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Purpose: Steroids are known to inhibit osteogenic differentiation and subsequent bone 
formation in bone mesenchymal stem cells (BMSCs). However, little is known about the 
role of BMSC exosomes (Exos) and tRNA-derived small RNAs (tsRNAs) in steroid-induced 
osteonecrosis of the femoral head (SONFH). The objective of this study was to characterize 
the tsRNA expression profiles of plasma Exos collected from SONFH patients and healthy 
individuals using small RNA sequencing and further explore the effect of BMSC Exos 
carrying specific tsRNAs on osteogenic differentiation.
Materials and Methods: Based on insights from small RNA sequencing, five differentially 
expressed (DE) tsRNAs were selected for quantitative real-time polymerase chain reaction 
(qRT-PCR). The regulatory networks associated with interactions of the tsRNAs-mRNA- 
pathways were reconstructed. The osteogenesis and adipogenesis in BMSCs were detected 
via ALP and oil red O staining methods, respectively.
Results: A total of 345 DE small RNAs were screened, including 223 DE tsRNAs. The DE 
tsRNAs were enriched in Wnt signaling pathway and osteogenic differentiation. We identi
fied five DE tsRNAs, among which tsRNA-10277 was significantly downregulated in plasma 
Exos of SONFH patients compared to that in healthy individuals. Dexamethasone-induced 
BMSCs were associated with an increased fraction of lipid droplets and decreased osteogenic 
differentiation, whereas BMSC Exos restored the osteogenic differentiation of that. After 
treatment of tsRNA-10277-loaded BMSC Exos, the lipid droplets and osteogenic differentia
tion ability were found to be decreased and enhanced in dexamethasone-induced BMSCs, 
respectively.
Conclusion: An altered tsRNA profile might be involved in the pathophysiology of 
SONFH. tsRNA-10277-loaded BMSC Exos enhanced osteogenic differentiation ability of 
dexamethasone-induced BMSCs. Our results provide novel insights into the osteogenic effect 
of BMSC Exos carrying specific tsRNAs on SONFH.
Keywords: steroid-induced femoral head necrosis, small RNA sequencing, tsRNA-10277, 
BMSC exosomes, osteogenic differentiation

Introduction
Osteonecrosis of the femoral head (ONFH) is a common and incurable orthopedic 
disorder that affects young and middle-aged individuals and is highly prevalent 
worldwide.1 The femoral heads of 80% of these patients could collapse within 1–3 
years of diagnosis owing to the absence of effective treatment, and it is difficult to 
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reverse the course of this disease.2,3 Steroid-induced osteo
necrosis of the femoral head (SONFH) occurs following 
high doses or long-term use of steroid hormones and 
represents a serious complication associated with steroid 
use.4–6 The use of steroid hormones alone accounts for 
about 24.1% of all ONFH cases.7,8 However, the patho
genesis of SONFH is poorly understood, and the occur
rence of fat embolism, intravascular coagulation, and 
retrograde embolization of bone marrow fat are believed 
to explain the occurrence and prognosis of this disease.9 

Several studies have shown the high early failure rates 
after surgical treatment to arise from the poor prognosis 
of SONFH patients.10 Therefore, the key molecular 
mechanisms underlying SONFH need to be urgently 
explored.

Exosomes (Exos) are a class of bilayer membrane-bound 
nanovesicles released from different cells, that are 30–100 
nm in diameter.11 Functionally, exosomes act as carriers of 
functional proteins, mRNAs, small RNAs, and lipids, and 
deliver signals to recipient cells mediated by their cargo.12 

The content of exosomes may represent the condition of 
parental cells in pathology and physiology, including differ
ent stages of the disease or different diseases. These proper
ties of exosomes make these suitable as a platform for disease 
diagnosis, prognosis, and treatment.13 Several studies have 
recently reported that exosomes released by mesenchymal 
stem cells (MSCs), either from bone marrow or adipose 
tissue, could promote osteoblast differentiation.14 For exam
ple, exosomes released by bone mesenchymal stem cells 
(BMSCs) have been shown to be involved in the therapeutic 
action of steroid-induced femoral head necrosis.15

The tsRNAs are generated through endonucleolytic 
cleavage of tRNAs. The widespread and conserved expres
sion of these tsRNAs in several biological processes has 
attracted tremendous attention in the recent years.16 A 
massive body of evidences reveal that tsRNAs are 
involved in translational repression and play a regulatory 
role in diverse physiological and pathological 
phenomena.17 These tsRNAs also influence various func
tions of somatic cells such as cell proliferation, cancer 
progression, and the activity of endogenous 
retroelements.18,19 Moreover, recent findings have sug
gested that the striking differences in tsRNA expression 
patterns could be associated with the differentiation status 
of MSCs.20 However, tsRNA profiles in plasma exosomes 
of SONFH patients have not been characterized, and the 
role of tsRNAs in SONFH pathophysiology remains 
unclear.

In this backdrop, the present study was designed with 
the aim to identify the tsRNA expression profiles of 
plasma exosomes collected from SONFH patients (and 
healthy subjects, as a control) using small RNA sequen
cing. Additionally, we have established a cellular model of 
SONFH and utilized this to explore the effect of tsRNA- 
10277-loaded BMSC exosomes on osteogenic 
differentiation.

Materials and Methods
Study Participants
A total of 10 participants (five SONFH patients and five 
healthy subjects) were recruited from the First Affiliated 
Hospital of Fujian Medical University. The SONFH patients 
involved in this study exhibited the common clinical features 
of joint dysfunction, lower limb muscle atrophy, claudica
tion, and hip pain. In addition, they had been subjected to 
either high-dose steroid impulsion treatments or long-term 
steroid intake (more than 16 mg/day for more than 1 week) 
before the appearance of these symptoms.21 The exclusion 
conditions included any significant medical history of severe 
chronic diseases, traumatic SONFH, and other hip diseases; 
and outside the diagnostic criteria for SONFH, intake of 
more than 400 mL alcohol per week.21 Healthy control sub
jects had no clinical manifestations of hip diseases, known 
severe chronic diseases, and no medical history of throm
boembolic diseases. We collected the relevant clinical infor
mation from the medical records of the participants.

Sample Collection and RNA Isolation 
from Plasma Exosomes
Plasma samples of 3 healthy subjects and 3 SONFH 
patients were obtained from the First Affiliated Hospital 
of Fujian Medical University. The procedure for sample 
collection was approved by the local Ethics Committee 
and written informed consent were obtained from all the 
participants. The exosomes were precipitated from the 
collected plasma samples using the ExoQuick Plasma 
Prep and Exosome Precipitation Kit (Cat# EXOQ5A-1, 
Systembio, USA). The isolated exosomes were resus
pended in PBS and used immediately or stored at –80°C 
till further use.

Identification of Plasma Exosomes
Exosomes were fixed using a 2% paraformaldehyde solution, 
processed into ultrathin section. Then, the exosome sections 
were examined directly using a transmission electron 
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microscope (Hitachi H-7500 TEM, Tokyo, Japan), and the 
data were recorded in an AMT 2k charge-coupled-device 
camera. A nanoparticle tracking analysis (NTA) system 
was used to construct the three-dimensional map of particle 
size, solid shape, and relative intensity of the exosomes.

RNA Extraction, Small RNA Sequencing 
Library Preparation, and Sequencing
Total RNA from plasma exosomes was extracted using the 
TRIzol Plus RNA Purification Kit (Cat# 12183555, Thermo 
Fisher Scientific, Waltham, MA, USA). Then, the purified 
RNA was sent to Yingbiotech (Shanghai, China) for the con
struction of small RNA libraries. Briefly, the RNA was ligated 
with adaptors, and complementary DNA strands were created 
during PCR amplification. A small RNA fragments with length 
of approximately 15–40 nt were used for quality control. We 
further quantified and validated the purified libraries. 
Subsequently, RNA sequencing was performed on a HiSeq 
2500 sequencing system (Illumina, San Diego, 
California, USA).

Bioinformatics Analysis of Small RNA 
Sequencing Data
The raw sequences were filtered to exclude short (<15 nt) 
and low-quality reads. Then, all the clean small RNA 
reads were matched to the miRBase database (http:// 
www.mirbase.org/), PIWI-interacting RNA (piRNA) data
base, NCBI, genomic tRNA database (http://gtrnadb.ucsc. 
edu/), tRFdb (http://genome.bioch.virginia.edu/trfdb/), and 
MINTBase in turn to identify known miRNAs and tRFs.

Following the target prediction of differentially expressed 
(DE) tRFs, the GO and KEGG databases were used to 
classify the functions and pathways of all DE tRFs. Then, 
an interaction network of the candidate tRFs/mRNA/path
way was constructed using Cytoscape 2.8.3 for underlying 
mechannism analysis.

Verification of tsRNAs Expression by 
Real-Time Quantitative PCR (RT-qPCR)
Total RNA extracted from plasma exosomes of SONFH 
patients and healthy subjects were used to synthesize the 
complementary DNA strands using the RevertAid First 
Strand cDNA Synthesis Kit (Cat#K1622, Thermofisher, 
Waltham, MA, USA), and RT-qPCR was performed with 
the SYBR Premix Ex Taq (Takara Bio, China) using a 
StepOnePlus Real-Time PCR system (Applied 
Biosystems; Thermo Fisher Scientific, Inc.). U6 was 

chosen as the internal control for tsRNAs quantification 
in plasma exosomes. The relative expression levels were 
calculated using the 2-∆∆Ct method. The primers used for 
RT and RT-qPCR are shown in Table 1.

Isolation of BMSC Exosomes
Exosomes from the cell supernatants were isolated as 
described above. Briefly, rat BMSCs (Procell, Wuhan, 
China) were cultured in DMEM-F12 medium containing 
10% fetal bovine serum (Gibco, 10099–14) and 1% peni
cillin–streptomycin (Gibco), and incubated at 37°C and 
5% CO2 until 80% confluence was reached. The super
natant was collected after 48 h for isolation of exosomes. 
The isolated exosomes were resuspended in PBS.

Characterization of BMSCs by 
Immunofluorescence
BMSCs were fixed during the logarithmic phase by treat
ing with 4% paraformaldehyde for 10 min. Then, the cells 
were permeabilized using 0.1% triton X-100 and blocked 
by PBS containing 2% bovine serum albumin and 0.1% 
Tween 20. Subsequently, the BMSCs were incubated with 
primary antibodies against rat CD44 (BD Biosciences, San 
Jose, CA, USA; 1:50) and CD45 overnight at 4°C. After 
removing the primary antibodies, the cells were incubated 
with Cy3-conjugated secondary antibodies for 1 h at room 
temperature. Then, the cells were washed thrice using 1% 
TBST, stained with DAPI (Beyotime Institute of 
Biotechnology, Shanghai, China), and visualized under a 
fluorescent microscope (TE2000, Nikon, Japan).

Steroid Induction and Oil Red O Staining
The rat BMSCs were divided into three groups: control 
group (healthy BMSCs), SONFH model group (BMSCs 
treated with 10−7 mol/L dexamethasone) and Exos group 
(SONFH BMSCs treated with healthy BMSCs exosomes). 
After induction for 18 days, cells were washed once with 
PBS, fixed by treatment with 4% paraformaldehyde for 30 
min at room temperature, and then stained with oil red O 
solution (Jiancheng Biotechnology, Nanjing, China) for 60 
min at room temperature. A microscope was used to 
observe the stained cells.

Exosome Treatment, Steroid Induction, 
and ALP Staining
The rat BMSCs were divided into 3 groups, namely con
trol group (healthy BMSCs), SONFH model group, and 
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Exos group, and each group repeated for three times. 
BMSCs were seeded into 24-well plates at a density 
1×104 cells/cm2 until 70% confluence was reached. 
Then, the old complete medium was removed, and fresh 
medium containing 0.1 μmol/L dexamethasone (Cat# 
RASMX-90021, Oricell, Cyagen Biosciences) was added 
to the plates. The BMSC exosomes group was also treated 
with 5 µg of healthy BMSC exosomes. All groups were 
cultured for 3 days prior to ALP staining. The cells were 
washed thrice with PBS and fixed by treatment with 4% 
Paraformaldehyde Fix Solution (Cat# E672002, Sangon 
Biotech, Shanghai, China) for 1 min. Then, the cells 
were incubated with ALP for 20 min at 25°C in the dark 
and observed under a light microscope.

Cell Transfection and Treatment of 
tsRNA-10277-Loaded BMSC Exosomes
The tsRNA-10277 mimics (5ʹ-GGCCGTGATCGTATAGT 
GGTTAGTACTCTGC-3ʹ and 5ʹ-GCAGAGTACTAACCA 
CTATACGATCACGGCC-3ʹ) and negative control mimics 
(NC; 5ʹ-UUCUCCGAACGUGUCACGUTT-3ʹ and 5ʹ- 
ACGUGACACGUUCGGAGAATT-3ʹ) were purchased 
from Shanghai GenePharma Co., Ltd. After transfecting the 
tsRNA-10277 mimics or NC into BMSCs using 
Lipofectamine® 2000 (Invitrogen; Thermo Fisher Scientific, 
Inc. Waltham, MA, USA) and a 48h incubation, the BMSCs 
supernatant were collected for exosome isolation. The levels 
of tsRNA-10277 expression in BMSC exosomes were 

detected by RT-qPCR. The effect of exosomes derived from 
BMSCs by transfection of the tsRNA-10277 mimics or NC 
mimics on adipogenesis and osteogenic ability was assessed 
by staining with oil red O and ALP staining, respectively.

Statistical Analysis
Data from independent experiments performed in tripli
cates are shown as mean ± SD. The p-values were calcu
lated using the Graph Pad Prism 8 software. Student’s 
t-test was used for comparisons for two groups. A value 
of p<0.05 was considered statistically significant.

Results
Participant Demographics
As shown in Table 2, a total of 10 participants were enrolled 
in the study, composed of five SONFH patients and five 
healthy subjects. The SONFH group had significant differ
ences in age compared to the control group; however, no 
difference in body mass index was noted. Moreover, the 
SONFH patients were mainly in clinical stage IV.

Characterization of Isolated Plasma 
Exosomes by TEM
The plasma exosomes collected from SONFH patients and 
healthy subjects were distinguished by TEM and NTA 
analysis. These experiments revealed that the obtained 
particles were covered with an intact membranous 

Table 1 The Primers and Sequence

Name Primer Sequence (5ʹ-3ʹ)

RT hsa-miR-150-5p GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACCACTGGT
RT hsa-miR-452-5p GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACTCAGTTT

U6-F CGATACAGAGAAGATTAGCATGGC

U6-R AACGCTTCACGAATTTGCGT
hsa-miR-150-5pF CGCAGTCTCCCAACCCTTG

hsa-miR-452-5pF CGCAGAACTGTTTGCAGAGG

all-R AGTGCGTGTCGTGGAGTCG
RT tsRNA-04590 GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACTGGCTCC

RT tsRNA-10277 GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACGCAGAGT
RT tsRNA-23731 GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACGCACGCG

RT tsRNA-19733 GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACGCAGACG

RT tsRNA-10522 GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACAAAGCGA
tsRNA-04590F CCTGTCACGCGGGAGACC

tsRNA-10277F GGCCGTGATCGTATAGTGGTTAG

tsRNA-23731F GGGGGTATAGCTCAGTGGTAGAG
tsRNA-19733F CTGGGTTCCATAGTGTAGTGGTTA

tsRNA-10522F GGCTCGTTGGTCTAGGGGTAT

all-R AGTGCGTGTCGTGGAGTCG
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structure and were 100–150 nm in diameter (Figure 1A– 
D). Collectively, this data suggests that the collected par
ticles were plasma exosomes.

Identification of Small RNAs and 
Differentially Expressed tsRNAs in 
SONFH Patients and Healthy Subjects
We preformed small RNA sequencing to obtain a profile of 
small RNAs in the SONFH and healthy groups. After 
quality control of the 6 sequencing libraries used, each 
library received an average of 23.21 million raw reads, out 
of which about 19.85 (85.10%) clean reads with a length 
>15 nt were retained (Table 3). There were several small 
RNA biotypes in the SONFH and heathy groups, including 
miRNAs, piRNAs, and tsRNAs (Figure 2A and B). 
Among the total clean reads, miRNAs were the most 
abundant small RNAs in exosomes, accounting for about 
48%; whereas only 4.09% and 3.37% reads were mapped 
to piRNAs and tsRNAs, respectively (Table 4). We further 
performed a comparative analysis of DE small RNAs 
between the SONFH and healthy groups. |Log2Fold 
Change|>1 and p<0.05 were set as the filter conditions. 
A total of 345 DE small RNAs were screened out, includ
ing 112 DE miRNAs, 223 DE tsRNAs, and 10 DE 
piRNAs. Among the DE tsRNAs, 137 were upregulated 
and 86 downregulated in the SONFH group compared to 
the control group (Figure 2C). The heat map generated by 

hierarchical cluster analysis showed similar spectral clus
tering and samples in each group (Figure 2D).

Target  Gene Prediction and GO and 
KEGG Enrichment Analysis of DE tsRNA 
Target Genes
MiRanda and RNAhybrid algorithms were used to 
identify a total of 77591 target mRNAs for the DE 
tsRNAs between SONFH and healthy subjects 
(Figure 3A). To understand the potential functions 
and mechanisms of the DE tsRNAs involved in 
SONFH, we performed GO and KEGG pathway analy
sis. As shown in Figure 3B, the results revealed 
that tsRNAs mainly functioned in the biological pro
cess of “regulation of transcription, DNA-templated” 
(GO:0006355), “transcription, DNA-templated” 
(GO:0006351), and “transport” (GO:0006810). These 
tsRNAs were found to be involved in the cellular 
component of “cytoplasm” (GO:0005737), “cell junc
tion” (GO:0030054), and “cytosol” (GO:0005829), and 
were implicated in the molecular function of “protein 
binding” (GO:0005515), “sequence-specific DNA bind
ing transcription factor activity” (GO:0003700), and 
“metal ion binding” (GO:0046872). The KEGG analy
sis suggested that the predicted target genes were 
mainly involved in the Wnt, MAPK, and calcium sig
naling pathways (Figure 3C). These enriched pathways 
might have potential significance in the progression of 
SONFH.

Validation of tsRNAs Expression by Real 
Time-qPCR
To further validate the small RNA sequencing results, 5 
of the identified DE tsRNAs (4 downregulated (tsRNA- 
10277, tsRNA-23731, tsRNA-19733, and tsRNA-10522) 
and 1 upregulated (tsRNA-04590)) with relatively high 
fold change value and abundance were selected as can
didate tsRNAs. This choice was informed by the invol
vement of these tsRNAs and their target mRNAs in the 
Wnt signaling pathway and osteogenic differentiation, as 
indicated by bioinformatics-based analysis. Moreover, 
studies have shown that the Wnt signaling pathway is 
itself associated with osteogenic differentiation.22,23 Our 
results revealed differences in the expression levels of 
tsRNA-10277, tsRNA-23731, and tsRNA-10522 
between SONFH patients and healthy subjects 
(Figure 4A).

Table 2 Baseline Data of Participants

Variables Healthy 
Subjects

SONFH 
Patients

p-value

(n=5) (n=5)

Age (years) 25.8±1.60 50.2±3.82 <0.0001a

Gender (male,%) 5 (100) 3 (60.0)

BMI (kg/m2) 23.6±1.54 23.1±3.15 0.7829 a

Clinical stages

Stage I NA NA

Stage II NA NA
Stage III NA 1 (20%)

Stage IV NA 4 (80%)

Hip lesions NA
Unilateral NA 2 (40%)

Bilateral NA 3 (60%)

Notes: Continuous variables are shown as “mean ± SD”; categorical variables are 
exhibited as “number (%)”. aIndependent samples t test. 
Abbreviations: BMI, body mass index; SONFH, steroid-induced osteonecrosis of 
the femoral head.
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tsRNA/mRNA Pathway Interaction 
Network Analysis
We used the Cytoscape software to depict an integrated 
mRNA/tsRNA pathway interaction network for uncover
ing the potential mechanism of SONFH progression 

(Figure 4B). The 3 tsRNAs (tsRNA-10277, tsRNA- 
23731, and tsRNA-10522) targeted various genes, with 
the latter being involved in the Wnt signaling pathway 
and osteogenic differentiation. The target genes NKD1 
and CREB1 of tsRNA-10277 were enriched in Wnt 

Figure 1 Characterization of plasma exosomes. (A and B) Transmission electron microscopy (TEM) image showed the morphology of plasma exosomes in steroid-induced 
osteonecrosis of the femoral head (SONFH) patients and healthy control subjects. (C and D) The nanoparticle tracking analysis (NTA) was used to estimate particle size 
distribution of plasma exosomes in SONFH patients and healthy control subjects.

Table 3 Summary of Cleaning Data Produced by Small RNA Sequencing

Sample Total Reads Clean Reads (%) Total Base Clean Base (%) GC (%)

SONFH-1 25,862,144 21,191,046 (81.94%) 3,879,279,186 554,964,161 (14.31%) 51

SONFH-2 17,567,864 14,560,008 (82.88%) 2,635,148,982 363,651,380 (13.8%) 49
SONFH-3 28,765,255 27,183,453 (94.5%) 4,314,742,480 709,831,082 (16.45%) 50

Control-1 20,529,070 18,072,999 (88.04%) 3,079,324,088 457,634,856 (14.86%) 49

Control-2 25,425,246 21,279,324 (83.69%) 3,813,745,364 536,466,416 (14.07%) 51
Control-3 21,126,154 16,812,559 (79.58%) 3,168,887,826 428,744,417 (13.53%) 52

Average 23,212,622 19,849,898 (85.10%) 3,481,854,654 508,548,718 (14.61%) 50
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signaling pathway and osteogenic differentiation, respec
tively. The target genes CTNNBIP11 and CSF1 of tsRNA- 
10522 were also implicated in Wnt signaling pathway and 
osteogenic differentiation, respectively. The target genes 
(NFATC2, TAB2, TGFBR1, CYLD, and IFNAR1) of 
tsRNA-23731 were enriched only in osteogenic differen
tiation. Additionally, tsRNA-23731 was selected as a 
future research focus owing to its high fold change value 
and various target genes that were involved in Wnt signal
ing pathway and osteogenic differentiation.

Identification of BMSCs and BMSC-Exos 
Internalization in Cells
To explore the functional role of BMSC-Exos carrying 
tsRNAs, we first identified the BMSCs. To this end, 

CD44 and CD45 were selected as BMSC markers. 
According to the immunofluorescence results, BMSCs 
expressed CD44 (but not CD45), indicating that these 
BMSCs were successfully separated (Figure 5A). 
Furthermore, we observed that Cy3-labeled BMSC-Exos 
were internalized in the cellular model of SONFH, indicat
ing that BMSC-Exos could be taken up by BMSCs 
(Figure 5B).

Effect of BMSC Exos on Osteogenesis
BMSC Exos has been previously shown to regulate osteo
blast differentiation. Adipogenic generation decreases the 
osteogenic ability of cells.15 To explore the effect of 
BMSC Exos on osteogenic ability in the SONFH cellular 
model, oil red O and ALP staining were performed. 

Figure 2 Differential expression (DE) analysis of tRNA-derived small RNAs (tsRNAs) in SONFH patients. (A and B) Types of small non-coding RNAs identified in plasma 
exosomes from SONFH patients and healthy subjects. (C) Volcano plot showing the DE tsRNA between SONFH patients and healthy subjects. Red points denote the 
upregulated tsRNAs and blue points indicate the downregulated ones in SONFH patients compared to healthy controls across all 6 samples. (D) Heat map of DE tsRNAs 
across all 6 samples. A1, A2, and A3 represent the SONFH group; B1, B2, and B3 were from the healthy group.

Table 4 Clean Reads Mapped to Different Small RNAs

Sample Total Clean Reads miRNA Mapped piRNA Mapped tsRNA Mapped

SONFH-1 21,191,046 9,205,095 1,050,837 877,798

SONFH-2 14,560,008 7,522,215 631,162 440,788
SONFH-3 27,183,453 13,321,466 689,186 705,982

Control-1 18,072,999 9,563,503 856,929 695,868

Control-2 21,279,324 11,009,926 851,045 701,508
Control-3 16,812,559 6,840,654 787,675 586,384

Total 119,099,389 57,462,859 (48.25%) 4,866,834 (4.09%) 4,008,328 (3.37%)
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Increased lipid droplets were observed in the SONFH 
model cells compared to that in control cells, while 
BMSC Exos decreased the lipid droplets compared to 
SONFH model cells (Figure 6A). ALP staining showed a 
decrease in the number of BMSCs stained blue/purple in 
the SONFH group compared to the control. This effect 
could be reversed by treatment with BMSC Exos 
(Figure 6B). Therefore, BMSC Exos significantly 
enhanced osteogenic differentiation in steroid-induced 
BMSCs.

Effect of tsRNA-10277-Loaded BMSC 
Exos on Adipogenesis and Osteogenesis
We focused on the role of tsRNA-10277, since it was 
found to be associated with significant statistical differ
ence and relatively higher fold change value compared to 
other tsRNAs. First, we confirmed that the tsRNA-10277 
mimics significantly increased tsRNA-10277 expression in 

BMSC Exos (Figure 7A). The tsRNA-10277-loaded 
BMSC Exos led to decreased fraction of lipid droplets in 
the SONFH cellular model, compared to that in the NC 
cells (Figure 7B). After incubation with tsRNA-10277- 
loaded BMSC Exos, the number of BMSCs stained blue/ 
purple increased in the SONFH model compared to the 
NC Exos treatment (Figure 7C). Therefore, tsRNA-10277- 
loaded BMSC Exos regulated adipogenesis and osteogen
esis of steroid-induced BMSCs.

Discussion
SONFH is a disease of mesenchymal or bone cells and is a 
common incurable orthopedic disorder that leads to 
femoral head collapse and may even need total hip repla
cement for therapy.24,25 Exos act as carriers of proteins, 
mRNAs, and small non-coding RNAs that target cells and 
perform intercellular communication.26 However, the 
tsRNA expression profile of plasma exosomes from 
SONFH patients and healthy subjects has not been 

Figure 3 Target gene prediction and functional enrichment analyses of DE tsRNAs. (A) Venn diagram showing the overlap in predicted target genes for DE tsRNAs between 
SONFH and healthy subjects using Miranda and RNAhybrid algorithms. (B) Gene Ontology (GO) classification for predicted target genes of DE tsRNAs in SONFH patients. 
The x-axis shows the enrichment factor including gene numbers and -log10 (p-value) and the y-axis represents the top 20 GO enrichment terms. (C) Kyoto Encyclopedia of 
Genes and Genomes (KEGG) functional enrichment analysis for the predicted target genes of DE tsRNAs in SONFH patients compared to healthy subjects. The horizontal 
axis refers to the number of genes and the vertical axis refers to the KEGG pathway terms. Node color: p value.
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reported. The present results represent the first experimen
tal evidence of altered tsRNA expression patterns in 
plasma exosomes of SONFH patients and healthy subjects. 
A total of 223 DE tsRNAs (137 upregulated and 86 down
regulated) were identified in the SONFH patients, com
pared to the healthy subjects. The target genes of the 
identified DE tsRNAs were predicted to be involved in 
Wnt signaling pathway, and might participate in SONFH 
progression. Moreover, various target genes of the identi
fied tsRNAs (tsRNA-10277, tsRNA-23731, and tsRNA- 
10522) were enriched in Wnt signaling pathway and osteo
genic differentiation.

MSCs have the ability of multiple potential differentia
tion and can differentiate into bone cells during specific 
conditions, which could be used to treat SONFH.27 

Interestingly, communication between osteoclasts and 
osteoblasts may occur through small membrane-enclosed 
vesicular particles named as EVs.28 Early studies have 
revealed that exosomes derived from MSCs have protec
tive effects on injury or diseased tissues, and are known to 
promote angiogenesis in ONFH.29 LncRNA MALAT1 
derived BMSC Exos could potentially enhance osteoblast 
activity in osteoporotic mice by mediating the miR-34c/ 
SATB2 axis.30 The present study, in overall agreement 

with these reports, shows that tsRNA-10277-loaded 
BMSC Exos also regulates adipogenesis and osteogenesis 
of steroid-induced BMSCs, thereby implicating BMSC 
Exos in SONFH progression.

In our study, tsRNA-10277, tsRNA-10522, and 
tsRNA-23731 were identified to target CREB1, CSF-1, 
and NFATC2, respectively. The cAMP-responsive ele
ment-binding protein 1 (CREB1) has been shown to parti
cipate in osteogenic differentiation of rat periosteum- 
derived stem cells.31 The colony-stimulating factor-1 
(CSF-1) is critical for the differentiation of bone marrow 
precursor cells into bone-resorbing osteoclasts.32 The 
osteoblast-derived receptor activator of NF-κB and CSF- 
1 synergistically affect osteoclast formation.33 CREB- 
binding protein and BMP-2 markedly increase the expres
sion of osteoclastogenic CSF-1.33 A key regulatory gene 
from the Wnt/β-catenin pathway, NFATC2, is upregulated 
on the modified surfaces of human alveolar bone-derived 
osteoprogenitor cells, and this has been correlated with a 
higher expression of osteogenic markers.34 Therefore, 
tsRNA-10277, tsRNA-10522, and tsRNA-23731 might 
be involved in SONFH pathophysiology via modulation 
of their respective target genes related to osteogenic 
differentiation.

Figure 4 Validation of tsRNA expression and construction of DE tsRNAs/mRNA pathway interaction network using Cytoscape software. (A) Relative expression levels of 
the 5 candidate tsRNAs were validated by real time-qPCR. The values were expressed as mean ± SD (n=3). *p<0.05 and **p<0.01 are shown for SONFH group vs healthy 
heathy group. (B) Integrated tsRNAs/mRNA pathway analysis. The red triangle refers to Wnt signal pathway and osteogenic differentiation, and the green rhombus 
represents DE tsRNAs. Blue rectangles represent mRNAs.
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Figure 5 BMSCs identification and BMSCs Exos internalization. (A) Immunofluorescence assays showing expression levels of BMSCs surface markers (magnification, ×100); 
BMSCs, bone marrow-derived mesenchymal stem cells. (B) Uptake of Cy3-labeled BMSC-Exos by SONFH BMSCs.

Figure 6 BMSC Exos regulated osteogenic differentiation of steroid-induced BMSCs. (A) Oil red O staining showed significant increase in lipid droplets in BMSCs from the 
SONFH model compared to the control group (Scale bars: 100um). (B) ALP staining revealed lower numbers of BMSCs stained blue/purple in the SONFH cellular model 
than that in the control group, while treatment with BMSC Exos reversed this effect (Scale bars: 50um).
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Intriguingly, the Wnt/β-catenin pathway, MAPK signaling 
pathway, and calcium signaling pathway have been shown to 
participate in osteogenic differentiation.22,23 Wnt signaling is 
considered to be one of the major pathways regulating bone 
formation, and inhibition of these Wnt modulators could 
represent a promising modality for osteoporosis treatment.35 

Abnormal Wnt signaling results in defects of the human 
skeleton, and high Wnt/β-catenin signaling promotes osteo
blast differentiation.36 Here, we found that target genes of 
tsRNA-10277 from plasma Exos isolated from SONFH and 
healthy subjects were enriched in Wnt signaling pathway and 
osteogenic differentiation, indicating that tsRNA-10277 might 
play a role in SONFH progression via Wnt signaling pathway 
and osteogenic differentiation.

There are several limitations in this study that should 
be explained. Although we have studied the tsRNA 
expression profiles of plasma exosomes from SONFH 
patients and healthy subjects, the sample size is too small 
to consider exosomal tsRNA as a promising biomarker for 
SONFH diagnosis. Moreover, the study design is not 
enriched. We should further study the mechanistic basis 
for the involvement of tsRNA-10277-loaded BMSC Exos 
in the SONFH cellular model.

In conclusion, we have identified, for the first time, 
altered tsRNAs of plasma exosomes from patients diag
nosed with SONFH. A total of 223 tsRNAs were found to 
be differentially expressed, among which tsRNA-10277 
was significantly downregulated in plasma exosomes of 

SONFH patients compared to the control group. TsRNA- 
10277 was implicated in Wnt signaling pathway and 
osteogenic differentiation. Additionally, tsRNA-10277- 
loaded BMSC Exos were found to influence adipogenesis 
and osteogenesis of dexamethasone-induced BMSCs. Our 
results provide novel insights into the osteogenic effect of 
tsRNA-10277-loaded BMSC Exos on SONFH.
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