency points, considerable Gibbs artefacts are present in the Fourier series approximation. The DFT 
reconstructions have a resolution of 101 points, while the continuous Fourier series and wavelet reconstructions 
have been rasterised at a resolution ten times this number.
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shown in Fig. 5. The drawback is that the change from wavelength to energy in (11) is incompatible with the stand-
ard DFT based CS methods because the uniform grid of coordinates in wavelength space is transformed onto a 
non-uniform grid in (K, Δ​E)-space (see Sec. S.6 in the Supplementary Information for more details on this var-
iable transform). With continuous CS one can work backwards, first specifying a uniform grid in (K, Δ​E)-space  
which is converted to a non-uniform grid in wavelength space. As a result, since the reconstructed solution of (22) 
is a function rather than a vector, one can directly sample the wavelength intensity function on this non-uniform 
grid and compute the SF on a uniform energy grid. This allows to apply the standard DFT algorithm to obtain 
the final ISF.

Measuring Diffusion and Phonons in One Go.  Through the different sections of this paper we have 
seen that the HeSE technique can explore dynamical processes spanning from phonon measurements in the 
sub-picosecond time window up to diffusion in the cents of picoseconds scale. Yet the continuous CS approach 
enables us not only to reduce the measurement times, it is also a powerful method to circumvent the experimental 
complications when trying to capture very different dynamical processes within a single set of data.

Firstly, the capability to reconstruct the spectrum out of a subsampled set of measured currents allows to cover 
a very large current window with a high resolution in a reasonable measurement time. This provides us with a 
very broad and highly resolved energy window where we can separate accurately the phonon (the inelastic peak 
in the spectrum) from the diffusive contribution (the quasi-elastic peak centered at Δ​E =​ 0 meV). Secondly, the 
flexibility of the continuous CS approach allows us to evaluate the reconstructed signal in any desired wavelength 
grid which greatly simplifies the application of the standard DFT algorithm linking the last two stages of the data 
processing, from the SF to the ISF in Fig. 5.

Hence the CS approach provides us with a flexible framework where the different physical processes contained 
in a single data set can be disentangled and analysed in the energy domain (where inelastic features such as 
phonons can be easily investigated) or in the time domain (where diffusive processes are easier to characterise).

Conclusion and Summary
We have used compressed sensing (CS) techniques to measure and reconstruct surface dynamical processes with 
a helium spin-echo spectrometer. This work demonstrates that in particular the continuous CS approach can be 
used to reduce measurement times by at least an order of magnitude whilst capturing both phonon and diffusion 
processes simultaneously.

Continuous CS allows us to reconstruct spectra with a very broad and highly resolved energy window in a 
reasonable measurement time so that we can separate accurately phonon events and diffusion processes measured 
in a single data set. Since the continuous CS approach allows to evaluate the reconstructed signal on any desired 
grid this makes it easy to switch between the energy and the time domain and to analyse the underlying physical 
processes. Not only has this made current helium spin-echo experiments more convenient, but this has also 
brought forward future projects that were originally deemed too time-consuming to measure. Eventually the final 
goal is to capture the entire scattering function over all of (K, Δ​E)-space using a two-dimensional continuous CS 
method.

The developed methodology can also be applied to other scattering frameworks and the authors hope that 
these advances will be quickly brought to the attention of the neutron scattering and X-ray communities.

References
1.	 Farías, D. & Rieder, K.-H. Atomic beam diffraction from solid surfaces. Rep. Prog. Phys. 61, 1575 (1998).
2.	 Benedek, G. & Toennies, J. P. Helium atom scattering spectroscopy of surface phonons: genesis and achievements. Surf. Sci. 299, 

587–611 (1994).
3.	 Tamtögl, A. et al. Graphene on Ni(111): Electronic Corrugation and Dynamics from Helium Atom Scattering. J. Phys. Chem. C 119, 

25983–25990 (2015).
4.	 Jardine, A. P., Hedgeland, H., Alexandrowicz, G., Allison, W. & Ellis, J. Helium-3 spin-echo: Principles and application to dynamics 

at surfaces. Prog. Surf. Sci. 84, 323–379 (2009).
5.	 Alexandrowicz, G. & Jardine, A. P. Helium spin-echo spectroscopy: studying surface dynamics with ultra-high-energy resolution. J. 

Phys.: Condens. Matter 19, 305001 (2007).

Figure 5.  A detailed 1D description of the full loop presented in Fig. 1. Blue lines denote the true underlying 
signal and red lines denote the reconstructions (except for the left panel where the red dots denote the sampling 
points). Sampling points are taken according to the sampling histogram present in Fig. 1. Note that there is no 
comparison with standard discrete CS here as the change of variable technique is impossible in the discrete 
setup. This can only be done in the continuous case.



www.nature.com/scientificreports/

1 1Scientific Reports | 6:27776 | DOI: 10.1038/srep27776

6.	 Mezei, F. Neutron Spin Echo: Proceedings of a Laue-Langevin Institut Workshop Grenoble, October 15–16, 1979, chap. The 
principles of neutron spin echo, 1–26 (Springer, 1980).

7.	 Jardine, A. P., Alexandrowicz, G., Hedgeland, H., Allison, W. & Ellis, J. Studying the microscopic nature of diffusion with helium-3 
spin-echo. Phys. Chem. Chem. Phys. 11, 3355–3374 (2009).

8.	 Hedgeland, H. et al. Measurement of single-molecule frictional dissipation in a prototypical nanoscale system. Nat. Phys. 5, 561–564 
(2009).

9.	 Harten, U., Toennies, J. P. & Woll, C. Helium Time-of-flight Spectroscopy of Surface-phonon Dispersion Curves of the Noble Metals. 
Faraday Discuss. Gem. Soc. 80, 137–149 (1985).

10.	 Kole, P. R., Jardine, A. P., Hedgeland, H. & Alexandrowicz, G. Measuring surface phonons with a 3He spin echo spectrometer: a two-
dimensional approach. J. Phys. Condens. Matter 22, 304018 (2010).

11.	 Hove, L. V. Correlations in space and time and born approximation scattering in systems of interacting particles. Phys. Rev. 95, 249 
(1954).

12.	 Candès, E. J., Romberg, J. & Tao, T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency 
information. IEEE Trans. Inf. Theory 52, 489–509 (2006).

13.	 Candès, E. J. An introduction to compressive sensing. IEEE Signal Process. Mag. 25, 21–30 (2008).
14.	 Donoho, D. L. Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
15.	 Lustig, M., Donoho, D. L., Santos, J. M. & Pauly, J. M. Compressed sensing mri. IEEE Signal Process. Mag. 25, 72–82 (2008).
16.	 Guerquin-Kern, M., Häberlin, M., Pruessmann, K. & Unser, M. A fast wavelet-based reconstruction method for magnetic resonance 

imaging. IEEE Trans. Med. Imag. 30, 1649–1660 (2011).
17.	 Holland, D. J., Bostock, M. J., Gladden, L. F. & Nietlispach, D. Fast multidimensional nmr spectroscopy using compressed sensing. 

Angew. Chem. Int. Ed. 50, 6548–6551 (2011).
18.	 Galvis-Carreño, D. F., Meijía-Melgarejo, Y. & Arguello-Fuentes, H. Efficient reconstruction of raman spectroscopy imaging based 

on compressive sensing. DYNA 81, 116–124 (2014).
19.	 Andrade, X., Sanders, J. N. & Aspuru-Guzik, A. Application of Compressed Sensing to the Simulation of Atomic Systems. Proc. Natl. 

Acad. Sci. USA 108, 13928–13933 (2012).
20.	 Adcock, B. & Hansen, A. Generalized sampling and infinite dimensional compressed sensing. Found. Comp. Math. 1–61 (2015).
21.	 Adcock, B., Hansen, A. C., Poon, C. & Roman, B. Breaking the coherence barrier: A new theory for compressed sensing 

arXiv:1302.0561 (2014).
22.	 Adcock, B., Hansen, A. C., Roman, B. & Teschke, G. Generalized sampling: stable reconstructions, inverse problems and compressed 

sensing over the continuum. Adv. in Imag. and Electr. Phys. 182, 187–279 (2014).
23.	 Scheuer, J. et al. Accelerated 2D magnetic resonance spectroscopy of single spins using matrix completion. Sci. Rep. 5, 17728 (2015).
24.	 Roman, B., Adcock, B. & Hansen, A. On asymptotic structure in compressed sensing, arXiv:1406.4178 (2014).
25.	 Adcock, B., Hansen, A. C. & Roman, B. Compressed Sensing and its Applications: MATHEON Workshop 2013, chap. The Quest for 

Optimal Sampling: Computationally Efficient, Structure-Exploiting Measurements for Compressed Sensing, 143–167 (Springer, 
2015).

26.	 Vetterli, M., Marziliano, P. & Blu, T. Sampling signals with finite rate of innovation. IEEE Trans. Signal Process. 50, 1417–1428 (2002).
27.	 Markovich, T. et al. More accurate and efficient bath spectral densities from super-resolution arXiv:1307.4407 (2013).
28.	 McIntosh, E. M. et al. Measurement of the phason dispersion of misfit dislocations on the au(111) surface. Phys. Rev. Lett. 110, 

086103 (2013).
29.	 Berg, E. & Friedlander, M. Probing the pareto frontier for basis pursuit solutions. SIAM J. Sci. Comput. 31, 890–912 (2008).
30.	 Studer, V. et al. Compressive fluorescence microscopy for biological and hyperspectral imaging. Proc. Natl. Acad. Sci. USA 109, 

E1679–E1687 (2011).
31.	 Mallat, S. A wavelet tour of signal processing (Elsevier Academic Press, 2008), 3 edn.
32.	 Daubechies, I. Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math. 41, 909–996 (1988).
33.	 Bée, M. Quasielastic Neutron Scattering, chap. Long-range Translational Diffusion, 148–175 (CRC Press, 1988).

Acknowledgements
A. Jones acknowledges EPSRC grant EP/H023348/1, A. Tamtögl acknowledges support by the FWF (project 
J3479-N20), I. Calvo-Almazán acknowledges support from the Ramón Areces Institution and A. Hansen 
acknowledges support from a Royal Society University Research Fellowship as well as EPSRC grant EP/L003457/1. 
The authors would like to thank W. Allison for many helpful discussions.

Author Contributions
A.J. implemented the main parts of the compressed sensing and wavelet reconstruction algorithms and A.T. 
performed the experimental measurements. I.C.-A. implemented the post-processing of the measured data, 
in particular the transformation steps from the measured data up to the intermediate scattering function. A.J., 
I.C.-A. and A.T. analysed the data and prepared the figures. All authors were involved in preparing and revising 
the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Jones, A. et al. Continuous Compressed Sensing for Surface Dynamical Processes with 
Helium Atom Scattering. Sci. Rep. 6, 27776; doi: 10.1038/srep27776 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Continuous Compressed Sensing for Surface Dynamical Processes with Helium Atom Scattering

	Compressing Spin-Echo Spectra

	Paper Outline. 

	Helium Spin-Echo Spectroscopy

	Solenoid Currents and Spin Polarisation. 
	Compressed Sensing. 
	How to do structured sampling. 
	Sparsity in levels. 
	Multilevel sampling. 

	Continuous Compressed Sensing. 

	CS for Phonon Detection

	Simulated 1D Example. 
	Real Phonon Spectrum. 
	Comparing CS Techniques. 
	Surface Diffusion Using Continuous CS. 
	Measuring Diffusion and Phonons in One Go. 

	Conclusion and Summary

	Acknowledgements
	Author Contributions
	﻿Figure 1﻿﻿.﻿﻿ ﻿ Diagram outlining the various stages of data transformation from measurement in polarisation to the intermediate scattering function (ISF).
	﻿Figure 2﻿﻿.﻿﻿ ﻿ Illustration of a typical wavelength intensity function and the Fourier slice theorem (left panel).
	﻿Figure 3﻿﻿.﻿﻿ ﻿ Compressed sensing reconstructions for a measured gold(111) phonon spectrum.
	﻿Figure 4﻿﻿.﻿﻿ ﻿ (Continuous vs discrete CS) Reconstructions of a spin-echo spectrum (a.
	﻿Figure 5﻿﻿.﻿﻿ ﻿ A detailed 1D description of the full loop presented in Fig.



 
    
       
          application/pdf
          
             
                Continuous Compressed Sensing for Surface Dynamical Processes with Helium Atom Scattering
            
         
          
             
                srep ,  (2016). doi:10.1038/srep27776
            
         
          
             
                Alex Jones
                Anton Tamtögl
                Irene Calvo-Almazán
                Anders Hansen
            
         
          doi:10.1038/srep27776
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 Macmillan Publishers Limited
          10.1038/srep27776
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep27776
            
         
      
       
          
          
          
             
                doi:10.1038/srep27776
            
         
          
             
                srep ,  (2016). doi:10.1038/srep27776
            
         
          
          
      
       
       
          True
      
   




