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Anaplastic thyroid carcinoma (ATC) is one of the most aggressive human cancers. Actually, ATC is refractory to conventional
therapies, including surgery, chemotherapy, radiotherapy, and radioiodine (131I) therapy. Accordingly, genetic and molecular
characterizations of ATC have been frequently and periodically reviewed in order to identify potential biological markers
exploitable for target therapy. This review briefly focuses on main molecular events that characterize ATC and provides an update
about preclinical studies. In addition, the overexpression of transferrin receptor 1 (TfR1/CD71) by neoplastic cells of ATC is
emphasized in that it could represent a potential therapeutic target. In this regard, new therapeutic approaches based on the use of
monoclonal or recombinant antibodies, or transferrin-gallium-TfR1/CD71 molecular complexes, or lastly small interfering RNAs
(siRNAs) are proposed.

1. Introduction

Thyroid cancer represents the most frequent malignancy
among all endocrine tumors [1]. Well-differentiated thyroid
carcinomas, including papillary (PTC) and follicular (FTC)
carcinomas, are characterized by a favorable prognosis, while
undifferentiated/anaplastic carcinoma (ATC) is an uncom-
mon and highly aggressive form, which usually results in
the death of the patient [2–4]. The 5-year survival ranges
from 0 to 14%, with a median survival of 2–6 months [5–9].
ATC arises more commonly in female patients, with a mean
age of 70 years, usually affected by nodular goiters or with
a history of well-differentiated thyroid carcinoma or with
nodal or distantmetastases [3].The patients usually complain
of hoarseness due to a large-sized and rapidly expanding
neck mass, which, at the time of presentation, is often
surgically unresectable due to the invasion of surrounding
thyroid structures, such as the laryngeal nerve, esophagus
and trachea, and/or documentation of distant metastases
[3]. The most important prognostic factor is the degree

of the extent of disease at diagnosis. Small-sized ATCs or
foci of ATC arising in the context of well-differentiated
thyroid carcinomas have a better prognosis [9–11]. Obviously
the prognosis also depends on the ability to eradicate the
disease by surgery [7, 12]. In fact, if the eradication surgery
is associated with radiotherapy and adjuvant or neoadju-
vant chemotherapy with doxorubicin, survival may slightly
increase [7, 9, 13–15]. Unfortunately wide surgical resection
usually fails to provide benefits due to the local spread of
tumor, while tracheostomy is often performed to ensure
the patent of upper airway, invaded and/or obstructed by
massive tumor [3]. Grossly, thyroid parenchyma is widely or
completely replaced by a fleshy mass, whitish in color, with
multiple areas of necrosis and hemorrhage, which diffusely
infiltrates adjacent tissues [3, 5, 6]. Histologically, the tumor
is composed of a variable mixture of spindled, epithelioid,
and large pleomorphic/bizarre giant cells exhibiting different
growth patterns such as solid, trabecular, and fascicular
patterns [2, 3, 5, 6, 10]. The overall appearance of ATC
is usually closely reminiscent of a high-grade pleomorphic
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sarcoma. Mitotic figures are frequently observed, including
atypical mitoses. Hemorrhage and necrosis, sometimes with
palisading configuration, are often seen [10]. There may be
an inflammatory infiltrate, predominantly of granulocytes,
which occasionally can invade the cytoplasm of tumor
cells. Although the above mentioned features represent the
common basic morphological aspects of ATC, several mor-
phological variants have been described over time, some of
which appear to be rather uncommon [16]: (i) squamous
cell carcinoma variant (tumor consisting of dominant/pure
squamous differentiation); (ii) adenosquamous carcinoma
variant (in addition to squamous differentiation, tumor
contains foci of glandular differentiation with mucin produc-
tion); (iii) lymphoepithelioma-like carcinoma variant (tumor
sharing morphological features with the nasopharyngeal
undifferentiated carcinoma); (iv) rhabdoid variant (tumor
exhibits cells with clear-cut rhabdoidmorphology); (v) osteo-
clastic variant (tumor contains reactive CD68+ osteoclast-
like multinucleated giant cells intermixed to cancer cells);
(vi) carcinosarcoma variant (tumorwith amixture of carcino-
matous and heterologous mesenchymal components, such as
cartilage, bone, or skeletal differentiation); (vii) paucicellular
variant (hypocellular tumor with diffuse sclerosis, mimick-
ing Riedel thyroiditis); (viii) angiomatoid variant (tumor
mimicking angiosarcoma). Despite the poor morphological
differentiation, the epithelial nature of ATC is demonstrable
in 45–80% of cases by staining for cytokeratins, especially
using cytokeratin AE1/AE3. Approximately half of the cases
express epithelial membrane antigen (EMA). Only rarely
there is TTF-1 expression, while thyroglobulin is almost
invariably negative. Notably, a significant expression of TP53
is commonly observed [16].

As ATC is refractory to conventional chemotherapy,
radiotherapy, and radioiodine (131I) therapy [17], new ther-
apeutic approaches are urgently needed in the future. In
this regard, some original or review articles about genetic
mutations, chromosomal instability, and identification of
potential biomarkers exploitable against ATC are emerging
in the literature [17–24]. However, while for PTC several
potential gene and protein therapeutic targets have been
identified [25–29], only a few options seem to be available
for ATC in the literature [30]. Waiting for the advent of new
genomewide approaches, such as next-generation sequencing
(NGS), the analysis of the molecular mechanisms involved in
the pathogenesis of ATC still remains the only available tool
for planning any target therapy. There is increasing evidence
that follicular cell-derived thyroid carcinomas represent a
biological continuum of the same disease that progresses
from the curablewell-differentiated thyroid carcinomas (PTC
and FTC) to fatal ATC. In fact, although ATC may derive de
novo, many cases seem to arise from preexisting PTC or FTC
[31–33]. This is supported by morphological evidence show-
ing the gradual loss of papillary and follicular growth patterns
associated with a concurrent increase in the presence of solid
growth pattern,mitoses, necrosis, and nuclear pleomorphism
that is typically observed in ATC. Moreover, most of ATCs
exhibit residual foci of differentiated thyroid carcinoma,
including both PTC and FTC [16]. Notably, ATC may also

develop as a recurrence months or years after the removal
of a well-differentiated neoplasm [5, 34]. Apart from this
morphological evidence, it has been previously demonstrated
that the development of chromosomal instability underlies
the progression to more aggressive phenotypes of thyroid
cancer [35]. Recurrent gains at 3p13-14 and 11q13 and loss of
5q11–31 were identified exclusively in ATC, suggesting they
may be markers for anaplastic transformation [35].

For ATC with minor PTC or FTC components, it is likely
that the mutations typically occurring in the latter tumors
(e.g., RAS and BRAF mutations) may represent only early
events in the tumorigenesis of ATC, while others, including
TP53, catenin beta 1, and PIK3CA, may contribute later to
the acquisition of a phenotype responsible for the extremely
aggressive behavior of ATC [32, 36–38].

Generally, the genes coding proteins differently involved
in the transduction pathway, such as RET, RAS, BRAF, PI3K,
PTEN, andAKT, aremutated or aberrantly expressed inATC,
providing conditions for uncontrolled cellular proliferation
and carcinogenesis via the MAP kinase pathway. RAS point
mutations involving specific regions (codons 12, 13, and 61)
of the three RAS oncogenes, H-RAS, K-RAS, and N-RAS, by
activating both the MAP kinase pathway and the PI3K/AKT
pathway, are associated with aggressive thyroid tumor phe-
notypes including ATC [39–42]. BRAF, which belongs to
the RAF family of serine/threonine kinases, by regulating
the MAP kinase/ERKs signaling pathway, affects cell divi-
sion, differentiation, and secretion. The most frequent BRAF
mutation involves nucleotide 1799 and results in substitution
of valine for glutamate at residue 600 (V600E). This point
mutation leads to constitutive activation of BRAF kinase
and chronic stimulation of the MAPK pathway, playing
tumorigenic activity for thyroid cells [30, 32, 43]. Inhibition
of BRAF V600E by using vemurafenib has shown promising
clinical responses in metastatic PTC [44]. Although BRAF
mutation (V600E) is reported in approximately only 25%
of ATC, suggesting its involvement in tumor progression
together with other genetic markers, it could be exploitable
as potential therapeutic target. In this regard a dramatic
response to vemurafenib has been obtained in a 51-year-old
man with BRAF-mutated anaplastic thyroid cancer [45].This
single case report provides evidence for testing ATCs for
BRAFmutation (V600E), treating the positive cases by using
vemurafenib. This approach could be suggested, at least, as
empirical treatment in rapidly progressive cases. Anyway, the
results need to be confirmed in larger series of ACTs.

Different alterations of PTEN/PI3K/AKT pathway that
regulates several cellular processes, including cell cycle pro-
gression, adhesion, andmotility, are also commonly observed
in ATC, and then they could be exploitable as potential
therapeutic targets. In this regard the missense mutations
of PIK3CA, which encodes the p110𝛼 catalytic subunit of
phosphatidylinositol 30-kinase (PI3K), have been frequently
detected [32, 38, 46]. Aberrant activation of PI3K/Akt path-
way has been suggested to promote progression of a thyroid
adenoma to FTC and/orATC [47], while activation ofAkt has
been observed in most of the ATCs with PIK3CA mutation
[32, 38, 46].

Molecular mechanisms involved in tumor cell dediffer-
entiation are thought to be mediated by loss/inactivation or
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mutation of tumor suppressor gene, p53 [30, 32, 36, 38, 48–
51]. It has been suggested that, unlike RAS and BRAF gene
alterations, p53mutations are crucial in accelerating genomic
instability, triggering tumor dedifferentiation toward ATC
[36, 51]. Redifferentiation of tissues from ATC upon the
reintroduction of wild type p53 and the restoration of
cellular responsiveness to physiologic stimuli, such as thyroid
stimulating hormone and reexpression of thyroid peroxidase
[38, 52], strongly support this hypothesis.

The biological process of dedifferentiation from well-
differentiated thyroid carcinomas toward ATC is also under-
lined by 𝛽-catenin expression. 𝛽-Catenin acts as cell-
cell adhesion molecule that complexes with E-cadherin
proteins in normal epithelium. Derangement of the E-
cadherin/catenin complex, as well as low membrane 𝛽-
catenin expression or its nuclear localization, is associated
with transformation of differentiated carcinomas into ATC
[38, 53–57].

New diagnostic and therapeutic opportunities are emerg-
ing by the analysis of microRNAs (miRNAs). miRNAs are
a heterogeneous class of small noncoding but functional
RNAs involved in posttranscriptional regulation of target
genes, playing a control role in development, proliferation,
apoptosis, and stress response [58, 59]. AsmiRNA expression
is frequently altered in several tumors, they are recently
emerging as promising prognostic biomarkers and thera-
peutic agents for many tumors [60, 61]. Specific miRNA
profiles have been associated with thyroid tumors [62–66].
Visone et al. [63] by performing miRNA-chip-microarray
analysis demonstrated aberrant miRNA expression profile,
especially decrease of some of them (miRNAs-30d, -125b,
-26a, and 30a-5p), which clearly differentiates ATC from
normal thyroid tissues and PTC. Subsequently, Mitomo et al.
[64] confirmed downregulation of some miRNAs, such as -
26a and -138, but they also noticed upregulation of others,
including miRNAs-21, -146b, -221, and -222. The association
of specific miRNAs deregulation with ATC transformation
is the rational approach for further challenging investiga-
tions. In fact, miRNA-125b has a different expression in the
human tumors, being upregulated in pancreas and stomach
carcinomas, whereas it is downregulated in breast cancer and
ATC, suggesting that it can act in different ways depending
on the cellular context [67]. Moreover, miRNA-125b and
others, which significantly decreased in ATC [63], have,
among the predicted regulated target genes, alsoHMGA1 and
HMGA2, which are proteins expressed at very high levels
in several malignant tumors, including thyroid carcinomas
[68, 69]. Again, miRNA-21, described to be upregulated [64],
targets E2F (involved in cell cycle and apoptosis) and inhibits
PTEN; miRNA-138, found to be downregulated [63, 64],
targets the human telomerase reverse transcriptase (hTERT)
gene which is also found to be totally downregulated in
both ATC and PTC cell lines in comparison with normal
thyroid tissues [64]. Nevertheless, miRNAs are emerging as
promising new strategy with therapeutic potential for many
aggressive cancers, such as ATC.

Preclinical studies, through in vitro and in vivo anal-
yses, are providing helpful information in the therapeutic
approach of ATC, especially the analysis of the mouse

model closely recapitulating the clinic-pathological features
of human ATC. While most genetically engineered mouse
models gave significant advancements about differentiated
thyroid carcinomas, such as PTC [70–72] and FTC [73–76],
only recently ATC mouse models have been developed.

Antico Arciuch et al. [77] firstly obtained a mouse model
of ATC by combining, in the mouse thyroid follicular cells,
two molecular hallmarks of human ATC, namely, activation
of PI3K (via Pten deletion) and inactivation of p53. By
the age of 9 months, over 75% of the compound mutant
mice developed aggressive, undifferentiated thyroid tumors,
displaying all the features of their human counterpart,
including pleomorphism, epithelial-mesenchymal transition,
aneuploidy, local invasion, and distant metastases. It was
shown that the tumors developing in this animal model
undergo the glycolytic shift known as Warburg effect and
are highly sensitive to the therapeutic use of glycolytic
inhibitors, which synergizewith standard chemotherapy [77].
Later, Nehs et al. [78] elegantly demonstrated the remarkable
efficacy of PLX4720 compound, which is an ATP analog that
selectively inhibits B-RafV600E by stabilizing it in an inactive
conformation [79], to induce significant regression in an
orthotopic mouse model of ATC even when administered at
a very late therapeutic intervention stage. This result seems
to be particularly promising. It is well known, in fact, that
ATC tends to be resistant to traditional approaches such as
standard chemotherapy, radiation, and radioiodine (131I) due
to loss of the sodium iodide symporter through malignant
dedifferentiation [80]. If downregulation of BRaf with anti-
BRafV600E therapy also causes sodium iodide symporter
upregulation, as suggested by in vitro data, it could be
expected that patients treated with anti-B-RafV600E therapy
may undergo both reduction of tumor size/invasiveness and
possible redifferentiation, thus making radioactive iodine
administration possible to control an additional metastatic
burden [78, 81–83]. A detailed description of an approach
establishing an orthotopic mouse model of ATC has been
reported by Sewell et al. [84], which mainly emphasized
thyroid tumor metastasis and disease related cachexia and
respiratory distress. Just recently, McFadden et al. [85] have
genetically engineered a mouse model of BRAF-mutant
ATC and demonstrated that combination treatment with
MEK and BRAF inhibitors results in enhanced antitumor
activity as compared to treatment with a BRAF inhibitor
alone, suggesting that this combination could be useful as a
component of treatment regimens also in human.

Given these results, it must be stressed that the animal
model is a tool of unquestionable benefit for the develop-
ment of appropriate therapeutic approach against complex
diseases. Orthotopic mouse models seem to be ideal and
commonly used for preclinical and translational studies of
compounds and therapies, not only because of the fact
that they may mimic key aspects of human diseases (e.g.,
metastasis), but also because of their reproducibility and the
possibility to evaluate systemic effects of treatments [86].
Thus, even if aggressive thyroid tumors, such as ATC or
poorly differentiated thyroid carcinoma, carry several com-
plex genetic alterations, likely explaining disease progression
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(a) (b)

Figure 1: (a) Cells of a nodular goiter showing a weak and cytoplasmic staining for TfR1/CD71. (b) In ATC TfR1/CD71 is diffusely expressed
both in the cytoplasm and in the cell surface of neoplastic cells.

and resistance to single-compound approaches, orthotopic
models of human thyroid cancer also hold the potential to be
good models for testing novel combinatorial therapies [86].

2. TfR1/CD71: A Potential Therapeutic Target

Among the biomarkers which have been identified in ATC,
by using different approaches, and that can be exploitable as
potential therapeutic targets, we focus on type I receptor for
transferrin (TfR1/CD71) [82]. TfR1, also known as CD71, is
a type II cell membrane-associated glycoprotein involved in
iron homeostasis and cell growth [87–89]. Although ubiqui-
tously expressed on the cell surface, TfR1/CD71 is commonly
upregulated in cells with high proliferative index, including
cancer cells that need iron as cofactor of many enzymatic
reactions, such as DNA synthesis [87–90]. TfR1/CD71 over-
expression has been reported in several human malignant
tumors, including lymphomas, carcinomas, neuroendocrine,
and brain tumors [91]. Among carcinomas, TfR1/CD71 over-
expression has been documented in colon, stomach, pan-
creas, breast, lung, liver, bladder, oral cavity, and uterus [91].
Notably a close correlation of TfR1/CD71 expression level and
tumor proliferation index, histological grading, stage, and
prognosis has also been largely demonstrated [87–91].

Based on our previous studies which showed an increased
transferrin expression by PTC cells in comparison with
thyroid cells from benign tissues [25], we performed PCR,
western blotting, and immunohistochemical studies on fresh,
paraffin-embedded thyroid tissues, as well as in thyroid
cell lines, to assess whether TfR1/CD71, the receptor for
transferrin, is upregulated in malignant thyroid tumors [91].
Conventional RT-PCR revealed the presence of TfR1/CD71
mRNA in all thyroid samples examined, suggesting that
this receptor is transcribed in both benign and malig-
nant tissues but differently expressed in malignant versus

Figure 2: Higher magnification showing concurrent cytoplasmic
and cell membrane immunostaining for TfR1/CD71 in ATC.

benign tissues. In fact, western blot analyses showed that
although TfR1/CD71 protein was detected in all examined
samples, its relative abundance appeared substantially higher
in malignant tissues, especially PTC and ATC, when com-
pared to their benign counterparts. Immunohistochemical
results paralleled the findings of western blot, revealing an
overall overexpression of the receptor in malignant tissues
as compared to benign tissues which, by contrast, did not
or only weakly and focally showed low levels of expression
[91]. All the above mentioned findings suggest that syn-
thesis and membrane incorporation of TfR1/CD71 occur at
low levels in normal thyroid tissues, whereas it becomes
part of an aberrant gene/protein expression pattern upon
neoplastic transformation and malignant progression [91].
In particular, TfR1/CD71 overexpression was observed in all
cases of ATCs tested (10 out 10 cases), and similarly to most
cases of PTC, a combined strong and diffuse cytoplasmic,
as well as, cell membrane immunostaining was observed
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Figure 3: TfR1/CD71 is differentially expressed in thyroid tumor cell lines: increasing cytoplasmic expression is seen in neoplastic cells from
PTC (a), FTC (b), and ATC (c).

Figure 4: An example of ATC: transferrin is diffusely and strongly
expressed in the cytoplasm of neoplastic cells.

(Figures 1 and 2) [91]. Similar results were also obtained in
ATC cell lines (Figure 3). Our unpublished immunohisto-
chemical data, showing that most neoplastic cells of ATC
exhibit strong and diffuse cytoplasmic staining for transferrin
(Figure 4), suggest that the overexpression of this protein
concurs with the increased expression of its cognate receptor.
Thus, it could be speculated that, as already seen in PTC [25],
an autocrine and/or paracrine regulatory loop of transferrin-
TfR1/CD71 does exist also in ATC. However we admit that
this hypothesis needs to be confirmed by mRNA analyses to
exclude the possibility that immunohistochemically detected
transferrin can derive from internalized protein present in
blood or outside the cell through interactionwith its receptor.
Interestingly, more than 30 years ago, it was largely known
that gallium-67 citrate scintigraphy was helpful in identifying
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Figure 5: The diagram shows cellular uptake of iron by internalizing the transferrin-iron complex through TfR1-mediated endocytosis and
summarizes themain therapeutic strategies through TfR1. 1: gallium binds avidly to transferrin, competing with iron (Fe), to form transferrin-
gallium complexes, which in turn binds TfR1/CD71 on the surface of neoplastic cells containing high density of TfR1. Gallium, delivered in
the cytoplasm, may be capable of interfering with the intracellular release of iron from the endosome to cellular compartments. Gallium also
has direct cytotoxic effects resulting in cell death. 2: monoclonal antibody (Ab) against TfR1 binds TfR1 on the cell surface overexpressing the
receptor, like in tumor cells, by competing or not with Fe-transferrin complexes depending on the location of the epitope on the receptor to
which the antibody binds. This activity, in turn, results in iron deprivation and cell proliferation inhibition. Other types of antibodies have
been engineered to deliver therapeutic agents with anticancer effects. 3: small interfering RNA (siRNA) approach. siRNA, alone or complexed,
by transit across cellular membrane, are delivered to cytoplasm, where by classical Dicer-RISC-pathway-unwinding-mRNA recognition-
cleavage-mRNA degradation could drive TfR1 downregulation. Both three proposed mechanisms potentially conduct to the reduction of
iron in the cytoplasm of neoplastic cell and thus to the inhibition of cellular proliferation.

malignant thyroid tumors, especially primary and metastatic
ATCs [92, 93]. At that time, it was hypothesized that there
was a close correlation between gallium-67 uptake and degree
of malignancy of thyroid tumor cells, even if the mechanism
of tumor localization of gallium-67 was still unclear [92,
93]. Nowadays it is commonly accepted that gallium-67
citrate is preferentially uptaken by high-grade malignant
tumors, through its ability to bind, in place of transferrin,
TfR1/CD71 [94–96]. This is supported by the evidence that
only malignant tumors that overexpressed TfR1/CD71 at a
tissue level were also marked in vivo by gallium [97–99].

Based on our findings, it is likely that the high uptake of
gallium-67 citrate by ATC cells might be explained by the
high expression of TfR1/CD71 in this aggressive neoplasm.

Because of its upregulation in malignant tissues, extra-
cellular accessibility, and constitutive ability to internalize
into cells, TfR1/CD71 is currently attracting wide interest as
potential direct or indirect therapeutic target [87–89, 91].
Firstly, TfR1/CD71 can be targeted by direct interaction with
conjugates of its ligand transferrin (Tf), the iron transport-
ing protein. In this regard, gallium nitrate binds avidly to
transferrin to form transferrin-gallium complexes, which
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in turn bind TfR1/CD71 on the surface of neoplastic cells
[94, 100] (Figure 5). Gallium nitrate or alternatively gallium
compounds, a group IIIa metal salt, have been described
to inhibit the proliferation of tumor cells in vitro and in
vivo [101]. Antitumoural activity by novel organogallium (III)
through induction of apoptosis has also been described in
8505C anaplastic thyroid cancer cell line [102].

Gallium nitrate cytotoxicity may be due to its capability
to interfere with the release of iron from endocytic vesicles,
depending on not only TfR1/CD71 receptor density on cel-
lular surface but also TfR1/CD71 cycling [95]. In addition,
cytotoxicity of gallium may be due, at least in part, to the
inhibition of iron uptake. Gallium nitrate binds transferrin
and thus, iron cannot bind and is not taken up by the cell
[103, 104]. Thus, the transferrin-gallium-TfR1/CD71 molecu-
lar complex may represent a promising therapeutic approach
against ATC.

TfR1/CD71 can be also specifically targeted by mono-
clonal or recombinant antibodies (Figure 5). In this regard,
there are two different types of antibodies: (i) directly
cytotoxic antibodies and (ii) therapeutic agents delivery
antibodies. The former, binding TfR1, inhibit the function of
the receptor by inducing its sequestration and subsequently
degradation in sensitive cells. It has been shown that TfR1
level reduction on the cell surface results in decreased
transferrin uptake and induction of lethal iron deprivation
(LID) in hematopoietic malignancies [105, 106].

Other monoclonal or recombinant antibodies have been
developed to target TfR1/CD71 for delivering chemothera-
peutic drugs, protein toxins, radionuclides, liposomes, mod-
ified viral particles, and nanoparticles to kill malignant
cells [87–89, 107, 108] (Figure 5). The combinations of such
antibodies against TfR on human tumor cells have been
demonstrated to have antiproliferative effects both in vitro
and in vivo [106, 109–114].

Lastly, TfR1/CD71 may be exploitable as specific target
for small interfering RNA (siRNA) approach (Figure 5). This
technology represents a powerful genetic tool for sequence-
specific inhibition of target proteins capable of modulating
cell growth, apoptosis, chemoresistance, and chemosensi-
tivity. In this regard the use of transferrin should ensure
specific targeting of siRNA-containing complexes to ATC
cells in situ and the consequent uptake by TfR1/CD7-
mediated endocytosis of the delivered particles. Recently a
siRNA clinical trial has successfully targeted nanoparticles
containing transferrin, which engage TfR on the surface
of cutaneous melanoma cells [115]. However, the targeting
specificity reported in this study has been questioned by
other authors who failed to demonstrate the overexpression
of TfR1/CD71 in a large series of cutaneous melanomas
[116]. Accordingly it was contemplated the possibility that
neoplastic cells might internalize nanoparticles conjugated
with transferrin through a mechanism independent of the
activity of the cognate receptor [116].

In conclusion, although these potential TfR1/CD71-based
therapeutic strategies appear to be intriguing, the question of
whether this receptor will remain accessible in vivo in ATC is
still to be elucidated. For these reasons we advise that future
in vitro and preclinical studies will be performed to confirm

the idea of using TfR1/CD71 as a meaningful molecule for
target therapy against ATC, which continues to be one the
most aggressive human tumors.
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[82] G. Riesco-Eizaguirre, I. Rodŕıguez, A. de La Vieja et al., “The
BRAFV600E oncogene induces transforming growth factor 𝛽
secretion leading to sodium iodide symporter repression and
increased malignancy in thyroid cancer,” Cancer Research, vol.
69, no. 21, pp. 8317–8325, 2009.

[83] D. A. Kleiman, D. Buitrago, M. J. Crowley et al., “Thyroid
stimulating hormone increases iodine uptake by thyroid cancer
cells during BRAF silencing,” Journal of Surgical Research, vol.
182, no. 1, pp. 85–93, 2013.

[84] W. Sewell, A. Reeb, and R. Y. Lin, “An orthotopic mouse
model of anaplastic thyroid carcinoma,” Journal of Visualized
Experiments, no. 74, 2013.

[85] D. G. McFadden, A. Vernon, P. M. Santiago et al., “p53 con-
strains progression to anaplastic thyroid carcinoma in a Braf-
mutantmousemodel of papillary thyroid cancer,” Proceedings of
the National Academy of Sciences of the United States of America,
vol. 111, no. 16, pp. E1600–E1609, 2014.

[86] Z. A. Antonello and C. Nucera, “Orthotopic mouse models
for the preclinical and translational study of targeted therapies
against metastatic human thyroid carcinoma with BRAFV600E
or wild-type BRAF,” Oncogene, 2013.

[87] T. R. Daniels, T. Delgado, J. A. Rodriguez, G. Helguera, and
M. L. Penichet, “The transferrin receptor part I: biology and
targeting with cytotoxic antibodies for the treatment of cancer,”
Clinical Immunology, vol. 121, no. 2, pp. 144–158, 2006.

[88] T. R. Daniels, T. Delgado, G. Helguera, andM. L. Penichet, “The
transferrin receptor part II: targeted delivery of therapeutic
agents into cancer cells,”Clinical Immunology, vol. 121, no. 2, pp.
159–176, 2006.

[89] T. R. Daniels, E. Bernabeu, J. A. Rodŕıguez et al., “The trans-
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