
viruses

Article

Establishment and Comparison of Pathogenicity and
Related Neurotropism in Two Age Groups of Immune
Competent Mice, C57BL/6J Using an Indian Isolate of
Chikungunya Virus (CHIKV)

Jaspreet Jain 1,†, Vimal Narayanan 1,‡, Ankit Kumar 1,‡ , Jatin Shrinet 1 ,
Priyanshu Srivastava 1 , Shivam Chaturvedi 2 and Sujatha Sunil 1,*

1 Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology, New Delhi,
Delhi 110067, India; jaspreet.jain@gmail.com (J.J.); drvimaln@gmail.com (V.N.);
ankitkumar.bcas@gmail.com (A.K.); jatbioinfo@gmail.com (J.S.); priyanshu@icgeb.res.in (P.S.)

2 Animal House Facility, International Centre for Genetic Engineering and Biotechnology, New Delhi,
Delhi 110067, India; shivam@icgeb.res.in

* Correspondence: sujatha@icgeb.res.in
† Current address: Department of Human Retrovirology, Montreal Clinical Research Institute, Montreal,

QC H2W 1R7, Canada.
‡ These authors contributed equally to this work.

Received: 1 March 2019; Accepted: 20 May 2019; Published: 25 June 2019
����������
�������

Abstract: Chikungunya (CHIK) is a febrile arboviral illness caused by chikungunya virus (CHIKV)
and has been identified in more than 60 countries across the globe. A major public health concern,
the infection occurs as an acute febrile phase and a chronic arthralgic phase. The disease manifests
differently in different age groups that can range from asymptomatic infection in the younger age group
to a prolonged chronic phase in the elderly population. The present study was undertaken to evaluate
strain-specific pathogenesis of ECSA genotype of CHIKV strains derived from clinical isolates in adult
C57BL/6J mice model. The strain that was pathogenic and developed distinct acute and post–acute
phase of CHIK infection was further evaluated for dose-dependent pathogenesis. Upon arriving on
the optimal dose to induce clinical symptoms in the mice, the disease progression was evaluated
across the acute and the post–acute phase of infection for a period of 15 days post–infection in two age
groups of mice, namely eight weeks old and 20 weeks old mice groups. Biochemical, hematological,
and virology attributes were measured and correlated to morbidity and linked neurotropism and limb
thickness in the two age groups. Our results show that CHIKV exhibit strain-specific pathogenesis
in C57BL/6J mice. Distinct dissimilarities were observed between the two age groups in terms of
pathogenesis, viral clearance and host response to CHIKV infection.
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1. Introduction

Chikungunya disease (CHIK) is caused by chikungunya virus (CHIKV), a positive single stranded
RNA virus of genus alphavirus and family Togaviridae [1,2]. As commonly observed in other
viral diseases, CHIKV infection may be asymptomatic or produce a variable spectrum of clinical
manifestations, ranging from milder forms to severe and debilitating conditions [3]. Symptomatic
chikungunya infection has been classified into three phases: Acute, post–acute, and chronic [4]. Pyretic
or the acute phase of the disease lasts up to 2–7 days; symptoms generally include very high fever,
nausea, diarrhea, headache, and rashes accompanied with severe arthralgia. Once the fever subsides,
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some of the symptoms such as arthralgia, headache, and restriction of joint movements may persist up
to 21 days post–infection (dpi) and is generally referred to as the post–acute phase. A percentage of
patients then graduate to the chronic or arthritic phase of the disease that is marked by severe joint
swelling, joint restriction and polyarthralgia of varying degrees. Neuro-invasion by CHIKV causing
viral encephalitis has also been observed, a rare complication recently reported observed mainly in the
older patients [5–7]. In the post–pyretic or the post–acute phase, arthralgia continues leading to severe
pain lasting for months till several years as reported by previous studies [8,9].

The extent of symptomatic and asymptomatic infections varies depending on patient age groups,
circulating strain and possibly according to the prevalence of specific antibodies (Abs) developed
against CHIKV infections [10]. Additionally, several studies have emphasized on the correlation
of patients’ age to the severity of clinical manifestation of the disease [11–15]. Pathogenesis also
is dependent on a variety of factors including type of vertebrate host, age of the host and virus
strains [16,17], which makes studying the underlying mechanisms of disease pathogenesis more
complicated. Currently, animal models used to study CHIKV pathogenesis are unable to adequately
recapitulate the immunological response observed in patients [18] due the reasons as mentioned
above. Haese et al. [19] outlined CHIKV disease mouse models into three major categories; the lethal
neonatal models that develop encephalitis and offer an important system to study viral and host
factors contributing to severe disease in neonates [20,21]. These models are used to test the efficacy of
anti-CHIKV therapeutics owing to their high sensitivity towards CHIKV infection and replication [19].
Nonetheless, the immature state of their immune systems significantly limits its utilization to study
chikungunya pathogenesis. The next category of animal models are the immune-compromised
models, lacking in functional type I IFN receptor and associated components of the pathway are highly
susceptible to CHIKV infection [20,22–24]. These mice models are used to study the involvement of type
I IFN system in CHIKV pathogenesis. Due to the lack of a fully competent innate immune system, these
mice display more severe muscle and joint pathologies. However, the accurate reflection of CHIKV
pathophysiology in these models is a concern. Yet, they are used to study the efficacy of anti-CHIKV
Abs and to evaluate the safety and efficacy of chikungunya vaccines [25,26]. The third category of mice
models are the CHIKV arthritis/myositis models, those that are immune competent mouse models that
are generally utilized to evaluate CHIKV specific vaccines and drug candidates [27–29] and for testing
potential CHIKV inhibitors [30]. Also, these mice are used to investigate the persistence of CHIKV
infection and its association with chronic disease and are the most appropriate models to study CHIKV
pathogenesis [31–33].

Several studies have emphasized on the severity of infection and extended chronic phase that is
age dependent [13,14,34]. In Indian outbreaks, the age of clinical cases of CHIK have been reported
to be in the range of 11–55 years with a median age group of 35–45 years [15,35,36]. Furthermore,
these studies have reported differences between the young adult and mature adult groups in their
disease progression and disease resolution [15,34]. Earlier studies evaluating CHIKV pathogenesis
have utilized 8 week old mice that is usually considered as young adults and its biological adulthood
age corresponded to 15–21 years. However, the more relevant age group in mice studies to evaluate
CHIKV pathogenesis in humans aged 45–50 years corresponded to around 20 weeks old mice [37,38].
This age group is considered as mature adults and have been used in studies evaluating arthritis along
with 8 week old mice [39]. Further, a recent study performed during CHIKV outbreak in India also
reported neurological complications associated with the CHIKV infection [40].

The present study was undertaken to address some of these aspects of CHIKV pathogenesis.
We studied CHIKV disease pathogenesis in 20 weeks old mice that correlates to 40–45 human years [37];
compared it with the well-established 8 week old C57BL/6J mice model, and studied aspects such as
virus strain-specific pathogenicity, effect of host age in CHIKV pathogenesis and the associated host
response and related neurotropism. Dose-dependent viral pathogenicity of CHIKV strains obtained
from clinical CHIKV isolates was tested in C57BL/6J mice. Upon arriving upon the pathogenic virus
strain that developed distinct acute and post–acute CHIK infection phases and optimal dose of virus
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that induces symptoms simulating human disease, we proceeded to evaluate age dependent host
responses in the mice at two age groups, i.e., 8 weeks and 20 weeks. The model developed in this
study recapitulate CHIK disease severity in young and old age mice and aid in identifying risk factors
associated with age and increased disease severity. This may potentially serve as a platform for testing
vaccines in a more vulnerable age group. Furthermore, the model described in this study may be
useful in determining age–specific differences in anti-CHIKV immune responses.

2. Materials and Methods

2.1. Animal Ethics Statement

C57BL/6J mice were originally purchased from Jackson Labs (Sacramento, CA, USA) and inbred
locally at ICGEB. Work with infected animals was carried out in animal biosafety level (ABSL)-2
facility. All animal protocols were approved by ICGEB-Institutional Animal Ethics Committee (IAEC)
[Approval Number: ICGEB/IAEC/08/2016/VBD-1(Extension), Approval Date: 15 September 2016].
All the animals were cared for and euthanasia was induced by placing each mouse in a CO2 regulated
inhalation chamber with a calibrated gas controller as recommended by the ICGEB-IAEC.

2.2. CHIKV Amplification and Quantification and Characterization

Lab amplified virus stocks were prepared as previously mentioned [15,41]. The virus was
quantified using modified plaque assay for 96 well plate format was performed using Vero cells
(ATCC® CCL-81™). Briefly, starting at 1:100 the virus was double diluted till 1:102400. The virus was
incubated on the cells for 1–2 h at 37 ◦C for virus adsorption. Thereafter, the viruses were removed,
and wells were overlaid with 150 µL of 1% carboxymethylcellulose (CMC) prepared in sera free DMEM
media (i.e., overlay media). The plates were incubated at 37 ◦C for 48–72 h at 37 ◦C with 5% CO2 and
75% humidity. Post incubation the cells were fixed with 10% formaldehyde before washing twice with
1× PBS and staining with 0.25% crystal violet (prepared in 30% methanol). The stained wells were
washed with 1× PBS. Virus titers was calculated using the following formula:

Plaque forming units (pfu) = (No. of plaques)/(Dilution × volume of virus) (1)

Further, viral characterization was performed using Viral nucleic acid (vRNA), isolated from viral
stock using High Pure Viral Nucleic Acid Kit (Roche, Grenzach-Wyhlen, Germany) and estimation of
viral copy number was done using the QuantiTect reverse transcription kit (Qiagen, Hilden, Germany)
as per previously established protocols [15].

2.3. Determination of Optimum Dose to Establish CHIKV Infection in C57BL/6J Mice

Viruses of different concentrations were injected in 8 weeks and 20 weeks old C57BL/6J mice to
determine the 50% mouse infection dose (MID50) by footpad injections [42]. Twenty four age matched
mice were divided into six groups of eight mice each (4 male and 4 female mice) and infected with
varying CHIKV PFU (Group 1: PBS mock, Group 2: Attenuated virus control (UV treated 1 × 108 PFU),
Group 3: 1 × 102 PFU, Group 4: 1 × 104 PFU, Group 5: 1 × 106 PFU and Group 6: 1 × 108 PFU). All mice
infections were performed subcutaneously in the footpad of the left hind limb at a final volume of
50 µL. The mice were observed for changes in morbidity conditions by physical observations as per the
Morton and Griffith Scale [43], that takes into consideration the changes in weight, physical appearance,
clinical signs such as changes in temperature, cardiovascular, nervous and digestive responses and
behavior changes to both unprovoked and external stimuli. Further, weight and temperature were
measured using laboratory grade weighing scale and IR based thermometer respectively. Further,
swelling in the limbs was measured using Vernier calipers to the limit of 0.1 cm and standard deviation
of 0.002 cm. The study was done for 15 days to study the acute and post–acute phase of CHIK.
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2.4. Evaluation of Disease Progression in C57BL/6J Mice Using CHIK/DEL/2010/01 CHIKV Isolate

C57BL/6J mice were evaluated to ascertain CHIKV infection in 8 and 20 weeks old C57BL/6J mice.
1 × 106 PFU CHIKV was injected in the footpad of the hind limbs of the animals, a total of 4 mice
per day of the study for 15 dpi. Mice were observed for changes in the clinical parameters such as
morbidity, weight, temperature, and swelling of the limbs. Further, mice were sacrificed, and organs
(joint, brain, muscle, liver, skin, intestine, bone marrow, blood/serum, heart, thymus, lungs and kidney)
were recovered and used to evaluate day-wise viral load in the animals. Splenocytes were isolated
from mice spleen, pooled and used for further experiments. Euthanasia criteria was decided based
on the morbidity score recorded in accordance with the Morton and Griffith scale [43]. Concurrent
experiments were performed for 8 weeks and 20 weeks old mice.

2.4.1. Day-Wise Viral Load Estimation

Organs were harvested from the euthanized infected animals. Every organ was weighed
homogenized with PBS in the weight to volume ratio of 1:5 and lysed using tissue lyser (Qiagen,
Hilden, Germany). 200 µL of this homogenate was used for viral nucleic acid (vRNA) isolation using
High Pure Viral Nucleic Acid Kit (Roche, Grenzach-Wyhlen, Germany) and estimation of viral copy
number was done using the QuantiTect reverse transcription kit (Qiagen, Hilden, Germany) as per
previously established protocols [15].

2.4.2. Blood Sampling Method and Sample Handling

Retro-orbital blood samples were collected from the right retroorbital plexus of anesthetized
mice. Blood from the whole body was collected by heart puncture. Blood samples were divided
into two equal volumes and deposited in serum separator tubes as well as blood collected tube with
EDTA (Microtainer, Becton–Dickinson, Franklin Park, NJ, USA). Serum hemolysis was evaluated by
direct observation.

2.4.3. Clinical Chemistry Parameters

Whole blood samples were used to determine the complete blood profile of the infected
mice. Additionally, serum activity for the presence of aspartate transaminase (AST), alanine
transaminase/alanine aminotransferase (ALT), alkaline phosphatase (AP) and rheumatoid factor (RF)
was evaluated using an automated analyzer according to the manufacturers’ instructions. Standard
controls were run before each determination, and the values obtained for the different biochemical
parameters were reported.

2.4.4. Estimation of the Plaque Forming Units

Plaque forming units in the sera of the infected mice were estimated in a day-wise manner using
previously established protocols as aforementioned.

2.4.5. Estimation of Presence of Binding Abs

To detect titers of CHIKV specific IgM and IgG Abs, indirect ELISA using purified CHIKV as
coating antigen was performed using previously established protocols [15]. Briefly, purified CHIKV
particles (2.5 µg/mL/5000 virus particles, 100 µL/well) were coated in coating buffer (1× PBS with
2% FBS) in microtiter plates and left undisturbed overnight at 4 ◦C. Plates were washed, blocked
and two-fold serially diluted mouse samples starting at 1:100 were incubated on the plates at room
temperature for two hours with gentle rocking. After washing, the plate was developed using
anti-mouse IgM HRP and anti-mouse IgG HRP respectively followed by TMB as substrate. Previously
well characterized samples with confirmed presence of CHIKV specific IgM and IgG Abs respectively
were pooled and used as a positive control to obtain a linear curve for absorbance and dilution. Initial
titers and mid-point titers for IgM and IgG Abs respectively were calculated.



Viruses 2019, 11, 578 5 of 22

2.4.6. Neutralization Status of the Binding Abs

The neutralization capacity of infected sera samples from mice was analyzed by plaque reduction
neutralization test (PRNT). The neutralization assay was performed on Vero Cells using modified
protocols [44]. Briefly, sera samples were heat inactivated at 56 ◦C for 30 min and then two-fold serially
diluted sera (starting at 1:50) was incubated with 50 PFU CHIKV for 1hr at 37 ◦C. After incubation,
Vero cells were infected with the virus and antibody mixture and incubated for an additional 36 h.
Post 36 h, cells were fixed and the neutralizing (NT) Abs were measured as the percentage neutralization
in viral plaques formation compared to the virus alone wells. The results were calculated as PRNT-50.
All samples with PRNT-50 at 1:50 or below were scored as non-neutralizing.

2.4.7. Cytokine and Chemokine Estimation

Levels of CCR1, CCR2, IL-4, BST and IFN-gamma were estimated in the splenocytes of the
infected mice with FACS Canto machine; BD Biosciences using differently conjugated Abs as per the
standardized BD protocols. Cell Quest software (Becton-Dickinson, Franklin Lakes, NJ, USA) was
used to analyze the presence/absence of these cytokines at 3, 6, 9, 12 and 15 dpi. All experiments were
done in triplicates and coherent data were used for inferences. Splenocytes of uninfected male and
female mice was used as a control and the references were decided according to these sample. On the
other hand, levels of IL-1β, IL-6, TNF-α, GM-CSF, CCL2 (MCP-1), VEGF, ICAM-1, CCL5 (Rantes)
were analyzed with Luminex-200 system (Bio-Rad Laboratories, Hercules, CA, USA) using Magnetic
Luminex screening assay by RND systems. Sera samples were diluted 1/2 and assessed in duplicate
according to the manufacturer’s instructions. Assays were analyzed using on the Bio-Plex Manager
software, Standard Edition (Bio-Rad Laboratories, Hercules, CA, USA).

2.4.8. Immuno-Histopathology and Confocal Microscopy

Immuno-histopathology was done for infected mice brain and joint tissue. Briefly, paraffin-embedded,
5-µm sections of brain and joint tissues were stained using an automated processor using monoclonal
anti-CHIKV antibody (3585) (Abcam, Cambridge, UK) at a dilution of 1:200, followed by biotin–labeled
goat anti-mouse secondary antibody at a dilution of 1:800 and horseradish peroxidase-labeled
streptavidin and developed using 3-Amino-9-Ethylcarbazole substrate system (Abcam, Cambridge,
UK) to give red color during confocal microscopy Immunohistochemically stained sections were
evaluated under confocal microscopy by scoring the slide for density of the stained cells in lesioned
areas and the morphology of the infected areas. Presence of virus antigens in joint and brain tissues
was further evaluated.

2.5. Statistical Analysis

To identify the optimal number of mice, a power analysis for determining sample size (SPSS 10.0,
SPSS, Chicago, IL, USA) was conducted with an alpha value of 0.05 and a power of 90%. Previously
published data for C57BL/6J mice was used to establish an expected difference in means and an expected
SD for each biochemical parameter to perform this calculation. For all the other parameters and time
point, the group mean, SD was calculated. Statistical analyses were performed using GraphPad Prism
6 software. The Grubb test (GraphPad Software, La Jolla, CA, USA) was run for outlier detection.
Outliers were removed, and group means, SD was recalculated. To compare data between groups
(GraphPad Prism 6), the Wilcoxon signed-rank test was used when conditions of normality and equal
variance were met. The Student t test was used with Welch correction when unequal variances were
detected. When the normality test failed, a 2-tailed and exact Mann-Whitney rank sum test was used.
Differences were considered statistically significant at a p value of less than 0.05. Correlation was
determined using Spearman’s rank-order correlation analysis at confidence interval of 95% and R2

values at p-value < 0.005 were considered significant.
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3. Results and Discussion

Studies evaluating the mechanisms of CHIKV pathogenesis are limited mainly owing to the
lack of a suitable animal model that studies the various aspects of pathogenesis as observed in
humans [18,20,45]. In other arboviruses, attempts have been made to develop a strain-specific
pathogenesis model in an otherwise refractory animals in order to study certain mechanistic aspects of
the virus and the disease [46]. In humans, CHIK presents with a varying level of clinical symptoms and
a variety of features such as viral load, neutralizing capacity of the virus, patient age, joint movement
restrictions and joint swelling, that may also plays important roles in disease progression [47,48].
Recent studies from our lab have attempted to address some of these concerns in humans during CHIK
outbreaks in the country [15,35]. In the present study, we evaluated 15 CHIKV strains, collected from
patients during the CHIKV outbreaks, for their pathogenicity in terms of CHIKV induced morbidity
and associated arthralgia, common symptoms associated with CHIK. In this study, we show that
CHIKV isolates exhibit strain-specific pathogenicity that was dose-dependent, an important aspect to be
considered for future animal pathogenicity experiments. We further used the CHIKV pathogenic strain
that developed distinct acute and post–acute disease phases to evaluate the differences in host response
owing to age of the host during both acute and post–acute phase of the disease. We observed older mice
responded differently to CHIKV infection as opposed to younger mice in terms of virus dose-dependent
disease severity, virus replication kinetics, cell-mediated immune responses, development of binding
Abs and their neutralization capacities etc. We further resolved to check for any plausible reason for
neurological complication associated with CHIKV infection, a rather rare but lethal disease outcome
observed in the old age patients, mainly in the previous Indian outbreaks [40]. The details of these are
being discussed in detail in the sections below.

3.1. CHIKV Strains Differ in Their Pathogenic Potential in C57BL/6J Mice

CHIKV strains at a final concentration of 1 × 108 pfu/50 µL were injected subcutaneously in the
hind limbs of 8 weeks and 20 weeks old C57BL/6J mice. CHIKV strains showed differences in their
pathogenesis in both the age groups and were assayed in terms of morbidity, limb thickness and body
weight and survivability (Supplementary Table S1). Evaluation of the 15 CHIKV strains revealed that
amongst the most pathogenic strains, strain CHIKV#01 was most optimal with distinct acute and
post–acute phase based on most common disease markers; morbidity and limb thickness. On the basis
of our observations, strain CHIKV#01 was further used for dose optimization.

3.2. Pathogenicity of CHIKV#01 Strain Is Dose-Dependent

Since the scope of this study was to evaluate acute to post–acute phase pathogenesis of CHIKV
without medical interventions, our study was designed to be terminated in 15 days as beyond this
point medical intervention was suggested by IAEC. We evaluated the pathogenicity of CHIK#01 in
a day-wise manner for duration of 15 days using multiple concentrations of the virus, concurrently
in 8 weeks and 20 weeks old mice. Dose-dependent analysis of survival of mice owing to virus
concentration of CHIKV#1 revealed that MID50 for both 8 weeks and 20 weeks mice was between 106

and 108 PFU (Supplementary Figure S1).
Further analysis of morbidity in the 8 weeks old animals infected with CHIK#01 revealed that

a dose of 106 and 108 PFU was effective in inducing morbidity (morbidity score 5–10) in both male
and female genders. The animals infected with 102 and 104 PFU were found normal without any
signs of disease manifestations (morbidity < 5). In case of animals infected with 108 PFU, morbidity
score reached as high as 6.5 and 8 when infected with 106 and 108 viruses respectively at 15 dpi with
an intermittent drop at 12 dpi (Figure 1). Whereas, in case of 20 weeks old mice animals reached a
maximum score of 10 when infected with either 106 and 108 viruses at 15 dpi, post which the animals
either died or were terminated as per the IEAC recommendations (Figure 1).
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Figure 1. Dose-dependent pathogenesis of CHIKV#01. (A,C) Changes in morbidity and limb thickness
post–virus infection at varying PFU in 8 weeks old mice. (B,D) Changes in the morbidity and limb
thickness post–virus infection at varying PFU in 20 weeks old mice. Eight mice were taken each group.
Error bars in all the figures above depict standard deviation. The level beyond which the changes were
significant is represented in the figures.

We further evaluated limb thickness to score day-wise pathogenicity in a dose-dependent manner.
Limb thickness at the site of infection was measured at 0, 3, 6, 9, 12 and 15 dpi in 8 weeks and 20 weeks
mice. Animals infected with 102 and 104 PFU showed no change in the limb thickness when compared
to the control group in both the age groups. In case of 8 weeks old mice, >1× change in limb thickness
(p value < 0.05) were observed at 9 dpi in the mice infected either with 106 or 108 PFU. Whereas, in 20
weeks old mice infected with 106 and 108 virus particles, >1× change in limb thickness was observed
at 9 dpi and 6 dpi respectively (Figure 1).

Based on the above observations, virus PFU 106 induced optimal pathogenicity and was used to
study virus pathogenesis in 8 weeks and 20 weeks old C5BL/6J mice for duration of 15 dpi.

3.3. Hematological Markers Demonstrate Severity of Acute Infection in Older Mice and Development of RA
Factors in the Post–Acute Phase of Infection

As a first step to study CHIKV pathogenesis, we evaluated the various hematological and
biochemical parameters in the infected mice of both age groups. Table 1 summarizes the complete
blood parameters of infected 8 weeks and 20 weeks old mice, respectively, at various time points of
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the study. Our results show that for 8 weeks as well as for 20 weeks old infected mice, the median
values of total leucocyte count (TLC), differential leucocyte count (DLC) of neutrophils, eosinophils
and monocytes increased starting 6 dpi and 3 dpi for 8 weeks and 20 weeks old mice respectively,
which may be due to the establishment of viral infection and inflammation. Interestingly, the TLC
level went back to the normal in case of 8 weeks old mice while in 20 weeks old mice, TLC levels were
increased until the termination of the study. The platelet count was higher than the normal range
in both 8 weeks and 20 weeks old mice indicating thrombocytosis in the infected animals. Further,
we observed differences in the hematological makers in the older infected mice. Reduced hematocrit
and increased MCH, MCV and MCHC were observed throughout in the 20 weeks old mice. Whereas,
none of the 8 weeks old animals exhibited any such change (Table 1a,b). Upon physical inspection,
spleen enlargement was also observed in most of the older infected mice after 6dpi (83.33%, 30/36
animals) (figure not shown).

Thereafter, sera samples of both 8 weeks and 20 weeks old mice were checked and the statistical
data of biochemical parameters for sera from infected mice at various time points of the study are
presented in Table 2. In 8 weeks, old mice, AST and ALT in the sera samples were higher than the
normal range starting 6 dpi and it plateaued out at 12 dpi. While for 20 weeks old mice increased levels
of AST and ALT were observed starting 3 dpi and it remained so until the termination of the study.
Increased levels of AST and ALT indicate the liver associated symptoms during CHIKV infection as
reported in other studies, both in patients and in non-human primates [49–51].

In the present study, we were also interested in understanding the overlap of CHIKV induced
arthritis with that of rheumatoid arthritis (RA). In this respect, rheumatoid factor (RF) was checked,
we observed that RF was absent in 8 weeks old mice at all the time points while in 20 weeks mice, 50%
(n = 2) were positive for RF in sera at 12 dpi. These mice showed increase in the limb thickness (mainly
in the hind limbs and in the fore limbs to some extent), and exhibited signs of self-mutilation (at the
site of infection) (data not shown) indicative of extreme pain.

Several studies in patients >35 years of age, studying correlation between RF and age of patients
have also reported similar outcomes of incapacitating arthritis during post–acute phase of CHIKV
infection [52,53] and an overlap between RA and seropositive spondylarthritis [54] as observed in
the older mice in this study. However, in younger adult age group, levels of RF were not necessarily
elevated in the acute and chronic phases of the diseases, which may indicate inflammatory reaction
induced arthritis emerged post–CHIKV infection [8].
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Table 1. (a) Day-wise changes observed in the hematological markers post–CHIKV infection in 8 weeks old mice. (b) Day-wise changes observed in the hematological
markers post–CHIKV infection in 20 weeks old mice.

(a)

Days of Infection Day 3 Day 6 Day 9 Day 12 Day 15 Normal
RangeParameters Mean Stdev Mean Stdev Mean Stdev Mean Stdev Mean Stdev

Hb (g/dL) 15.6 0.62 15.28 0.68 13.88 1.23 15.18 0.28 15.25 0.58 11.2–16.4
TLC (×103/mm3) 3.05 0.56 5.25 0.90 6.30 0.54 5.00 1.01 5.00 1.45 1.8–5.2

DLC-neutrophils (%) 18.75 0.96 20.75 2.50 22.25 4.50 19.00 1.41 19.75 3.10 8–20
DLC lymphocytes (%) 75.25 0.96 78.00 2.16 80.25 4.99 75.25 0.96 74.75 3.86 76–91

RBC (×106/mm3) 10.78 0.46 10.18 0.36 9.49 0.98 10.08 0.24 10.24 0.65 6.1–10.7
MCV (fL) 47.15 0.67 47.65 1.27 47.35 1.33 47.65 0.62 46.83 2.00 43.4–47.8
MCH (pg) 14.5 0.22 15.00 0.45 14.63 0.35 15.10 0.18 14.90 0.54 14.8–17.6
MCHC (%) 30.75 0.45 26.98 9.35 30.90 1.15 31.63 0.30 31.85 0.35 29.3–35.9

Platelet count (mm3) 1097 257.27 1193.00 243.68 770.00 478.09 997.25 299.24 1009.00 407.56 285–890

(b)

Days of Infection Day 3 Day 6 Day 9 Day 12 Day 15 Normal
RangeParameters Mean Stdev Mean Stdev Mean Stdev Mean Stdev Mean Stdev

Hb (g/dl) 14.575 0.359398 14.38 1.06 13.43 0.96 14.05 0.75 15.17 0.81 11.2–16.4
TLC (×103/mm3) 4.28025 1.211589 4.76 1.28 5.75 1.45 5.80 1.68 6.95 0.83 1.8–5.2

DLC-neutrophils (%) 12.75 0.732006 45.00 0.17 42.50 0.10 61.25 0.30 53.33 0.49 8–20
DLC lymphocytes (%) 90.275 4.453744 96.38 1.39 91.75 10.50 96.70 1.70 97.47 0.64 76–91

RBC (×106/mm3) 9.8675 0.314788 9.68 0.51 8.97 0.55 9.53 0.52 9.66 0.68 6.1–10.7
MCV (fL) 51.075 1.05317 51.60 0.93 50.83 1.32 51.95 1.81 52.70 1.21 43.4–47.8
MCH (pg) 18.8 0.182574 19.83 0.46 20.95 0.31 19.73 0.13 20.20 0.85 14.8–17.6
MCHC (%) 38.925 0.713559 38.73 1.28 39.40 0.50 38.38 1.18 38.90 1.73 29.3–35.9

Platelet count (×103/mm3) 897.25 181.9146 907.75 94.89 1021.75 384.15 1102.25 216.78 935.00 137.18 285–890
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Table 2. Day-wise changes observed in sera-specific hematological markers post–CHIKV infections in 8 weeks and 20 weeks old mice.

DOI 3 dpi (Mean ± Standard
Deviation)

6 dpi (Mean ± Standard
Deviation)

9 dpi (Mean ± Standard
Deviation)

12 dpi (Mean ± Standard
Deviation)

15 dpi (Mean ± Standard
Deviation)

Average Values in
C57BL/6ICGEB

Mice

p-Value

Age 8 Weeks 20 Weeks 8 Weeks 20 Weeks 8 Weeks 20 Weeks 8 Weeks 20 Weeks 8 Weeks 20 Weeks

AST/SGOT
(U/L) 90.4 ± 5.23 135.95 ± 1.34 116.4 ± 7.58 135.55 ± 4.52 135.8 ± 4.36 257.42 ± 2.36 131.6 ± 5.33 145.51 ± 5.23 134 ± 6.3 140.65 ± 5.89 62.21–87.7 >0.05

ALT/SGPT
(U/L) 37.2 ± 4.54 94.00 ± 8.48 47 ± 9.3 71.1 ± 11.15 38.6 ± 10.28 76.46 ± 5.68 64.2 ± 9.18 78.85 ± 8.56 50.2 ± 10.19 80.24 ± 9.65 23.18–30.82 >0.05

ALP (U/L) 297 ± 5.25 230.2 ± 2.58 295 ± 8.28 280 ± 6.28 294 ± 11.19 300 ± 2.19 248 ± 5.34 305 ± 6.34 304 ± 5.23 318 ± 4.23 35–96 >0.05

RF Absent Absent Absent Absent Absent Absent Absent Present (50%) Absent Present (50%) Not applicable
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3.4. CHIKV#01 Persists Longer and Have Severe Disease Progression in Older Mice as Compared to
Younger Mice

Sera samples were collected from the infected mice every third day and analyzed for the presence
of viruses circulating in the blood. In case of 8 weeks old mice, we observed replicating virus particles
only until 9 dpi (Figure 2), thus corroborating with previously published studies that explained CHIKV
as a self-limiting infection [55]. Whereas in the 20 weeks old mice, pfu was observed until day 15 dpi,
emphasizing on the differences in disease presentation in distinct age groups (Figure 2). Day-wise
analysis revealed that at 3 dpi and 6 dpi, similar pfu was observed in both age groups (mean pfu at 3
dpi = 7.03 × 106 and 8.28 × 106 in 8 weeks and 20 weeks old infected mice respectively, mean pfu at
6 dpi = 4.43 × 106 and 4.5 × 106 in 8 weeks and 20 weeks old infected mice respectively). However,
after 6 dpi, viral titers reduced in 8 weeks old mice but not in 20 weeks old mice, hinting towards
the longer persistence of viruses in the 20 weeks old mice. Owing to the study design, we could
not prolong the study beyond 15 days to check the time of virus persistence in the older age group.
Nevertheless, the results suggest on age-specific differences in disease progression.
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Figure 2. Day-wise presence of mean replicating virus particles in the 8 weeks and 20 weeks old
mice post–CHIKV#01 infections. Four mice were taken in each group. Error bars in the figure depict
standard deviation.

We then investigated the kinetics of CHIKV replication in body tissues of 8 weeks and 20 weeks
old mice at 3, 6, 9, 12 and 15 dpi (or before, depending on the time of death). In case of 8 weeks old
mice, at 3 dpi, viral load was highest in the spleen followed by skin, muscle liver, kidney, intestine and
bone marrow. Post–6dpi, there were substantial differences in viral load amongst the various tissues.
While the viral load increased in the joint and brain tissues till 12 dpi, and then decreased at 15 dpi,
a gradual decrease was observed in the other tissues 6dpi onwards and reached below detectable
levels by 9 dpi (Figure 3). The 20 weeks old infected mice revealed similar changes in the CHIKV
replication kinetics and disease progression, but in exaggeration. We observed highest number of
virus molecules in spleen, muscle and skin followed by kidney, liver, intestines, bone marrow, joint
and brain at 3 dpi. Viral load increased in joint, brain and muscles at 6 dpi, while a decline in virus
load was observed in all the other organs and reached below detectable levels by 12 dpi. As seen in the
8 weeks old mice, a continuous increase in the viral load was observed in the joint and brain tissues of
the 20 week old mice.

Documentation of the day-wise viral load in various organs of 20 weeks old CHIKV infected mice
is present in Figure 3. The limit of detection in the experiment was 103 vRNA molecules.
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Figure 3. CHIKV replication kinetics in 8 weeks and 20 weeks old infected. Mean value of the vRNA
copy number is represented for all the organs at various time points of the study. Level of detection is
indicated as dotted line. Four mice were taken in each group. Error bars represent Standard error of
the mean.

Based on the above findings, we further sought to evaluate the day-wise changes in the status of
limb thickness at the site of infection, one of the most common features of CHIKV infection (Figure 4a)
and observed more than 2× limb thickness increase post–6 dpi for both 8 weeks and 20 weeks old mice.
Maximum limb thickness in 8 weeks old mice was observed at 12 dpi, a slow but gradual reduction in
the limb thickness was observed thereafter (Figure 4a). On the other hand, a continuous increase in
the limb thickness of 20 weeks old mice was observed until the termination of the study (maximum
increase in limb thickness = 3.6×) (Figure 4a). Further, correlation between limb thickness and the
presence of viral load was observed to be positively correlated in both 8 weeks (Figure 4b) and 20
weeks old mice (Figure 4c) but was significant only in case of the latter (R2 = 0.6721, p-value > 0.5 for 8
weeks old infected mice and R2 = 0.4717, p-value = 0.016 for 20 weeks old infected mice).

Further, CHIKV replication kinetics in the brain tissues in 20 weeks old mice prompted us to look
into neuro-invasion of the virus, a rather uncommon symptom of CHIKV infection. We hypothesized
that presence of CHIKV in the brain tissue could be triggering the morbidity changes observed in the
present study. Similar cases of neuro-invasion have been observed in case of other arboviral infections
such as West Nile Virus (WNV), Japanese encephalitis virus (JEV) and Tick-borne encephalitis virus
(TBEV) that demonstrated the association of virus load with CNS infections in causing significant
morbidity and mortality in humans [56,57]. To test this hypothesis, we measured morbidity at days
0, 3, 6, 9, 12 and 15 dpi for both 8 weeks and 20 weeks old mice. We observed significant morbidity
changes (morbidity score > 5) starting at 6 dpi for 8 weeks old mice, thereafter, a gradual increase in
morbidity was observed with an intermittent dip at 12 dpi (p-value < 0.005 using wilcoxon signed-rank
test and compared to 9 dpi) (Figure 5a). Whereas, in case of 20 weeks old infected mice the changes
in morbidity started at 3 dpi and it increased until the termination of the study. Both 8 weeks and
20 weeks old mice showed reluctance to move and changes in behavior towards external stimulus
was observed post–6 dpi. In case of 20 weeks old mice, some animals showed signs of self-mutilation
caused due to severe swelling and pain as aforementioned, at this point a high morbidity score was
observed and the animals were euthanized as per the IEAC recommendations.



Viruses 2019, 11, 578 13 of 22

Viruses 2019, 11, x FOR PEER REVIEW 13 of 21 

 

point a high morbidity score was observed and the animals were euthanized as per the IEAC 
recommendations.  

We also observed that in case of 20 weeks old infected mice increase in morbidity was found to 
be directly proportional to the increase in the viral copy number in the brain (Figure 5c) (R2 = 0.5695, 
p-value = 0.0001), whereas, no correlation between the two was recorded in case of 8 weeks old mice 
(Figure 5b). Day-wise analysis of the viral presence in brain demonstrated that CHIKV infection in 
the brain preceded symptoms of morbidity in the infected mice. Similar finding have been 
documented in the previous studies in other arbovirus infection; neurological complications caused 
due to virus infection was correlated to severe morbidity or death and the severity of virus infection 
was reported to be dependent on virus virulence, level of viremia and maturity of the infected neuron 
[58,59]. 

 
Figure 4. Limb thickness in mice correlates with Viral replication in the Joint tissues. (A) Fold change 
in the limb thickness in 8 weeks and 20 weeks old mice for a period of 15 days. Four mice were taken 
each group. (B,C) Correlation of fold change in limb thickness with the vRNA copy number present 
in the joint tissues of the CHIKV infected 8 weeks and 20 weeks old mice. Error bars in figure depict 
standard deviation. Spearman’s rank-order correlation analysis at confidence interval of 95% and R2 
values at p-value < 0.005 were considered significant. 

Figure 4. Limb thickness in mice correlates with Viral replication in the Joint tissues. (A) Fold change
in the limb thickness in 8 weeks and 20 weeks old mice for a period of 15 days. Four mice were taken
each group. (B,C) Correlation of fold change in limb thickness with the vRNA copy number present
in the joint tissues of the CHIKV infected 8 weeks and 20 weeks old mice. Error bars in figure depict
standard deviation. Spearman’s rank-order correlation analysis at confidence interval of 95% and R2

values at p-value < 0.005 were considered significant.

We also observed that in case of 20 weeks old infected mice increase in morbidity was found to be
directly proportional to the increase in the viral copy number in the brain (Figure 5c) (R2 = 0.5695,
p-value = 0.0001), whereas, no correlation between the two was recorded in case of 8 weeks old mice
(Figure 5b). Day-wise analysis of the viral presence in brain demonstrated that CHIKV infection in the
brain preceded symptoms of morbidity in the infected mice. Similar finding have been documented
in the previous studies in other arbovirus infection; neurological complications caused due to virus
infection was correlated to severe morbidity or death and the severity of virus infection was reported
to be dependent on virus virulence, level of viremia and maturity of the infected neuron [58,59].



Viruses 2019, 11, 578 14 of 22
Viruses 2019, 11, x FOR PEER REVIEW 14 of 21 

 

 
Figure 5. Morbidity in mice correlates with viral replication in brain. (A) Comparison of morbidity in 
8 weeks and 20 weeks old mice for a period of 15 days. Four mice were taken in each group. (B,C) 
Correlation of morbidity with the vRNA copy number present in the brain of the CHIKV infected 8 
weeks and 20 weeks old mice. Error bars in figure depict standard deviation. Spearman’s rank-order 
correlation analysis at confidence interval of 95% and R2 values at p-value < 0.005 were considered 
significant. 

3.5. Disease Severity Is Correlated with Changes in Cell–Mediated Immunity in Older Mice 

CHIKV infection imparts both antibody–mediated as well as cell–mediated immune responses 
that have a direct bearing on disease progression to the post–acute and the chronic phase of the 
disease [48]. We evaluated some molecules of the cell–mediated immune system that are known to 
participate during CHIKV infection (Table 3). In the acute phase of the disease, i.e., between 1 to 6 
dpi, we observed increased levels of BST-2, TNF-α and IL-1β. While in the post–acute phase of the 
disease (7 dpi–15 dpi), we observed increased level of IL-4, GM-CSF, MCP-1, RANTES and RANKL 
and the presence of CCR2 to some extent. Interestingly, IFN-α, IL-1β, IL-6 and BST-2 level were high 
during both acute as well as post–acute phase of the disease.  

BST-2 was present more in 8 weeks old mice as in comparison to the 20 weeks old mice; this 
molecule has been known to induce anti-viral role in vivo as it restricts the budding of virus particles 
from the infected cells [60]. It should be noted that in case of severe acute infections along with the 
other cytokines, CCR1 and CCR2 are also present ascertaining virus infiltration into the brain tissues 
and is also upregulated in case of virus dependent arthritis [61]. One might speculate that early 
infection in several organs leads to recruitment of monocytes/macrophages and this macrophage 
infiltration is regulated under the control of MCP-1 (CCL-2)/CCR2, a feature of damaged tissues [61] 
with a probable activation by NK and/or T cell-derived IFN-γ [62]. In our study, we further observed 
that inflammatory effectors IL-4, IFNγ were expressed in the splenocytes while IL-6 and TNFα were 
expressed in the sera of the infected mice in both acute and post–acute CHIKV infection. Previous 
studies have also demonstrated that clinical manifestations may result from excessively activated 
macrophages releasing pro-inflammatory mediators such as IL-6 and, to a lesser extent, TNF-α [63]. 

Figure 5. Morbidity in mice correlates with viral replication in brain. (A) Comparison of morbidity
in 8 weeks and 20 weeks old mice for a period of 15 days. Four mice were taken in each group.
(B,C) Correlation of morbidity with the vRNA copy number present in the brain of the CHIKV
infected 8 weeks and 20 weeks old mice. Error bars in figure depict standard deviation. Spearman’s
rank-order correlation analysis at confidence interval of 95% and R2 values at p-value < 0.005 were
considered significant.

3.5. Disease Severity Is Correlated with Changes in Cell–Mediated Immunity in Older Mice

CHIKV infection imparts both antibody–mediated as well as cell–mediated immune responses
that have a direct bearing on disease progression to the post–acute and the chronic phase of the
disease [48]. We evaluated some molecules of the cell–mediated immune system that are known to
participate during CHIKV infection (Table 3). In the acute phase of the disease, i.e., between 1 to 6 dpi,
we observed increased levels of BST-2, TNF-α and IL-1β. While in the post–acute phase of the disease
(7 dpi–15 dpi), we observed increased level of IL-4, GM-CSF, MCP-1, RANTES and RANKL and the
presence of CCR2 to some extent. Interestingly, IFN-α, IL-1β, IL-6 and BST-2 level were high during
both acute as well as post–acute phase of the disease.

BST-2 was present more in 8 weeks old mice as in comparison to the 20 weeks old mice;
this molecule has been known to induce anti-viral role in vivo as it restricts the budding of virus
particles from the infected cells [60]. It should be noted that in case of severe acute infections along
with the other cytokines, CCR1 and CCR2 are also present ascertaining virus infiltration into the brain
tissues and is also upregulated in case of virus dependent arthritis [61]. One might speculate that
early infection in several organs leads to recruitment of monocytes/macrophages and this macrophage
infiltration is regulated under the control of MCP-1 (CCL-2)/CCR2, a feature of damaged tissues [61]
with a probable activation by NK and/or T cell-derived IFN-γ [62]. In our study, we further observed
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that inflammatory effectors IL-4, IFNγ were expressed in the splenocytes while IL-6 and TNFα were
expressed in the sera of the infected mice in both acute and post–acute CHIKV infection. Previous
studies have also demonstrated that clinical manifestations may result from excessively activated
macrophages releasing pro-inflammatory mediators such as IL-6 and, to a lesser extent, TNF-α [63].
Once the viruses have infiltrated the joint or muscle, the macrophages are activated and regulate the
local Th1/Th2 balance as a function of their own activation status (classical/M1 or alternative/M2) [64].
Our study showed that VEGF, a molecule that participated in M1 effector activity was present only in
the acute phase time points and GM-CSF that was part of the M2 effectors was present exclusively
in post–acute phase time points, thereby making us hypothesize that these molecules may modulate
M1/M2 balance during disease progression [65]. These evidences hint towards a probable M1 to M2
switching in the post–acute phase of the disease [65]. Our observations also suggest that the post–acute
course of CHIKV disease is caused by continuing inflammatory responses of IL-1β, IL-6 and IL-4
associated with persistent virus, rather than by virally induced autoimmunity, as is also observed in
case of patients [49,66].

Table 3. Levels of various cell–mediated immunity markers at stages of disease progression.

Cytokines and Chemokines (Semi Quantitative Expression with Respect to Controls)

Age Group 8 Weeks 8 Weeks 20 Weeks 20 Weeks

Days post
infections (dpi) Day 1–Day 6 Day 7–Day 15 Day 1–Day 6 Day 7–Day 15

Clinical
Manifestations Asymptomatic Acute Post-Acute Severe Acute Post-Acute

IFN-α + ++ ++ +++
CCR1 ++ -
CCR2 ++ +
BST-2 ++ + +
TNF-α ++ + +++ +
VEGF + ++
IL-4 ++ ++

GM-CSF + +
CCL2(MCP-1) + ++

RANTES +
RANKL + ++

IL-1β + + ++ +++
IL-6 + ++ +++ +++

Note: + 1× higher than uninfected control; ++ 2× higher than uninfected control; +++ 3× higher than
uninfected control.

3.6. Neutralizing Role of Binding Abs (Anti-CHIKV IgM and Anti-CHIKV IgG)

Prior studies have established that not all binding Abs made during an active infection are
neutralizing and that neutralization ability can mature over time [15,67]. In the present study, we studied
binding Abs (IgG and IgM) and their neutralization status in 8 weeks and 20 weeks old infected
mice. The overall differences in the neutralizing ability of binding antibodies of 8 weeks and 20
weeks old mice is depicted in Supplementary Figure S2a,b. Further, initial point analysis for the
development of CHIKV specific IgM Abs in 8 weeks and 20 weeks old mice started at 3 dpi although
at varying concentrations (Figure 6a). IgM dependent CHIKV neutralization was observed in 8 weeks
old infected mice (R2 = 0.8840, p-value < 0.0001) (Figure 6b). In case of 20 weeks old infected mice no
such correlation was observed (R2 = 0.2253, p-value > 0.05) (Figure 6c).
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Figure 6. Status of the development of IgM Abs and their neutralization capacities in 8 weeks and 20
weeks old mice. (A) Comparison of day-wise development of IgM Abs between 8 weeks and 20 weeks
old mice. Four mice were taken each group. (B,C) Correlation between development of IgM Abs and
sera neutralization in 8 weeks and 20 weeks old mice. Spearman’s rank-order correlation analysis at
confidence interval of 95% and R2 values at p-value < 0.005 were considered significant.

We further studied the development CHIKV specific IgG Abs in both 8 weeks and 20 weeks old
mice. Mid-point analysis revealed that in case of 8 weeks old mice development of anti-CHIKV IgG
Abs started at 6 dpi (Figure 7a). On the other hand, in case of 20 weeks old mice, we observed the
development of anti-CHIKV Abs at 9 dpi. The levels of IgG Abs were significantly lower than that
observed in 8 weeks old mice but were maintained until the termination of the study (Figure 7a).
A positive correlation between IgG titers and neutralization capacity of the sera samples was observed
in case of both 8 weeks as well as 20 weeks old infected mice (R2 = 0.23, p-value < 0.05) and we observed
that neutralization of CHIKV started at 6 dpi in 8 weeks old mice (Figure 7b). Whereas, in case of
20 weeks old mice, CHIKV neutralization was observed starting 9 dpi (Figure 7c), A slight positive
correlation was observed between neutralization and IgG titers (R2 = 0.5460, p-value = 0.003 for 8
weeks old mice and R2 = 0.8471, p-value < 0.0001 for 20 weeks old mice) but the overall neutralization
exhibited by 20 weeks old sera samples was lesser than that of the 8 weeks old infected mice for all the
time points of the study. Based on the above results, we hypothesize that the neutralization status
of 8 weeks old mice could be due to the complement of both IgM and IgG Abs during the initial
days of infection, leading to early virus clearance (Supplementary Figure S3a,b). Whereas, in case of
the older mice, the neutralization capacity of the sera samples was mainly due to the IgG Abs that
were primarily produced during the post–acute phase of the disease and that too in lesser quantities
resulting in delayed virus clearance (Supplementary Figure S3c,d).
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analysis at confidence interval of 95% and R2 values at p-value < 0.005 were considered significant.

4. Conclusions

This study was initiated to provide an in-depth analysis of CHIKV infection in an adult mouse
model that could capitulate the pathogenesis pattern of CHIKV in the average age of human infection.
Using a virus isolated from the recent Indian CHIKV outbreak (CHIK#01), we established infection
in C57BL/6J mice and compared clinical and biological features of the infection in two different age
groups of mice. Our results taken together show that CHIKV pathogenicity is strain, dose as well
as age specific and these aspects need to be considered when studying virus replication and disease
progression in any model organism. In our study, analyses of disease progression reveal that in the
acute phase of infection, peak viremia, biochemical and hematological analyses demonstrate: (a)
Increased levels of TLC indicating active infection in mice and elevated liver AST and ALT enzymes,
sera AP; (b) high levels of CHIKV RNA in the brain, spleen, liver and skin, and to a lesser extent
in joints, and muscle tissues and many of these tissues are also affected during human disease; (c)
further correlation analysis revealed that morbidity and CHIKV replication in brain were associated
indicating the involvement of CNS during the active stage CHIKV infection due to CHIKV infiltration
in the mice brain during severe chikungunya infection; (d) the results demonstrated the importance of
cell–mediated immune responses and we observed increased levels of IFN-α, BST-2, TNF-α, VEGF,
IL-1β and IL-6 in the acute phase mice sera sample. Interestingly, the involvement of CCR1 and CCR2
were observed only during the severe stage of CHIKV infection. Additionally, antibody based CHIKV
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neutralization was also checked and samples did not show the presence of significant neutralization
during the acute phase of the disease.

Further, the post–acute phase was characterized by (a) normalization of leukocyte counts by 10–15
dpi, and the presence of RF in the older mice post–severe–acute CHIKV infection; (b) pronounced
arthralgia and macrophage infiltration in the joint; (c) increase vRNA levels in joint, and muscle. Further
correlation analysis revealed that arthritis like symptoms caused may be because of inflammatory
response of CHIKV caused due to the presence of virus particles in the joint tissues; however, in some
cases during severe acute CHIKV infection, RF was also present indicating overlap between CHIKV
induced arthralgia and rheumatoid arthritis; (d) cell–mediated immunity adversely affecting older
aged mice; CMI analysis revealed increased levels of RANKL, RANTES, IL-6 and IL-1β all indicating
the presence of CHIKV induced arthralgia; (e) Antibody-based neutralization assays demonstrated
that CHIKV neutralization was due to the development of IgG Abs only in the younger mice, whereas
older mice were not able to naturally neutralize CHIKV until the post–acute phase of the disease.

The present study had a few caveats. The study design did not permit us to extend the study
beyond 15 days and so we could not evaluate viral presence beyond this period, especially in the
older age group. Although the study explained the strain, dose and age specific differences of CHIKV
isolates in the C57BL/6J mice, the study could have benefitted more if old age mice were also taken
to evaluate geriatric age group during CHIK infection, considering CHIKV infects the geriatric age
group (>65 years) in a more severe manner. Another aspect that would have been informative would
have been studying if there were any mutational differences amongst CHIKV strains or even within
the strain that could have led to mice adaptation. Such studies however require study design in an
elaborate scale to provide meaningful information. In spite of these caveats, the study has provided
important evidences regarding CHIK pathogenesis that could benefit the scientific community.
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