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ABSTRACT
The development and progression of invasive breast cancer is characterized by alterations to the genome
and epigenome. However, the relationship between breast tumor characteristics, disease subtypes, and
patient outcomes with the cumulative burden of these molecular alterations are not well characterized.
We determined the average departure of tumor DNA methylation from adjacent normal breast DNA
methylation using Illumina 450K methylation data from 700 invasive breast tumors and 90 adjacent
normal breast tissues in The Cancer Genome Atlas. From this we generated a novel summary measure of
altered DNA methylation, the DNA methylation dysregulation index (MDI), and examined the relation of
MDI with tumor characteristics and summary measures that quantify cumulative burden of genetic
mutation and copy number alterations. Our analysis revealed that MDI was significantly associated with
tumor stage (P D 0.017). Across invasive breast tumor subtypes we observed significant differences in
genome-wide DNA MDIs (P D 4.9E–09) and in a fraction of the genome with copy number alterations
(FGA) (P D 4.6E–03). Results from a linear regression adjusted for subject age, tumor stage, and estimated
tumor purity indicated a positive significant association of MDI with both MCB and FGA (P D 0.036 and P
< 2.2E–16). A recursively partitioned mixture model of all 3 somatic alteration burden measures resulted
in classes of tumors whose epigenetic and genetic burden profile were associated with the PAM50
subtype and mutations in TP53, PIK3CA, and CDH1. Together, our work presents a novel framework for
characterizing the epigenetic burden and adds to the understanding of the aggregate impact of
epigenetic and genetic alterations in breast cancer.
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Introduction

Invasive breast carcinoma is the most common non-keratino-
cyte cancer in the US with an estimated 230,000 new cases and
40,000 deaths expected in 2015.1 Both genetic and epigenetic
alterations are recognized contributors to breast carcinogenesis
and invasive tumors accumulate additional genetic and epige-
netic aberrations as the disease progresses.2 Recently, studies
have demonstrated that summary measures that quantify bur-
den of genetic alterations, including the fraction of the genome
affected by copy number alterations (FGA) and somatic muta-
tion count burden (MCB), may be useful in predicting patient
outcomes.3-5 However, there is a corresponding lack of avail-
able resources that summarize the departure of DNA methyla-
tion in tumors from its component normal.

Epigenetic alterations, such as changes in DNA methylation,
are well-established early events in breast cancer that serve to
disrupt normal gene expression and increase chromosomal
instability.6,7 Indeed, previous studies have identified that wide-
spread differences in DNA methylation profiles exist between
pre-invasive breast cancer (ductal carcinoma in situ) and nor-
mal breast tissue.8,9 As indicated by these earlier studies, the

DNA methylation levels in cancer diverge in a direction depen-
dent upon genomic location and are non-random. For example,
concentrated regions of CpG dinucleotides known as CpG
islands, which are typically unmethylated in non-neoplastic
cells, demonstrate elevated levels of methylation in cancer that
have the potential for gene silencing.10 In contrast, CpG dinu-
cleotides in less concentrated contexts (i.e., distal from gene
promoters or associated with repeat elements) are typically
methylated in non-neoplastic cells to support chromosomal
stability and undergo hypomethylation in cancer.10 Further-
more, regions that border CpG islands (i.e., CpG island shores)
exhibit significantly altered DNA methylation in tumor com-
pared with normal tissue.11 As such, a summary measure that
quantifies the total departure of DNA methylation in tumor
cells from their component normal requires a consideration of
different potential directions of DNA methylation alterations
in tumor compared with normal tissue depending on genomic
context.

Breast tumors demonstrate heterogeneity in patterns of
genetic and epigenetic alterations, both across breast cancer
patients and within breast cancer molecular subtypes. The

CONTACT Kevin C. Johnson Kevin.C.johnson.GR@Dartmouth.edu
Supplemental data for this article can be accessed on the publisher’s website.

*These authors contributed equally to this work.
Published with license by Taylor & Francis Group, LLC © Dylan E. O’Sullivan, Kevin C. Johnson, Lucy Skinner, Devin C. Koestler, and Brock C. Christensen.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unre-
stricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted.

EPIGENETICS
2016, VOL. 11, NO. 5, 344–353
http://dx.doi.org/10.1080/15592294.2016.1168673

http://dx.doi.org/10.1080/15592294.2016.1168673
http://creativecommons.org/licenses/by-nc/3.0/
http://dx.doi.org/10.1080/15592294.2016.1168673


patterns of DNA methylation in relation to breast tumor charac-
teristics, disease subtypes, and patient demographics have been
well characterized. Previous research has highlighted that DNA
methylation patterns vary based on age,12 molecular subtypes,13

hormone receptor status,14 and with the presence of specific
mutations.15 However, the relation of a global measure of epige-
netic dysregulation with tumor characteristics, such as disease
subtype and patient prognosis, remains unclear. In addition, an
integrative assessment of combined epigenetic and genetic bur-
den measures represents an opportunity to better understand
tumor biology and to identify potential prognostic factors.

In this study, we utilized DNA methylation data measured on
the Illumina HumanMethylation450 array available from The
Cancer Genome Atlas (TCGA) database and investigated the
departure of DNA methylation in breast tumors from its compo-
nent normal. We developed and applied a novel approach that
summarizes the CpG site-specific dysregulation of tumor DNA
methylation compared with referent normal tissue in a breast can-
cer data set. We then examined the relation of this summary mea-
sure with both mutation burden and the fraction of genome with
copy number alterations. Additionally, an analysis of methylation
dysregulation stratified by genomic context demonstrated that
regions with differential epigenetic dysregulation are related with
tumor subtypes and patient characteristics. Finally, we used an
integrative approach to identify classes of tumors via their com-
bined profile of epigenetic and genetic aberrations to characterize
tumors beyond gene expression-based subtypes. Overall, this work
demonstrates that a summarymeasure of DNAmethylation dysre-
gulation is associated with tumor stage and may have utility as a
marker of cancer progression within specific tumor subtypes.

Results

Genome-wide and stratified CpG island region DNA
methylation alterations

The clinical and pathological characteristics of the
700 breast cancer patients in this study are summarized in
Table 1. To investigate genome-wide DNA methylation
alterations in breast tumors (n D 700) and normal breast
tissues (n D 90) we first calculated the mean DNA methyla-
tion b-values for each subject stratified by genomic context
region as defined by relation to CpG islands (CGI; Open
Sea, North Shelf, North Shore, CGI, South Shore, and South
Shelf), as DNA methylation levels are known to be depen-
dent upon genomic context.10 We then compared the mean
methylation status of tumors with mean methylation status
of normal samples as a function of genomic context. As
anticipated, mean methylation of CpG loci in both CGI and
CGI shores (regions up to 2 kb distant from CGI) were sig-
nificantly higher in tumor samples compared with normal
samples (CGI; Wilcoxon, P D 1.5E–33, North Shore; Wil-
coxon P D 4.3 E–06, South Shore; Wilcoxon P D 6.9E–05;
Fig. 1). Extending to CGI shelves (2–4 kb from CGI) and
Open Sea loci (isolated CpGs), mean methylation levels
were significantly lower in breast tumors compared with
adjacent normal breast tissue (Open Sea; Wilcoxon
P D 1.4E–07, North Shelf; Wilcoxon P D 8.9E–11, South
Shelf; Wilcoxon 7.8E–11; Fig. 1). All P-values for tests of
mean methylation differences between tumor and normal
tissue by genomic context meet the Bonferroni corrected
significance threshold of 8.3E–03.

Table 1. Patient demographic and tumor characteristics.

Covariates All n D 700 (%) CNA and Mutation n D 636 (%) P-value Unmatched n D 610 (%) Matched n D 90 (%) P-value

Age
Range 26–90 26–90 26–90 28–90
Median 58 58 58 56
Mean (sd) 57.86 (13.1) 58.06 (13.1) 58.0 (12.8) 57.18 (15.4)

Stage
I 115 (16.4) 107 (16.8) 0.88 102 (16.7) 13 (14.4) 0.76
II 391 (55.9) 357 (56.1) 0.96 336 (55.1) 55 (61.1) 0.58
III 180 (25.7) 161 (25.3) 0.9 160 (26.2) 20 (22.2) 0.61
IV 8 (1.1) 6 (1.0) 0.79 7 (1.1) 1 (1.1) 1
Missing 6 (0.9) 5 (0.8) 1 5 (0.8) 1 (1.1) 0.56

Clinical Subtype
TNBC 75 (10.7) 67 (10.5) 0.93 68 (11.1) 7 (7.8) 0.47
HER2 Clinical 79 (11.3) 75 (11.8) 0.8 66 (10.8) 13 (14.4) 0.38
ERC Other 279 (39.9) 256 (40.3) 0.96 243 (39.8) 36 (40.0) 1
Missing 267 (38.1) 238 (37.4) 0.88 233 (38.2) 34 (37.8) 1

PAM50 Subtype
Basal 84 (12.0) 79 (12.4) 0.87 73 (12.0) 11 (12.2) 1
HER2-enriched 31 (4.4) 30 (4.7) 0.9 25 (4.1) 6 (6.7) 0.28
Luminal A 277 (39.6) 267 (42.0) 0.58 227 (37.2) 50 (55.6) 0.043�

Luminal B 126 (18.0) 120 (18.9) 0.78 105 (17.2) 21 (23.3) 0.26
Normal like 17 (2.4) 16 (2.5) 1 16 (2.6) 1 (1.1) 0.71
Missing 165 (23.6) 124 (19.5) 0.15 164 (26.9) 1 (1.1) 5.60E–08

TP53 Mutation
No 449 (70.6)
Yes 187 (29.4)

PIK3CA Mutation
No 432 (67.9)
Yes 204 (32.1)

CDH1 Mutation
No 91 (14.3)
Yes 545 (85.7)
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Genome-wide DNA methylation dysregulation indices

To evaluate dysregulation of tumor DNA methylation com-
pared with normal tissue we developed a methylation dysregu-
lation index (MDI). Briefly, our MDI measure represents the
cumulative departure from normal DNA methylation in a
CpG locus-specific manner calculated by summing the abso-
lute difference in DNA methylation b-values at each CpG
between each tumor sample (n D 700) and the median
b-value for each CpG across all normal samples (n D 90), and
then dividing by the total number of CpGs. The output from
this genome-wide summary measure represents the average
change in b-value for any given CpG in the tumor sample
compared with normal. Therefore, a MDI value near 0 is
taken to indicate a similar methylation profile to the compan-
ion normal samples while increasing levels of MDI indicate a
greater extent of DNA methylation dysregulation. To evaluate
the appropriateness of using a median methylation across nor-
mal breast tissues to calculate MDI in tumors we compared
MDI calculated for tumors using available matched normal
samples (n D 90), to the MDI in these same tumors calculated
using median normal and observed high similarity of patient-
matched normal and median-normal MDI values
(Supplemental Fig. 1A). The distribution of MDI across
tumors is shown in Supplemental Fig. 1B. In addition to cal-
culating a genome-wide MDI, we calculated the MDI within
each genomic context (i.e., Open Sea, CGI, CGI shores, and
CGI shelves). The highest observed context-specific MDI lev-
els were in the Open Sea region, and the lowest observed lev-
els were in CGIs (Supplemental Fig. 1C).

Recently, Yang et al. developed a DNA methylation “instabil-
ity” index to measure aberrant DNA methylation in cancer.16 In
that study, the authors were motivated to determine whether dis-
tinct epigenetic pathways controlled hyper- and hypo-

methylation in a pan-cancer analysis. Notably, the authors mea-
sured the hypermethylation deviation of cancerous tissues from
normal via averaging Z-scores (HyperZ score) across probes in
promoter CGIs while hypomethylation was determined by aver-
aging Z-scores (HypoZ score) across Open Sea probes that were
not located in promoter regions. With the autosomal probes
available in our data set we generated HyperZ and HypoZ scores
using the methods described in Yang et al. and compared those
values to the CGI probe-specific and Open Sea probe-specific
MDI values. Departure of tumor methylation from normal at
CGIs and Open Sea probes were more highly correlated when
MDI was used (Spearman; rD 0.65, P< 2.2E–16) in place of the
Z-score approach (Spearman; rD 0.14, PD 2.0E–4, Supplemental
Figs. 2A and 2B). As expected CpG Island MDI is strongly corre-
lated with HyperZ score (Spearman; r D 0.85, P < 2.2E–16) and
Open Sea MDI is strongly correlated with the HypoZ score
(Spearman; r D 0.79, P < 2.2E–16, Supplemental Fig. 2C and
2D). Notably, a subset of samples had near zero HyperZ and
HypoZ scores whereas the respective tumor MDI values for those
samples were far greater than zero (Supplemental Fig. 2C and
2D).

Methylation Dysregulation Index (MDI) is associated with
patient age and tumor characteristics

Subject age, tumor stage, and breast tumor subtype are each
independently related with breast cancer prognosis. To under-
stand whether methylation dysregulation increases with disease
progression we examined the association between genome-
wide MDI and patient and tumor characteristics related with
prognosis. Results from a linear regression indicated significant
positive associations of age (P D 1.3E–07, Supplemental
Fig. 3A) and tumor stage (P D 0.013, Supplemental Fig. 3B)
with MDI across all tumors adjusting for TCGA estimated
tumor purity. While this association for age was consistent for
each MDI value from specific genomic contexts, after applying
the Bonferroni correction threshold, the positive association for
tumor stage was only present in the CpG Island context (Sup-
plemental Fig. 3B–D).

We next tested the relation of genome-wide MDI and
genomic-context-specific MDI with clinical [ERC, HER2C,
triple negative breast cancer (TNBC), available n D 433], and
Prediction Analysis of Microarray 50-gene classifier (PAM50)
tumor subtypes (Luminal A, Luminal B, Basal, HER2-
enriched, and normal-like, available n D 535). Genome-wide
MDI was significantly different among clinical subtypes
(Kruskal P-value D 0.019, Supplemental Fig. 4A). Testing the
relation of genomic-context-specific MDI with clinical subtype
indicated a significant relation with CpG island MDI (Kruskal
P D 4.7E–05, Supplemental Fig. 4B), though not other geno-
mic regions suggesting that altered CpG island methylation is
driving the relation of genome-wide MDI with clinical sub-
type. Further, we observed a significant difference in genome-
wide MDI among PAM50 subtypes (P < 2.2E–16; Fig. 2A).
Luminal B subtype tumors had significantly higher MDI than
the other 4 subtypes (Fig. 2A) and this relationship was con-
sistent for genomic-context-specific MDI (Supplemental
Fig. 4C, all P-values < 2.2E–16).

Figure 1. Genome-wide differences in average methylation levels between normal
and tumor tissue stratified by genomic location. Average methylation levels at CGIs
and CGI-shores are consistently higher in tumors compared with adjacent normal
tissue (Wilcoxon rank sum test, P < 0.0005). Average methylation levels outside of
CGIs (CGI-shelves and Open Sea) are consistently lower in tumors compared with
adjacent normal tissue (Wilcoxon rank sum test, P < 0.0005). Significant differen-
ces are highlighted with a ‘�’ symbol. The number of autosomal CpG sites included
in the calculation of average methylation for each genomic context: N.Shelf
(16,455), N.Shore (49,626), Island (137,972), S.Shore (38,977), S.Shelf (21,758),
Open Sea (127,120). N.Shelf, “North Shelf;“ N.Shore, “North Shore;” S.Shore, “South
Shore;“ S.Shelf, “South Shelf.”
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Genetic alteration burden measures are associated
with MDI

To better understand the relationship between genetic alter-
ation burden measures and MDI we used data on the fraction
of the genome with copy number alterations (FGA), and muta-
tion count burden (MCB) for these tumors. First testing the
relation of genetic alteration summary measures with patient
and tumor characteristics we observed that subject age was
associated with a significant increase in MCB (P D 9.0E–03,
Supplemental Fig. 5A), but age was not significantly associated
with FGA (P D 0.84, Supplemental Fig. 5B). Interestingly,
unlike the observed significant associations with MDI, increas-
ing tumor stage was not associated with either MCB (P D 0.54)
or FGA (P D 0.33). Further, both FGA and MCB were signifi-
cantly different among clinical subtypes, with TNBC tumors
exhibiting the highest levels in both genetic alteration burden
measures (Kruskal, P D 5.7E–08 and P D 1.7E–07, respectively,
Supplemental Fig. 6A and B). Similarly, FGA and MCB were
significantly different among PAM50 subtypes (Kruskal,
P D 5.3E–30 and P D 3.3E–15, respectively). Basal-like tumors
exhibited the highest levels of FGA and MCB (high degree of
overlap between TNBC and basal tumors), while Luminal A
tumors had the lowest levels of the 2 genetic alteration meas-
ures (Fig. 2B and C).

Next, we sought to examine whether the genetic alteration
burden summary measures of MCB and FGA were associated
with MDI. Results from a linear regression that adjusted for
subject age, tumor stage, and TCGA estimated tumor purity
indicated a significant positive association of MDI with both

MCB and FGA (P D 0.036 and P < 2.2E–16, respectively, Sup-
plemental Fig. 7A–B). To determine whether a particular sub-
type was driving the observed association between MDI and
genetic alterations, we performed clinical subtype and PAM50
subtype stratified linear regression models adjusting for subject
age, tumor subtype, and estimated tumor purity. Overall, meth-
ylation dysregulation in all 3 clinical subtypes were positively
associated with FGA, but only the HER2-positive subtype was
positively associated with MCB (Table 2). Among the PAM50
subtypes, our analyses revealed disparate associations between
MDI and genetic summary measures. MDI in Basal,

Figure 2. Differential molecular alteration burden among PAM50 subtypes. (A) Methylation dysregulation is significantly different among PAM50 subtypes (Kruskal,
PD 1.2E–19). (B) Fraction of the genome affected by copy number alterations is significantly different among PAM50 subtypes (Kruskal, P D 5.3E–30). (C) Mutation Count
Burden is significantly different among PAM50 subtypes (Kruskal, P D 3.3E–15) (D) Illustrates the relationship of the 3 molcular alteration burden measures among PAM50
subtypes. Log(MCB) is plotted versus FGA, while increasing bubble diameter corresponds with increasing MDI.

Table 2. Linear Regression of MDI with FGA and MCB among breast cancer
subtypes.

Fraction of the genome altered Mutation count

Coefficient P-value� Coefficient P-value�

All Subjects (n D 636) 8.63 <2.2E–16�� 1.20E–03 0.036�

Clinical Subtype
TNBC (n D 67) 5.74 4.1E–03�� 1.10E–03 0.57
HER2C (n D 75) 11.64 1.7E–07�� 1.90E–03 5.2E–03��

ERC Other (n D 256) 10.65 2.0E–10�� ¡3.50E–04 0.73
PAM50 Subtype
Basal (n D 79) 6.21 3.3E–03�� 7.30E–04 0.72
HER2-enriched (n D 30) 16 5.6E–03�� 1.80E–03 1.6E–03��

Luminal A (n D 267) 9.8 1.3E–09�� ¡2.00E-04 0.83
Luminal B (n D 120) ¡1.65 0.47 ¡3.00E-03 0.41
Normal-like (n D 16) 21.2 0.018� 0.014 0.25

�Linear Regression adjusted for subject age, tumor stage, and TCGA estimated
tumor purity.

��Significant after Bonferroni correction.
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HER2-enriched, and Luminal A, all subtypes demonstrated
positive associations with FGA while Luminal B— the subtype
with the greatest MDI—was not significantly associated with
FGA (Table 2, Fig. 2D). In contrast, we found that only MDI in
HER2-enriched tumors exhibited a positive association with
mutation burden, though (Table 2).

Integrative analysis of somatic alteration burden types

To integrate data from all 3 somatic alteration burden meas-
ures (MDI, FGA, and MCB) and generate latent profiles of
cumulative somatic alteration burden in TCGA breast
tumors we employed a model-based clustering approach. We
generated classes of tumors using recursively partitioned
mixture modeling (RPMM) that resulted in 6 classes of
tumor samples (Fig. 3A). Notably, tumors were clustered
into either high molecular alteration burden (rR classes) or
low molecular alteration burden (rL classes), and each of the
high molecular alteration burden classes exhibited exception-
ally high levels in only one of the alteration measures. Mod-
eled high somatic alteration burden classes had distinct
levels of somatic alteration, for example, tumors with high
mutation burden (rRLL, n D 18), high copy number alter-
ation (rRLR, n D 32), and high methylation dysregulation
(rRR, nD287, Fig. 3). PAM50 subtype was significantly asso-
ciated with somatic alteration class membership
(P D 1.0E–06, Fig. 3), with the majority of Luminal B tumors
(88%) residing in the rRR class, and 46% of Luminal A
tumors residing in the rLR class. Additionally, Luminal A
tumors account for 72% of the tumors in the high mutation-

burden class (rRLL) and Basal tumors account for 44% of
the tumors in the high copy number-burden class (rRLR).

To understand whether the aggregate impact of epigenetic and
genetic alterations varies based on other prognostic factors, we
tested the relation of RPMM class membership with other patient
and tumor characteristics. While age was not significantly associ-
ated with somatic alteration classes (PD 0.25, Table 3), tumor stage
approached statistical significance (PD0.061, Table 3). Gene muta-
tions frequently present in breast tumors were significantly associ-
ated with class membership, including TP53 (P D 1.0E–06,
Table 3) mutation in 44% of rRLR and 40% of rRR, PIK3CA
(PD 1.0E–04, Table 3) mutation in 44% of rLR and 59% of rRLL,
and CDH1 (P D 1.0E–06, Table 3) in 53% of rRLL and 17% of
rLLL. As the relationship between specific mutations and PAM50
subtypes are already established, we next tested the relation of each
of these mutations with class membership when controlling for
tumor subtype with unconditional logistic regression. Tumors with
TP53 mutations were significantly more likely to be in class rRR
[OR 2.35 (1.37, 4.10); PD 2.2E–03] compared withmembership in
any other class, while tumors with PIK3CA [OR 3.02 (1.05, 9.55);
PD 0.045], and CDH1 [OR 9.6 (3.29, 29.5); PD 3.94E–05] muta-
tions had significantly increased odds of membership in class
rRLL. Although relatively low proportions of tumors had muta-
tions in epigenetic master regulatory genes, a mutation in at least
one of these genes was significantly associated with RPMM class
membership (P D 0.01, Table 3) with 33% of rRLL tumors and
25% of rRLR tumors having at least one mutation in an epigenetic
master regulatory gene. More specifically, somatic alteration bur-
den class membership was significantly associated with mutations
in specific genes including DNMT3A (P D 5.7E–03), TET2 (P D

Figure 3. Recursively partitioned mixture model of molecular alteration burden measures in breast carcinomas. (A) The figure depicts the results of RPMM. Columns rep-
resent molecular alteration burden classes and rows represent one of the 3 burden measures (MDI, FGA, MCB). The height of each column is proportional to the number
of subjects residing in the class, total n D 512. Yellow indicates low alteration burden and blue indicates high alteration burden. (B) Methylation dysregulation is signifi-
cantly different among cluster classes (Kruskal-Wallis, PD 7.5E–36). (C) Fraction of the genome affected by copy number alterations is significantly different among cluster
classes (Kruskal-Wallis, P D 3.4E–65). (D) Mutation Count Burden is significantly different among cluster classes (Kruskal-Wallis, P D 5.4E–51).
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9.0E–04), and IDH1 (PD 1.2E–03). However, in separate uncondi-
tional logistic regression models adjusted for MCB, the odds of
class membership in the mutation burden class (rRLL), and the
copy number class (rRLR), was not significantly different for
tumors with a mutation in an epigenetic master regulatory gene.
Lastly, we modeled somatic alteration burden, again using RPMM,
stratified by PAM50 tumor subtype and observed similar relations
of subject age, tumor stage, and mutation of specific genes with

somatic alteration burden class membership (Supplementary
Figs. 8–12).

Discussion

The extent of aberrant DNA methylation and genetic altera-
tions are known to vary widely across tumors, including inva-
sive breast cancer.15 Prior assessments of total genomic

Table 3. RPMM alteration burden class membership by patient demographic and tumor characteristic covariates

Class 1 (LLL) Class 2 (LLR) Class 3 (LR) Class 4 (RLL) Class 5 (RLR) Class 6 (RR) Permutation
Covariates n D 12 n D 12 n D 151 n D 18 n D 32 n D 287 test P-value�

Age (years) 0.28
Range 31–73 28–71 30–88 29–77 36–90 26–90
Median 54 55.5 58 61 58 58
Mean (sd) 54.6 (12.7) 54.3 (11.5) 57.3 (12.7) 58.7 (13.9) 59.8 (14.3) 58.1 (13.1)

Stage 0.061
I 2 (16.7) 3 (25.0) 32 (21.2) 6 (33.3) 4 (12.5) 38 (13.2)
II 7 (58.3) 6 (50.0) 84 (55.6) 7 (38.9) 20 (62.5) 167 (58.2)
III 3 (25.0) 2 (16.7) 34 (22.5) 5 (27.8) 5 (15.6) 76 (26.5)
IV 0 (0.0) 1 (8.3) 0 (0.0) 0 (0.0) 2 (6.3) 3 (1.0)

PAM50 Subtyoe 1.00E–06
Basal 0 (0.0) 1 (8.3) 10 (6.6) 2 (11.1) 14 (43.8) 52 (18.1)
HER2-enriched 0 (0.0) 0 (0.0) 6 (4.0) 1 (5.6) 3 (9.4) 20 (7.0)
Luminal A 5 (41.7) 10 (83.3) 125 (82.8) 13 (72.2) 7 (21.9) 107 (37.3)
Luminal B 0 (0.0) 0 (0.0) 6 (4.8) 1 (5.6) 8 (25.0) 105 (36.6)
Normal-like 7 (58.3) 1 (8.3) 4 (3.2) 1 (5.6) 0 (0.0) 3 (1.0)

TP53 Mutation 1.00E–06
No 12 (100.0) 11 (91.7) 127 (84.1) 14 (77.8) 18 (56.3) 171 (59.6)
Yes 0 (0.0) 1 (8.3) 24 (15.9) 3 (16.6) 14 (43.7) 113 (39.4)
Missing 0 (0.0) 0 (0.0) 0 (0.0) 1 (5.6) 0 (0.0) 3 (1.0)

PIK3CA Mutation 1.00E–04
No 12 (100.0) 10 (83.3) 85 (56.3) 7 (38.9) 24 (75.0) 203 (70.7)
Yes 0 (0.0) 2 (16.7) 66 (43.7) 10 (55.5) 8 (25.0) 81 (28.3)
Missing 0 (0.0) 0 (0.0) 0 (0.0) 1 (5.6) 0 (0.0) 3 (1.0)

CDH1 Mutation 2.00E–04
No 10 (83.3) 11 (91.7) 130 (86.1) 8 (44.4) 28 (87.5) 262 (91.3)
Yes 2 (16.7) 1 (8.3) 21 (13.9) 9 (50.0) 4 (12.5) 22 (7.7)
Missing 0 (0.0) 0 (0.0) 0 (0.0) 1 (5.6) 0 (0.0) 3 (1.0)

Master Regulatory Gene Mutation 0.0104
No 10 (83.3) 11 (91.7) 139 (92.1) 11 (61.1) 24 (75.0) 247 (86.1)
Yes 2 (16.7) 1 (8.3) 12 (7.9) 6 (33.3) 8 (25.0) 37 (12.9)
Missing 0 (0.0) 0 (0.0) 0 (0.0) 1 (5.6) 0 (0.0) 3 (1.0)
DNMT3B Mutation 0.25
No 12 (100.0) 12 (100.0) 151 (100.0) 17 (94.4) 31 (96.9) 276 (96.2)
Yes 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (3.1) 8 (2.8)
Missing 0 (0.0) 0 (0.0) 0 (0.0) 1 (5.6) 0 (0.0) 3 (1.0)

DNMT3A Mutation 7.70E–03
No 12 (100.0) 11 (91.7) 149 (98.7) 15 (83.3) 30 (93.8) 282 (98.3)
Yes 0 (0.0) 1 (8.3) 2 (1.3) 2 (11.1) 2 (6.2) 2 (0.7)
Missing 0 (0.0) 0 (0.0) 0 (0.0) 1 (5.6) 0 (0.0) 3 (1.0)

DNMT1 Mutation 0.2
No 12 (100.0) 12 (100.0) 150 (99.3) 16 (88.8) 31 (96.9) 271 (94.4)
Yes 0 (0.0) 0 (0.0) 1 (0.7) 1 (5.6) 1 (3.1) 13 (4.6)
Missing 0 (0.0) 0 (0.0) 0 (0.0) 1 (5.6) 0 (0.0) 3 (1.0)

TET1 Mutation 0.65
No 12 (100.0) 12 (100.0) 150 (99.3) 17 (94.4) 31 (96.9) 279 (97.2)
Yes 0 (0.0) 0 (0.0) 1 (0.7) 0 (0.0) 1 (3.1) 5 (1.8)
Missing 0 (0.0) 0 (0.0) 0 (0.0) 1 (5.6) 0 (0.0) 3 (1.0)

TET2 Mutation 6.00E–04
No 12 (100.0) 12 (100.0) 151 (100.0) 14 (77.8) 29 (90.6) 279 (97.2)
Yes 0 (0.0) 0 (0.0) 0 (0.0) 3 (16.6) 3 (9.4) 5 (1.8)
Missing 0 (0.0) 0 (0.0) 0 (0.0) 1 (5.6) 0 (0.0) 3 (1.0)

IDH1 Mutation 2.40E–03
No 10 (83.3) 12 (100.0) 147 (97.4) 16 (88.8) 30 (93.8) 283 (98.6)
Yes 2 (16.7) 0 (0.0) 4 (2.6) 1 (5.6) 2 (6.2) 1 (0.4)
Missing 0 (0.0) 0 (0.0) 0 (0.0) 1 (5.6) 0 (0.0) 3 (1.0)

IDH2 Mutation 0.76
No 11 (91.7) 12 (100.0) 146 (96.7) 17 (94.4) 31 (96.9) 275 (95.8)
Yes 1 (8.3) 0 (0.0) 5 (3.3) 0 (0.0) 1 (3.1) 9 (3.2)
Missing 0 (0.0) 0 (0.0) 0 (0.0) 1 (5.6) 0 (0.0) 3 (1.0)

�Fisher’s exact permutation tests were performed on categorical variables and Kruskal Wallis permutation tests were performed on continuous variables 10,000 permuta-
tions were used.
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deregulation have largely been limited to studies that investi-
gated tumor-type variation in pan cancer analyses.16-20 In this
study, we quantified the cumulative burden of DNA methyla-
tion dysregulation in breast cancer using a methylation dysre-
gulation index. We investigated the relation of MDI in
combination with summary measures of genetic alteration to
discover patterns of somatic alteration burden among tumors.
Importantly, while we observed significant correlations between
epigenetic and genetic dysregulation measures, only MDI was
associated with increasing tumor stage. We also observed sig-
nificant differences among breast cancer subtypes for MDI and
FGA, but not for MCB. Furthermore, we integrated our novel
epigenetic burden measures with other genetic burden meas-
ures via a model-based clustering method to uncover latent
tumor classes with distinct patterns of somatic alteration
burden.

Previous attempts to characterize genome-wide DNA meth-
ylation changes in cancer by a summary measure have not
included the entire measured DNA methylome. Recently, Yang
et al. investigated master epigenetic regulatory enzymes that
govern hypermethylation and hypomethylation processes and
focused their investigation on CpG islands in promoters and
Open Sea CpGs in non-promoters. Their focused approach
nicely distilled the complex relationship that exists between
expression of epigenetic enzymes and hypo/hypermethylation.
We extended the approach of Yang et al. to characterize the
departure of DNA methylation from normal across all mea-
sured CpGs and ascribed equal weights to all genomic locations
to determine cumulative DNA methylation dysregulation for
each tumor. Results from our approach were strongly corre-
lated with results from Yang et al., though including DNA
methylation measurements from all CpGs resulted in stronger
associations between hypomethylation and hypermethylation
events. This is likely due to the inclusion CGI-shore and -shelf
regions that exhibited a substantial departure from normal
DNA methylation patterns. Indeed, CGI-shore regions appear
to drive many gene expression differences that distinguish nor-
mal tissues from each other, and are highly dysregulated in can-
cer. In contrast to the work from Yang et al., our results suggest
that tumors with high levels of hypermethylation also have
greater levels of hypomethylation. We postulate that hyperme-
thylation and hypomethylation that occur in the majority of
genomic contexts is highly coupled, while certain more specific
features of epigenetic dysregulation, as explored in the Yang
et al. paper, are distinct processes.

The deregulation of both the epigenome and genome are
both early events in breast carcinogenesis, and have been
observed in pre-neoplastic lesions, such as ductal carcinoma in
situ (DCIS).8,9 Nevertheless, there is a paucity of research that
investigates epigenetic and genetic deregulation as invasive dis-
ease evolves to more advanced stages. Interestingly, our results
demonstrate that the burden of genetic alterations (i.e., MCB
and FGA) vary little between early and late stages of invasive
disease. However, consistent with candidate gene approaches,21

our results indicate that genome-wide DNA methylation dysre-
gulation (MDI) continues to increase over the progression of
invasive disease. A possible explanation for this observation is
that as a tumor progresses the increasing level of MDI may
enable a tumor greater plasticity to adapt to its environment

(consistent with dedifferentiation), or possibly reflect the emer-
gence of treatment resistant cellular populations.22 Conse-
quently, quantification of DNA methylation dysregulation of a
tumor may offer a marker of disease progression and treatment
response in other cancers as well.

Invasive breast carcinoma is a complex and heterogeneous
disease with established tumor subtypes. Tumor subtype classi-
fication represents an approach to stratify tumor samples into
potentially meaningful categories that may help guide treat-
ment decisions.23 At the same time, tumors within a given sub-
type may exhibit high variability in molecular alterations not
used to classify the tumors (i.e., not gene expression or receptor
protein levels). In the present study, we noted that tumors with
the highest burden levels of MDI, FGA, and MCB belonged to
distinct clusters when we applied RPMM. Importantly, while
PAM50 subtype was associated with RPMM class, there was a
mixture of subtypes present in all classes. This result suggests
that it may be feasible to encapsulate extensive amounts of
genomic data and gain deeper biological insights by clustering
the aggregate measures of molecular alterations. Nevertheless,
it remains to be determined whether a propensity for high
somatic alteration burden of a particular type is driven by alter-
ations to key pathways or master regulatory genes. For exam-
ple, irrespective of breast tumor subtype, the methylation
dysregulation class was significantly enriched for TP53 muta-
tions, suggesting that TP53 alterations may play an integral role
in further epigenetic deregulation. Indeed, among normal-like
tumors, those with a TP53 mutation were far more likely to
exhibit higher MDI. This result was not present in TCGA
probe-level analysis (574 probes),15 which is likely a product of
a focus on CpG island probes—excluding many hypomethyla-
tion events and dysregulation in other key genomic contexts.
Similarly, both PIK3CA and CDH1 mutations were enriched in
the somatic alteration burden class with the highest mutation
burden, suggesting that deregulation at these genes may con-
tribute to higher levels of genetic instability compared with
other gene mutations. Together, we have shown that compres-
sion of DNA methylation dysregulation data to a single, com-
prehensive measure and integration of global measures reveal
unique characteristics about breast tumor genomes and pro-
vides etiologic information beyond standard RNA-based signa-
tures and probe-level clustering.

While our approach to aggregate molecular alterations
across distinct genomic data sets may improve tumor charac-
terizations, our analyses have several limitations. For example,
the samples involved in the present study were not collected in
a population-based manner and, therefore the distribution of
clinical and intrinsic tumor subtypes is skewed. Another major
limitation is that the measures of MDI, FGA, and MCB are
unable to account for cellular composition that may vary across
tumor samples in the TCGA population.24-26 Further, while the
comprehensive nature of the TCGA effort (including DNA
methylation, exome sequencing, intrinsic subtyping with gene
expression, and copy number alteration profiling), and its sam-
ple size is unmatched by any other studies and regarded as a
strength, we were limited by the lack of a validation cohort.
Finally, follow-up time in the TCGA data was insufficient to
perform a survival analysis that would be necessary to test the
relationship between MDI, FGA, and MCB with survival and
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recurrence outcomes. Future studies that directly assess genetic
and epigenetic tumor burden measures in breast and other
tumor types will be required to yield more robust observations.

In summary, our method to assess DNA methylation dysre-
gulation in tumors is comprehensive and provides an intuitive
interpretation of the departure from normal tissue that allows
for direct comparison with genetic alteration burden measures.
Our approach is also broadly applicable to other tumor types
with adjacent normal samples and may highlight differences in
epigenetic burden across tumors when applied in a pan-cancer
analysis. Finally, an integration of epigenetic and genetic bur-
den measures suggests that irrespective of molecular or clinical
subtype, breast tumors may carry a characteristic deregulation
burden profile.

Materials and methods

Population and methylation data processing

Level 3 normalized DNA methylation data and clinical infor-
mation was accessed and downloaded from The Cancer
Genome Atlas (TCGA) data portal.15 In the TCGA invasive
breast cancer (BRCA) data set there were 841 samples for
which Illumina HumanMethylation450 methylation data was
available. We restricted our analyses to only those patients for
whom there were both clinical information and tumor methyl-
ation from the Illumina HumanMethylation450 BeadChip
(nD 700). Metastatic samples and samples with repeated meas-
urements were removed prior to analysis. Among the 700 sub-
jects, there were 90 subjects for which DNA methylation data
on adjacent normal tissue was also available. For the DNA
methylation data we removed probes on sex chromosome and
analyzed autosomal CpGs available in the TCGA BRCA data
set. The number of autosomal CpGs in each genomic region is
summarized in Supplemental Table 1.

Definition of breast tumor subtypes

Expression of standard immunohistochemistry (IHC) bio-
markers including estrogen receptor (ER), progesterone recep-
tor (PR), and HER2 were used to define clinical subtypes.
These were classified into 3 groups: triple negative (ER-, PR-,
HER2-), HER2C (ERC/ER-, PRC/PR-, HER2C), and ERC
other (ERC, PRC/PR-, HER2-). Due to its prognostic value, we
also used PAM50 classification of breast tumor intrinsic sub-
types: Basal-like, HER2-enriched, Luminal A, Luminal B, and
Normal-like.30

DNA methylation dysregulation index construction

To summarize the genome-wide departure of DNA methyl-
ation in tumor samples from normal tissues we constructed
a CpG locus-by-locus index of the mean, absolute difference
in DNA methylation in tumor samples compared with adja-
cent normal. First, we generated a discrete matched MDI
.MDIdm/, which used only the 90 subjects with tumor and
corresponding adjacent normal methylation data. For a given
subject, Ti and Ni were the DNA methylation b values for
tumor and normal, respectively, at each CpG-probe locus on

the Illumina 450K array, and n was the total number of CpG-
probes.

MDIdm D
Xn

iD 1
jTi¡Nij
n

To be able to extend our MDI assessment to tumors without a
matched normal sample we used median CpG site-specific
DNA methylation values among normal breast tissues to calcu-
late MDI. In this case, tumor MDI was a genome-wide sum-
mary of locus-by-locus deviation in DNA methylation of a
given tumor sample from median methylation of all adjacent
normal samples. Nm is the median b¡value at each CpG locus
among all normal samples. Median normal MDI was compared
with MDIdm for the 90 matched tumor-normal subjects and
then calculated for all tumor samples.

MDID
Xn

iD 1
jTi ¡Nmj
n

We observed high similarity of patient-matched normal and
median-normal MDI values (Supplemental Fig. 13) and, as a
result, we proceeded to calculate MDI for all tumor samples
using the CpG site-specific median normal DNA methylation.
Clinical and pathological characteristics of all subjects stratified
by those with a matched normal sample (n D 90) and those
without (n D 610) are also provided in Table 1. Subject and
tumor characteristic distributions were similar for matched and
unmatched tumors (Table 1). In addition to this genome-wide
index, the same approach was used to construct methylation
indices stratified by genomic context of CpG Island genomic
regions including: Open Sea, North Shelf, North Shore, Island,
South Shore, and South Shelf.10

Mutation and copy number alteration burden

Data for mutation count burden (MCB) and copy number
alteration burden (FGA) for each subject were downloaded
from the cBioPortal for the aforementioned TCGA BRCA sub-
jects (n D 700).4 The cBioPortal accesses TCGA BRCA data to
generate MCB from the total number of non-synonymous sub-
stitutions in exome sequencing while the FGA measure is calcu-
lated as the fraction of the genome affected by copy number
alterations (i.e., the number of bases in segments with mean
log2 greater than 0.2 or smaller than ¡0.2 divided by the num-
ber of bases in all segments profiled by the Affymetrix SNP
arrays).4 Among the 700 TCGA BRCA subjects in our data set,
636 subjects had mutation and copy number alteration data. In
addition, we accessed the mutation status of genes with a muta-
tion frequency of at least 10% and specific epigenetic master
regulatory genes (<10% prevalence), in the BRCA dataset.
Genes with a high mutation frequency included: TP53,
PIK3CA, and CDH1 while the epigenetic master regulatory
genes included: DNMT3A, DNMT3B, DNMT1, TET1, TET2,
IDH1, and IDH2.27
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Statistical analysis

All analyses were performed using the R computing framework
version 3.1.1 (www.r-project.org). To test for differences in the
distribution of clinical and pathological characteristics between
patients with matched tumor-normal methylation and subjects
with unmatched tumor methylation Fisher’s exact tests were
used. Fisher’s exact tests were also used to determine differen-
ces in clinical and pathological characteristics between the full
data set (n D 700) and subjects with mutation and copy num-
ber alteration data (n D 636). Wilcoxon tests were used to test
for differences in average DNA methylation between adjacent
normal tissue and tumors. Kruskal-Wallis tests were imple-
mented to test for differences in MDI, FGA, and MCB among
tumor subtypes. Wilcoxon tests were used to test for differences
in MDI among binary clinical and pathological characteristics.
Linear regression models adjusted for age, tumor stage, and
TCGA estimated tumor purity were used to test the association
of MDI with MCB and FGA. Recursively partitioned mixture
model (RPMM) clustering was performed using the MDI,
FGA, and MCB of subjects with an identified PAM50 sub-
type.28 To accurately profile subjects into somatic burden clas-
ses, we normalized each burden measure before applying the
RPMM clustering.29 To test the relation of somatic dysregula-
tion RPMM class Fisher’s exact permutation tests were per-
formed on categorical variables and Kruskal Wallis
permutation tests were performed on continuous variables.
Permutation tests (running 10,000 permutations) were used to
test for association with dysregulation class by generating a dis-
tribution of the test statistic for the null distribution for com-
parison with the observed distribution. All results with a
P-value < 0.05 were considered statistically significant. Bonfer-
roni correction was used and noted when multiple hypotheses
were tested.
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