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Abstract

Background: Colorectal cancer (CRC) mortality is principally due to metastatic disease, with the most frequent organ of
metastasis being the liver. Biochemical and mechanical factors residing in the tumor microenvironment are considered to
play a pivotal role in metastatic growth and response to therapy. However, it is difficult to study the tumor
microenvironment systematically owing to a lack of fully controlled model systems that can be investigated in rigorous
detail. Results: We present a quantitative imaging dataset of CRC cell growth dynamics influenced by in vivo–mimicking
conditions. They consist of tumor cells grown in various biochemical and biomechanical microenvironmental contexts.
These contexts include varying oxygen and drug concentrations, and growth on conventional stiff plastic, softer matrices,
and bioengineered acellular liver extracellular matrix. Growth rate analyses under these conditions were performed via the
cell phenotype digitizer (CellPD). Conclusions: Our data indicate that the growth of highly aggressive HCT116 cells is
affected by oxygen, substrate stiffness, and liver extracellular matrix. In addition, hypoxia has a protective effect against
oxaliplatin-induced cytotoxicity on plastic and liver extracellular matrix. This expansive dataset of CRC cell growth
measurements under in situ relevant environmental perturbations provides insights into critical tumor microenvironment
features contributing to metastatic seeding and tumor growth. Such insights are essential to dynamical modeling and
understanding the multicellular tumor-stroma dynamics that contribute to metastatic colonization. It also establishes a
benchmark dataset for training and testing data-driven dynamical models of cancer cell lines and therapeutic response in a
variety of microenvironmental conditions.
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Background

Colorectal cancer (CRC) is the third most deadly cancer in
both men and women in the United States [1]. Current treat-
ment strategies include FOLFOX (fluorouracil, leucovorin, and
oxaliplatin), FOLFIRI (fluorouracil, leucovorin, and irinotecan), or
XELOX (oxaliplatin and capecitabine) with or without molecu-
lar targeted drugs [2]. The 5-year survival rate for CRC is 90% if
the cancer is diagnosed locally. However, once the disease has
spread to distant sites, this rate decreases dramatically to ∼10%
[3]. Emerging data, spanning from clinical to laboratory research,
highlight that metastatic disease cannot be explained solely by
the genetics of the cancer cells; instead, bidirectional interac-
tions with the surrounding microenvironment play a pivotal role
in tumor progression [4–7]. Devising innovative ways to treat
CRC metastasis must address not only the genetic heterogeneity
of the tumor but also its dynamic microenvironment.

Liver is the most common organ of distant metastasis.
More than 50% of CRC patients with advanced disease develop
liver metastases (LM) [8]. Many such metastases are discovered
months or years after initial seeding. Consequently, most pa-
tients require treatment for established liver tumor foci. It has
been postulated that the high rate of LM is a result of anatom-
ical considerations, with the portal vein draining directly from
the colon and upper rectum to the liver [9]. However, increasing
evidence has demonstrated that the liver microenvironment is
vital in influencing CRC metastasis [10–12]. Low oxygen levels
(hypoxia) are a key component in the liver tumor microenviron-
ment (TME) [13]. The oxygen concentration in the portal vein
is ∼1% [14]. Poor vascularization in the tumor mass can further
promote an oxygen-limited environment and initiate more ag-
gressive phenotypes [15]. Hypoxia can lead to genomic instabil-
ity by influencing DNA repair pathways [16]. Specifically, hypoxia
has been shown to down-regulate the expression of DNA mis-
match repair proteins at both transcriptional and translational
levels [16]. Alterations in the mismatch repair machinery are
known to result in microsatellite instability, which is found in
∼15% of CRC [17].

Altered extracellular matrix (ECM) has also been considered a
key feature of the TME [18]. ECM physically supports tissues and
provides a substrate for cell adhesion and migration [19]. Cellu-
lar interactions with the surrounding ECM can regulate a vast
range of biological outcomes including disease progression and
drug resistance [20]. Different tissues are known to have distinct
ECM molecular compositions and architectures. The complex-
ity of the ECM is not merely biochemical: associated mechanical
properties, such as stiffness, can also greatly affect cell prolif-
eration and motility [21]. It is well known that tumor tissue is
much stiffer than surrounding normal tissues [22]. Increased tis-
sue stiffness can influence tumor growth, metabolism, invasion,
and metastasis and has been demonstrated to play a significant
role in disease progression of several solid tumors and to corre-
late with patient outcomes [23, 24]. A recent study showed that
the stiffness of LM is significantly higher than that of primary
CRC tumors and that the metastatic stiffness is closely corre-
lated with tissue vascularity [25]. Moreover, adhesive tumor cell
interactions with liver cells—particularly endothelial cells and
hepatocytes in the sinusoids—have recently been shown to af-
fect metastatic progression [26], as well as chemical communi-
cation with stellate, Kupffer, and inflammatory cells [27], illus-
trating the importance of ECM stiffness as a parameter to con-
sider in studying CRC progression.

The TME is a highly complex system with many factors
working in concert. However, traditional biological assays of-
ten only examine a single environmental factor in a qualitative
way, and thereby lack the ability to recapitulate essential fea-
tures of metastatic growth. Multicellular computational mod-
eling can provide novel insights to link cancer progression to
heterogeneous TME conditions and the dynamical interactions
between tumor cells and the resident cell ecosystem [28, 29].
However, predicting the impact of liver microenvironmental ma-
nipulations on CRC behavior requires high-quality benchmark
datasets to fit model parameters and drive the development of
computational models [30], particularly systems that can inde-
pendently and separately study the role of metastatic tumor
cell interactions with hypoxia, the ECM, and resident liver cells.
High-content screening (HCS), the application of automated mi-
croscopy and image analysis, has been widely used in cell biol-
ogy and drug development to screen drug compounds for safety
and toxicity on human cells in vitro [31]. This platform is also
well suited for exploring the impact of multiple TME parame-
ters, either individually or simultaneously, on cell behavior [32,
33]. Here we extend the use of our previously established imag-
ing workflow to study the biophysical and biochemical impact of
the organ context, specifically the combination of oxygen, stiff-
ness, and liver ECM, on CRC cell growth and response to therapy.
After isolating the impact of hypoxia and ECM biomechanics on
CRC cell seeding, we can control for these factors and continue
high-throughput investigations that isolate and characterize ad-
hesive and other multicellular interactions during metastatic
colonization.

Results
CRC growth rates under different oxygen tensions

Tumor hypoxia, or oxygen deprivation, has been shown to de-
crease proliferation and limit cells’ responsiveness to thera-
peutic agents [34]. To investigate the impact of hypoxia on
CRC growth, we examined 3 human CRC cell lines with differ-
ent aggressiveness (Caco2, HT29, HCT116) grown under various
oxygen concentrations (normoxic [21%] and hypoxic [1% and
0.1%]). HCT116 was derived from a poorly differentiated human
colon adenocarcinoma known to develop hepatic metastases ef-
ficiently in immunodeficient mice. HT29 also has metastatic ca-
pabilities but less efficient compared with HCT116. In contrast,
Caco2 shows no ability to metastasize [35]. We used the Operetta
high-content imaging system and Harmony software (version
3.5.2) to measure cell counts of CRC cell lines grown in the re-
spective oxygen conditions (Fig. 1A and Supplementary Fig. S1).
To extract growth rates from sequential cell count data, we used
CellPD (cell phenotype digitizer) (version 1.0.1), a previously de-
veloped open source Python code that leverages the Levenberg-
Marquardt algorithm to perform nonlinear least-squares mini-
mization between simulated and experimental cell counts [36].
We observed a trend toward reduced growth rates under the hy-
poxic conditions in the most aggressive cell line HCT116 (P =
0.008), which is not present in the less aggressive cell lines, HT29
and Caco2 (Fig. 1B).

The impact of hypoxia on drug response

Oxaliplatin is a standard CRC chemotherapy agent used in the
adjuvant and advanced setting [37]. To examine the effect of oxy-
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Figure 1: The impact of oxygen on CRC growth and treatment response to oxaliplatin. A, Caco2, HT29, and HCT116 cells were cultured in 0.1%, 1%, or 21% oxygen
concentration. Cell counts were measured at several time points using Operetta high-content screening platform. B, Growth rate of Caco2, HT29, and HCT116 cells
in 0.1%, 1%, or 21% oxygen concentration was determined by CellPD. A 2-sided sign test was used to detect instances where all data trended in a single direction. C,

Relative growth rate of Caco2, HT29, and HCT116 cells treated with 0, 0.062, 0.185, 0.555, 1.667, 5 μM oxaliplatin. D, Oxaliplatin IC50 changes in 0.1%, 1%, or 21% oxygen
environment.

gen on cancer treatment response, we measured CRC growth ef-
fects of oxaliplatin under different oxygen concentrations (var-
ious concentrations of oxygen: 21%, 1%, 0.1% and oxaliplatin
treatment: 0, 0.062, 0.185, 0.555, 1.667, 5 μM). We found the least
aggressive cell line, Caco2, to be most sensitive to oxaliplatin
treatment compared to HT29 and HCT116 across all oxygen con-
centrations (Fig. 1C). Interestingly, the IC50 of oxaliplatin was not
significantly altered under hypoxia in both Caco2 and HT29 cells.
However, there was a difference in the IC50 of oxaliplatin be-
tween 0.1% and 21% oxygen, with a mean estimate of 1.7-fold in-
crease (95% credible interval [95% CI], 1.02–2.97) in HCT116 cells
(Fig. 1D).

Matrix stiffness environment influences CRC cell
growth

A hypoxic tumor environment can lead to the overexpression
of ECM proteins by tumor cells, increasing the crosslinking and
stiffening of the ECM [38]. The dense fibrotic matrix in solid tu-
mors contributes to local hypoxia through elevating interstitial
fluid pressure and disrupting neovascularization [23]. Recent ev-
idence demonstrates that increased stiffness plays a pivotal role
in CRC progression and metastasis [25]. Traditional approaches
to measure stiffness effects on cancer cell growth involve cultur-
ing cells in Matrigel or soft agar; however, their mechanical prop-
erties are poorly defined. Here we cultured cells on commercially
available collagen-coated polyacrylamide plates (Softwell) with
stiffness of 0.2 and 2 kPa (mimicking the stiffness of primary CRC
tumors and LMs, respectively) [25]. To longitudinally measure

cell growth on the softwells, we generated fluorescently labeled
HCT116 and HT29 cells through stable infection with Histone-
2B-GFP lentiviruses (HCT116-H2BGFP and HT29-H2BGFP) (Sup-
plementary Fig. S2A). To verify that the transfection did not alter
cell behavior, growth rates of HCT116-H2BGFP and HT29-H2BGFP
were compared to those of unlabeled cells (Supplementary Fig.
S2B). For subsequent investigations into TME-induced cell phe-
notypes, we used the HCT116-H2BGFP and HT29-H2BGFP cells.
Growth rates were evaluated from cells cultured on 0.2 kPa soft-
well, 2 kPa softwell, and conventional plastic (∼3 GPa) plates us-
ing time-series data consisting of live cell counts obtained over
a period of 0–72 hours. We found that softer matrices (0.2 and
2 kPa softwell) reduced the growth rate of both cell lines un-
der 1% and 21% oxygen concentrations (Fig. 2A). We observed an
increased growth rate of HCT116-H2BGFP cells under 21% oxy-
gen conditions on 2.0 kPa stiffness compared to 0.2 kPa with a
posterior mean estimate of 0.006 (95% CI, 0.001–0.011) per hour
(Fig. 2A). There was no measured difference (95% CI contains
0) in growth rate between 0.2 and 2 kPa in HT29-H2BGFP cells
(Fig. 2A). The sensitivity to oxaliplatin was not altered by stiff-
ness in HCT116 cells; however, a protective effect by softer ma-
trices was observed in HT29-H2BGFP cells under a low dose of
oxaliplatin treatment in 21% and 1% oxygen environment, with
a mean estimate of 0.21 (95% CI, 0.08–0.33) and 0.16 (95% CI, 0.02–
0.29), respectively (Fig. 2B). In addition, compared to 0.2 kPa, we
found that 2.0 kPa increased the relative growth rate of low-dose
oxaliplatin-treated HT29-H2BGFP cells under 1% oxygen concen-
trations, with a posterior mean estimate of 0.23 (95% CI, 0.03–
0.41) (Fig. 2B).
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Figure 2: The influence of stiffness on CRC growth and treatment response to oxaliplatin. A, HT29-H2BGFP and HCT116-H2BGFP cells were cultured on 0.2 or 2 kPa gel

(softwell) or plastic (CellCarrier) plates in 1% or 21% oxygen concentration for 72 hours. Cell counts were measured at several time points by Operetta high-content
screening platform, and the growth rate was determined by CellPD. B, Relative growth rate of HT29-H2BGFP and HCT116-H2BGFP cells in response to 0.5 or 5 μM
oxaliplatin treatment in 1% or 21% oxygen concentration.

CRC cell growth on liver ECM

The ECM is an essential, yet understudied, component of the
TME that physically supports tissues and provides a substrate
for cell adhesion and migration, as well as a source of bioactive
molecules [18]. To further interrogate the interaction of tumor
cells with the metastatic tissue microenvironment, we devel-
oped a model of metastatic CRC growth in the liver using acel-
lular liver ECM following our previously published detergent-
based perfusion technique [39]. The decellularized liver scaf-
folds maintain important native ECM components such as col-
lagens, laminin, and fibronectin and retain characteristics of 3D
architecture and shape [39]. To quantitatively measure the effect
of liver ECM on metastatic CRC growth, we sectioned the acel-
lular livers into circular discs that were then confined in a 96-
well plate for screening (Fig. 3A). It has been shown HCT116 is
the most efficient line to metastasize to liver in different animal
models [35, 40, 41]. Therefore, we chose to seed HCT116-H2BGFP
cells on liver ECM discs and imaged longitudinally using our HCS
platform. We imported the segmented cell coordinates and disc
images (per well) into a MATLAB script to co-register the disc
and cell positions and exclude off-disc cells from the calcula-
tions (Fig. 3B). This allowed us to separate cells grown on the
disc from those that settled on the background well plate. We
used CellPD to calculate the growth rate of cells grown on the
discs under different oxygen concentrations. Our results showed
that the growth kinetics on liver ECM discs are markedly differ-
ent from those measured on plastic cell culture plates (Fig. 3C).
Interestingly, growth on liver ECM makes the HCT116-H2BGFP
cells less sensitive to oxaliplatin treatment under hypoxia but
not under normoxia (Fig. 3D).

Discussion

Metastatic growth in distant organ sites is one of the most chal-
lenging areas in cancer treatment. Metastasis is a multi-step
process, with many studies focusing on molecular changes driv-
ing metastatic progression. However, no new gene mutations
or amplifications have been clearly linked to metastasis in CRC
thus far. The idea that tumor cells “seed” and grow in permis-
sive “soil” was first suggested by Stephen Paget in 1889 [42]. Al-
though Paget’s ideas remain relevant today, many of the under-
lying mechanisms that explain his observations are poorly un-

derstood. Key problems in metastasis remain unsolved, includ-
ing the organ microenvironment’s role in seeding, survival, and
sustained metastatic growth, and its relations with patient out-
come. The TME is heterogenous in nature, but traditional bio-
logical assays often only examine a single environmental factor
at a time, which is not representative of the biology. Our quanti-
tative high-content imaging approach illuminates the dynamic
interactions between cancer cells and treatment response to ox-
aliplatin under a multiplicity of environmental perturbations,
which would be difficult to tune or modulate in vivo.

A major determinant of sensitivity to oxaliplatin in CRC
cells lines is the p53–p21 pathway [43]. HCT116, a p53 wild-type
cell line, is strongly inhibited by oxaliplatin treatment, whereas
HT29 cells harboring a p53 mutation are less sensitive to this
treatment [44, 45]. Our results showing a reduced growth rate
of oxaliplatin-treated HCT116 cells under hypoxia, which is not
evident in HT29, support further examination into whether hy-
poxia alters oxaliplatin-induced p53 activation in CRC cells. It
is also interesting to note that HCT116 and HT29 cells are mi-
crosatellite instable and microsatellite stable, respectively [44,
45]. It has been shown that moderate hypoxia down-regulates
DNA mismatch repair (MMR) genes in a hypoxia-inducible fac-
tor (HIF)-dependent manner, while severe hypoxia can lead to
transcriptional repression in a HIF-independent manner [16].
Whether hypoxia-induced down-regulation of MMR genes con-
tributes to the differential oxaliplatin IC50 observed in our stud-
ies deserves further investigation.

Previous research has shown that the increased metastatic
potential of HCT116 cells could be due to enhanced ECM adhe-
sion and haptotaxis [41]. Our data suggest that a stiffer LM mi-
croenvironment may also contribute to the aggressive pheno-
type of HCT116 cells. Specifically, we found that HCT116 cells
grew faster on the 2 kPa stiffness, a physical environment more
similar to LM, than on the 0.2 kPa stiffness, and this was not
observed in the less aggressive HT29 cell line. Our results also
reveal a liver ECM-driven effect that attenuates oxaliplatin-
induced HCT116 growth inhibition under hypoxia conditions,
which is not evident in LM-mimicking stiffness (2 kPa softwell).
This finding may suggest a stiffness-independent crosstalk be-
tween liver ECM and hypoxia signaling.

When we examined the combinatorial impact of oxaliplatin
treatment and stiffness, we observed a difference in growth rate
in the HT29 cells that was not evident in the HCT116 cells. We
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Figure 3: The effect of liver ECM on the growth of CRC cells and treatment response to oxaliplatin. A, Liver ECM discs were sectioned from acellular liver and seeded with

HCT116-H2BGFP cells. B, Snapshots of the disc segmentation process: (1) applying STD filtering and median filtering to the well; (2) applying dilation-reconstruction
morphological operations, thresholding and drawing the segmented region over the original image; (3) separating the cells into on-disc (green) and off-disc (red) sets
on the basis of the cell location. C, HCT116-H2BGFP cells were cultured on liver ECM disc or monolayer under 1% or 21% oxygen concentration for 72 hours. Cell counts
were measured at several time points by Operetta HCS platform, and the growth rate was determined by CellPD. Horizontal black line denotes the mean. ∗∗P < 0.01
∗∗∗P < 0.001 D, Relative growth rate of HCT116-H2BGFP cells in response to 0.5 or 5 μM oxaliplatin treatment under 1% or 21% oxygen concentration. ∗P < 0.05.

found that LM-mimicking stiffness (2 kPa) increased the relative
growth rate of low-dose oxaliplatin-treated HT29 cells under 1%
oxygen concentration compared to primary tumor-mimicking
stiffness (0.2 kPa). Increased matrix stiffness has been shown
to increase stemness characteristics and result in oxaliplatin re-
sistance through Akt/mTOR pathway [46]. mTOR can also be af-

fected by hypoxia and mediate additional changes in translation
[47]. The multifaced interaction between hypoxia, stiffness, and
drug resistance warrants further investigation. An advantage of
HCS is the ability to assay complex cellular phenotypes in this
multiplexed fashion [32]. Understanding multiple microenviron-
mental interactions is key to developing therapeutic microenvi-
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ronmental manipulations in liver and other metastatic sites for
controlling metastatic tumor growth.

Our CRC imaging dataset has the potential for extensive
reuse in multicellular systems biology. Converting quantitative
measurements into cell phenotype parameters with CellPD fa-
cilitates data sharing and implementation into dynamical com-
putational models. Several computational models have been de-
veloped to investigate the dynamics of more invasive pheno-
types driven by oxygen-limited environments, as well as the
feedback between multicellular cancer systems and the chem-
ical/biophysical microenvironment [48–51]. The impact of ECM
has also been included to simulate tumor-associated angio-
genesis [52, 53]. Such simulation investigations have yielded
substantial insights on the multicellular dynamics of cancer.
However, future advances will necessitate high-quality datasets
that can be used to formulate single-cell biological hypothe-
ses (simulated cell “rules”), simulate the emergent multicellular
behavior, and validate by comparison with imaging and other
data [30].

Recent work, using generic tumor cell phenotypic param-
eters, showed that relatively simple hypotheses on tumor-
stromal mechanobiologic feedbacks can lead to complex emer-
gent behaviors in LM including tumor dormancy [54]. The
dataset presented in this article could extend such studies both
by providing refined phenotypic parameters and by motivat-
ing improved biological hypotheses. In particular, this dataset’s
measurements on how proliferation varies with tissue stiffness
and oxygenation could improve constitutive hypotheses to sim-
ulate populations of tumor cells growing in dynamic, hetero-
geneous conditions. Because we also measured therapeutic re-
sponse in multiple cell lines in varied TME conditions, those
same frameworks could be used to assess evolutionary pro-
cesses that drive therapeutic resistance in the specific context
of the liver parenchyma.

High-throughput quantitative imaging datasets may bridge
the gap between traditional biology and computational model-
ing to enable a systematic investigation of multiple linked mi-
croenvironmental factors contributing to CRC metastatic growth
and potential therapeutic strategies. The cell phenotype pa-
rameters generated from our HCS platform will help build ex-
perimentally driven computational models of metastatic colon
cancer cell growth as a function of microenvironment condi-
tions in the liver parenchyma. We can then use these mod-
els of metastatic tumor growth to probe the relationships be-
tween growth dynamics and heterogeneous microenvironments
to facilitate a deeper understanding of complex metastatic pro-
cesses, and to develop new hypotheses and possible therapeutic
interventions. We also envision that multifactorial datasets (in-
cluding this one) will serve as gold standard data to help drive
refinements in dynamic simulation model calibration and vali-
dation protocols.

Methods
Cell culture and reagents

The human colorectal cell lines HCT116 and HT29 were acquired
from ATCC and cultured in McCoy’s 5A medium supplemented
with 10% fetal bovine serum (Gemini, West Sacramento, CA,
USA) and 1% penicillin/streptomycin (Gemini, West Sacramento,
CA, USA). Caco2 cells were acquired from ATCC and maintained
in Eagle’s Minimum Essential Medium supplemented with 10%
fetal bovine serum and 1% penicillin/streptomycin. For live cell
imaging, HCT116-H2BGFP and HT29-H2BGFP were created by

transducing HCT116 and HT29 with LentiBrite Histone H2B-GFP
lentivirus (Millipore #17–10229, Burlington, MA, USA). A posi-
tive green fluorescent protein (GFP) cell population was selected
by a fluorescence-activated cell sorter. Cell lines were authen-
ticated by a professional authentication service (University of
Arizona Genetic Core) and routinely tested for mycoplasma con-
tamination using MycoAlert (Lonza No. LT07–518, Basel, Switzer-
land). Hypoxia experiments were carried out in a hypoxia work-
station (Biospherix, Parish, NY, USA) with separate chambers
that allow for precise control over oxygen culture conditions
(0.1–1% O2).

Liver ECM disc preparation

Following our published protocol, livers from ferrets age 5–6
weeks were harvested and decellularized using a detergent of
deionized water, 1% triton X-100, and 0.1% ammonium hydrox-
ide for 3 days. The spatial arrangement of collagens I, III, and IV,
laminin, and fibronectin is similar to that in fresh human liver
tissue [39]. Decellularized livers were embedded in OCT com-
pound for frozen sectioning. The tissue was then sectioned into
circular discs with a diameter of 6 mm. The discs were confined
in 96-well CellCarrier plates with PBS to prevent tissue dehydra-
tion. Prior to CRC cell seeding, discs were washed 3 more times
with PBS and then pre-conditioned with culture medium at 37◦C
for 60 minutes.

Image acquisition and analysis

End point growth rate experiments of HCT116, HT29, and Caco2
were carried out in 96-well CellCarrier plates (PerkinElmer No.
6005558, Waltham, MA, USA) at an initial cell seeding of 1,500,
4,000, and 2,000 cells per well, respectively. One day after seed-
ing, cells were treated with the indicated dilutions of oxali-
platin (Selleck Chemicals No. S1224, Houston, TX, USA). At the
stated time points, images were acquired on an Operetta HCS
System (PerkinElmer No. HH12000000) equipped with environ-
mental controls (37◦C, 5% CO2). Thirty minutes prior to imag-
ing, cells were stained with 5 μg/mL of Hoechst 33342 (Invitro-
gen No. H21492, Carlsbad, CA, USA) and 5 μg/mL of propidium
iodine (Invitrogen No. P1304MP, Carlsbad, CA, USA) to determine
live or dead cells, respectively. For live cell experiments, cells
were seeded on 0.2 or 2 kPa softwell (Matrigen) or CellCarrier
plates in the presence or absence of liver ECM disc. Images were
taken on the Operetta HCS in confocal mode using the z-stack
function. For all experiments, image analysis was performed us-
ing the Harmony 3.5.2 software (PerkinElmer No. HH17000001,
Waltham, MA, USA). Cells were identified and segmented at the
nuclear level to determine live and dead cell counts over time as
described previously [32].

Determination of IC50

The IC50 value was determined for each experiment by estimat-
ing the oxaliplatin concentration at which the growth rate was
50% of the untreated value via linear interpolation on a log-
concentration scale.

Register cells on liver ECM discs

A 2-step process was used to separate cells seeded on the disc
and on the background well plate. We first segmented the image
of the well to on- and off-disc regions and then co-registered the
cell locations with the disc region.
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Segmenting the disc

Given that the local variance at the off-disc region is lower com-
pared to the disc regions, we used a standard deviation (STD)
filter followed by a median filter to find the main structure of
the disc and then applied a series of morphological operations
to include the small details and trim the noisy non-disc regions
close to the borders. We also imaged empty wells to make a light
profile for the images and then compared this profile with the
images of the wells to add some candidate on-disc pixels before
applying morphological operations. We ran the disc segmenta-
tion by sweeping over the parameters that control the segmen-
tation and manually chose the best segmentation. The 3 main
parameters used were (i) the kernel size for the STD filtering, (ii)
the threshold for marking a pixel as a candidate on-disc pixel,
and (iii) the size of structural elements used for morphological
operations.

Co-registering the cell locations with disc

Cell segmentation and the cell’s center coordinates were ac-
quired from the Harmony 3.5.2 software. The center of the cell
was overlayed with the segmented mask region. By iterating
over all the cells, we separated the cells on the basis of location
on or off the disc.

Statistical Analysis

Figure 1B. Increasing or decreasing growth rate across O2 levels
was tested using a 2-sided sign test across all same-experiment
increasing O2 levels. This nonparametric procedure is insensi-
tive to cross-experiment measurement variation, and uses only
the order of O2 levels and not their specific values. The tests were
sufficiently powered to detect instances where all data trended
in a single direction at a significance level of P = 0.05 (Caco2:
6 comparisons; HT29: 7 comparisons; HCT116: 8 comparisons).
This criterion was met only for HCT116. Sign tests were per-
formed in R using the SIGN.test function in the BSDA package
(v1.2.0).

Figure 1D. We tested for IC50 differences between hypoxia
(1% or 0.1% O2) and normoxia (21% O2) using posterior estimates
from an empirical Bayesian model (brms package v2.13.5 under
R v4.0.2). The model included effects for each hypoxia compar-
ison to normoxia for each cell line. Weakly informative priors
were used both for IC50 differences (Gaussian) and noise level
(Cauchy), each scaled loosely to the data. Reported credible in-
tervals are symmetric 95% intervals of the IC50 difference poste-
rior distributions.

Figure 2. We quantified growth rate differences (absolute and
relative) from posterior distributions of empirical Bayesian mod-
els. Models included categorical population (fixed) effects for cell
type (HCT116, HT29) and plate type (Plastic, Softwell 0.2 kPa,
Softwell 2 kPa), and a group (random) effect for experiment date
(consisting of 1 plate for each). Residual Gaussian errors were
grouped by plate type, each having its own variance estimate.
Priors on growth rates (absolute and relative), interplate vari-
ance, and residual variance were all Cauchy distributed, with
zero mean and width order-of-magnitude empirically derived
from the data. Estimates of growth rates and their differences
are reported as posterior mean and 95% credible (posterior) in-
tervals.

Figure 3. Reported P-values are computed from 2-sided Welch
t-tests.

Data Availability

The datasets underlying this article are available in the Giga-
Science GigaDB database [55].
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