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In the context of focal drug-resistant epilepsies, the surgical resection of the epileptogenic
zone (EZ), the cortical region responsible for the onset, early seizures organization, and
propagation, may be the only therapeutic option for reducing or suppressing seizures. The
rather high rate of failure in epilepsy surgery of extra-temporal epilepsies highlights that the
precise identification of the EZ, mandatory objective to achieve seizure freedom, is still an
unsolved problem that requires more sophisticated methods of investigation. Despite the
wide range of non-invasive investigations, intracranial stereo-EEG (SEEG) recordings still
represent, in many patients, the gold standard for the EZ identification. In this contest, the
EZ localization is still based on visual analysis of SEEG, inevitably affected by the drawback
of subjectivity and strongly time-consuming. Over the last years, considerable efforts have
been made to develop advanced signal analysis techniques able to improve the identifica-
tion of the EZ. Particular attention has been paid to those methods aimed at quantifying
and characterizing the interactions and causal relationships between neuronal populations,
since is nowadays well assumed that epileptic phenomena are associated with abnormal
changes in brain synchronization mechanisms, and initial evidence has shown the suitabil-
ity of this approach for the EZ localization.The aim of this review is to provide an overview
of the different EEG signal processing methods applied to study connectivity between dis-
tinct brain cortical regions, namely in focal epilepsies. In addition, with the aim of localizing
the EZ, the approach based on graph theory will be described, since the study of the topo-
logical properties of the networks has strongly improved the study of brain connectivity
mechanisms.

Keywords: focal drug-resistant epilepsy, epilepsy surgery, stereo-EEG, connectivity, causality, epileptogenic zone,
graph theory, brain networks

INTRODUCTION
Focal epilepsies, in which the seizures originate from a region lim-
ited to a part of one cerebral hemisphere (1), are common and
account for more than 50% of all epilepsies (2). Despite the great
improvement in pharmacological research, approximately 30% of
patients with focal epilepsies experience seizures that are resistant
to anti-epileptic drugs (AEDs) (3). In these patients the surgi-
cal resection of the epileptogenic zone (EZ), the cortical region
responsible for the onset, early organization, and propagation
of seizures, may be the only way to suppress or reduce seizures.
The EZ represents the minimum amount of cortex that must
be resected (inactivated or completely disconnected) in order to
achieve seizure freedom (4).

The EZ can sometimes be adequately localized by means of
non-invasive investigations including clinical neurological exami-
nation, detailed description of ictal signs and symptoms, Magnetic
Resonance Imaging (MRI),Positron Emission Tomography (PET),
and interictal and ictal scalp video-EEG recordings. However,
when the region of seizure onset cannot be precisely identified
non-invasively, or when the obtained information is insufficient
to exclude the involvement of “eloquent cortical areas” in seizure

generation, invasive electrophysiological exploration can be per-
formed from brain structures in order to evaluate their potential
involvement in the epileptogenic process using stereo-EEG (SEEG)
recordings by means of the stereotactic surgical placement of
intracranial electrodes (5, 6), associated with video recordings,
with the aim of planning a tailored resection based on individ-
ual anatomical and electroclinical characteristics. After invasive
recordings, the EZ is currently identified by visually inspecting
the video-SEEG recordings, a procedure that requires the involve-
ment of specifically trained neurophysiologists and is inevitably
affected by the drawback of subjectivity. Moreover, the rather
high rate of failure in epilepsy surgery of extra-temporal epilep-
sies (7) underlines that the precise identification of the EZ is still
an unsolved problem that requires more sophisticated methods of
investigation.

Over the last years, great efforts have been made to develop and
implement advanced signal analysis techniques able to improve
the identification of the EZ. Particular attention has been paid
to those methods aimed at quantifying and characterizing the
interactions and causal relationships between neuronal popula-
tions, since is nowadays well assumed that epileptic phenomena
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are associated with abnormal changes in brain synchronization
mechanisms, and a number of studies have shown that seizures
are associated with the abnormal synchronization of distant struc-
tures (8–10). The aim of this review is to provide an overview of
the different intracranial EEG signal processing methods used to
identify the EZ, with particular attention being given to the meth-
ods aimed at characterizing the brain connectivity. In addition,
the approach based on graph theory will be described, since the
study of the topological properties of the networks has strongly
improved the study of brain connectivity mechanisms.

BRAIN CONNECTIVITY
It is well known that human brain can be considered as a hier-
archical complex structure, and that most of the brain functions
are based on interactions among neuronal assemblies distributed
within and across distinct cerebral regions (11). The concept of
brain connectivity can be subdivided into three main categories
(12–15) (a) anatomical (or structural) connectivity, which indi-
cates the set of physical or structural connections linking neurons;
(b) functional connectivity, defined as the temporal correlation
expressed in terms of the statistical dependence between spatially
remote neuronal populations; and (c) effective connectivity, which
refers to the influence that one neural system exerts over another,
thus taking into account the direction of the information flow
from one region toward another.

Several techniques have been developed to study interactions
in time and/or frequency domain, and in both linear and non-
linear contexts. An important distinction between methods aimed
at estimating connectivity is that between bivariate and multi-
variate measures (16, 17). Bivariate methods are able to evaluate
the existence of interactions by considering only couple of sig-
nals; this can lead to the identification of spurious connections, as
these methods do not allow to distinguish between direct and indi-
rect relationships. Many recent papers have extensively described
the advantages and disadvantages of bivariate measures, both in
the field of functional and effective connectivity (18–21). On the
contrary, multivariate measures allow the exploration of the whole
network, by considering the entire set of signals in the same model.

A second important point is that functional connectivity,
although useful in characterizing brain networks, does not pro-
vide any information concerning the direction of interactions, an
issue very important in the field of EZ identification. To over-
come these limitations, directed connectivity measures have been
developed with the aim of estimating effective causality.

A large group of effective connectivity measures are based on
the concept of Granger causality (22), initially defined for bivariate
processes x(t ) and y(t ): x(t ) Granger causes y(t ) if the knowledge
of the past of both x(t ) and y(t ) reduces the variance of the pre-
diction error of y(t ), in comparison with the knowledge of the
past of y(t ) alone. The lack of reciprocity makes it possible to
evaluate the direction of the information flow between the sig-
nals. Granger’s definition of causality can be easily implemented
by means of autoregressive (AR) models, and extended to the case
of multivariate systems (23, 24).

Several directed connectivity measures have been developed
on the basis of the concept of Granger causality derived from
the multivariate autoregressive (MVAR) modeling. Among them,

directed transfer function (DTF) (25) and partial directed coher-
ence (PDC) (26) are effective connectivity measures based on
MVAR coefficients transformed into the frequency domain. PDC
is particularly interesting because of its ability to distinguish direct
and indirect causality flows. Particular care must be employed in
using PDC, DTF, and other Granger causality-based measures of
effective connectivity since they require that the signals are sta-
tionary. In epilepsy research this condition is often not matched,
especially for ictal discharges. Recently, time varying versions
of effective connectivity estimation methods, such as the ADTF
(Adaptive DTF) (27, 28), have been proposed and successfully
applied on intracranial signals of patients suffering from refractory
epilepsy (29).

The main limitations of these approaches, however, are that
the MVAR modeling assumes the hypothesis of the linearity of the
underlying process and that it does not allow to study systems with
high number of channels, because the number of parameters to
be estimated must be lower than the number of samples (30).

To overcome these drawbacks non-linear, mainly bivariate,
approaches have been developed (16, 31). Among these, one
method largely applied in the field of intracranial EEG is the non-
linear regression index h2, introduced by Pijn and Lopes da Silva
(32) to analyze EEG signals, and subsequently extended to SEEG
by Wendling et al. (33). This approach has mainly been used to
investigate the connectivity between the temporal neocortex and
limbic structures in patients with temporal lobe epilepsy (TLE)
(34, 35).

GRAPH ANALYSIS
The study of the functional or effective connectivity by means of
linear or non-linear methods may not be enough to grasp the full
complexity of the brain due to the huge amount of data obtained.
Indeed, evaluation of interconnections between all possible pairs
of EEG electrodes or SEEG contacts in a particular frequency band
will produce huge matrices of correlation data, difficult to inter-
pret and to handle statistically. To overcome these difficulties an
approach based on graph theory (36), derived from the theory of
complex networks, could provide useful measures to characterize
the topological properties and the functional organization of the
brain networks involved both in normal brain functioning and
diseases.

According to this approach, the brain is represented as a graph
consisting of a set of nodes, or vertices (the EEG electrodes, SEEG
contacts, MEG sensors, fMRI voxels, . . .) and edges, or links, indi-
cating the presence of an interaction between pairs of nodes. Edges
can be directed, as in the case of effective connectivity methods,
putting in evidence that the activity of one node may depend on
the other and not vice-versa, or undirected when direction was
not evaluated (e.g., functional connectivity approach). If the value
of the edges are taken into account the graph or network is called
weighted, otherwise unweighted.

The procedure to study (intracranial) EEG using a graph the-
ory approach usually includes the following steps. After estimating
brain connectivity, an association matrix is generated whose ele-
ments are the estimated values between each pair of nodes. A
binary or weighted adjacency matrix of undirected (symmetric)
or directed graphs is then produced by applying a threshold to
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each element of the associated matrix. The choice of this thresh-
old is a crucial issue, since it determines the number of the existing
connections; therefore different thresholds will produce different
graphs, and may affect several network indices (37).

Graphs can be characterized by various measures, each aimed at
describing different topological properties of the network, allow-
ing to characterize the network organization (i.e., random, regular,
small-world; see (38) for a definition of these topological proper-
ties) and/or the global or local properties of each node of the
network.

Since the main aim of this review is to characterize specific
properties of the EZ, we will focus on the indexes representing
node’s specific properties. For a more detailed description of these
indexes, including their mathematical representation, and other
graph measures, see (12, 31, 39, 40).

Graph indexes can be broadly divided into three main cate-
gories – measures of centrality, segregation, integration – accord-
ing to the network properties that they better describe.

Centrality measures the structural and functional importance
(40) of each node with respect to the rest of the network; it is one
of the main measures used to identify the hubs of a network, that
is, nodes that interact with many other regions, playing a key role
in functional integration.

Main measures of centrality are:

• Degree: the total number of edges connected to a node. In
directed networks, is possible to distinguish between in-degree,
the number of inward links, and out-degree, the number of out-
ward edges. The mean degree of a graph is the average degree
over all vertices.

• Density: the actual number of edges divided by the total number
of possible edges in a graph.

• Betweenness centrality: the ratio between the number of short-
est paths (defined as the smallest number of edges between two
nodes) passing through a specific node and the total number of
shortest paths in the network. It accounts for the importance
of a node in facilitating interactions between other nodes in a
network.

• Eigenvector centrality. This index also measures the importance
of a node on the basis of the number (and strength) of links to
other nodes, but it takes also into account if the node has strong
connections with others having themselves a central position
within the network.

Segregation refers to the existence of specialized brain areas
where specific processes occur such as those responding to specific
sensory inputs. Main measures of segregation are:

• Clustering coefficient: it measures the degree to which nodes in
a graph tend to cluster together and is defined as the fraction
of triangles around a node over the total number of possible
triangles; it represents the fraction of a node’s neighbors that are
also neighbors of each other (38).

• Modularity is a more sophisticated measure able to detect and
quantify the presence of segregated activity (40). A module rep-
resents a cluster of densely interconnected groups of nodes. In
order to partition the graph into modules, it is necessary to find

the optimal community structure, defined as a subdivision of
the network into non-overlapping groups of nodes in a way that
maximizes the number of within-group edges, and minimizes
the number of between-group edges. Once a graph has been
partitioned into modules, other two indexes can be defined.

• Participation coefficient: measure of diversity of inter-modular
connections of individual nodes.

• Within degree: within-module version of degree centrality.

Integration refers to the ability to combine specialized processes
distributed into different brain regions. Main measures of integra-
tion include:

• Shortest Path length: it measures the shortest path (or distance)
between each pair of nodes, where the path is a sequence of
distinct nodes and edges representing potential routes of infor-
mation flow between pairs of regions. The path length is infinite
in case of disconnected pairs of nodes. The average shortest path
length between all pairs of nodes is called the characteristic path
length of the network and is the most commonly used measure
of functional integration.

• Efficiency: the efficiency of a connection between two nodes is
defined as the inverse of the path length. Global efficiency is the
average of all the inverse shortest path lengths (12), while local
efficiency measures the efficiency of the connections between
the neighbors of a node when the node itself is removed. The
global efficiency may be computed on disconnected networks,
since paths between disconnected nodes have zero efficiency.

Graph theory has been widely used to investigate epilepsy. It
is commonly assumed that epileptic seizures are due to excessive
neuronal firing and synchronization, but the underlying mech-
anisms are still not clear. For a recent review in this field see
(41). The first indication that network analysis might be help-
ful in understanding epilepsy came from the simulation study of
Netoff and others (42) on models of hippocampal networks. The
authors showed that changes in the network topology could induce
transitions from normal behavior to seizure. After this study, sev-
eral works investigated the global network topology in patients
with different types of epilepsy. Ponten and others (43), study-
ing EEG recordings reported that absences are characterized by
an increase in synchronization and that the functional network
topology changed toward a more ordered pattern when compared
to pre-ictal network configuration. Chavez and others (44) ana-
lyzed the connectivity topology of brain networks extracted from
MEG signals of patients with absence seizures recorded at rest and
found the brain networks of patients to display a richer connec-
tivity with a clear modular structure with respect to controls. van
Dellen and others (45), investigating the effects of on-going TLE,
showed that functional connectivity was lower in patients with
longer TLE history, and that longer TLE duration was correlated
with more random network configuration.

Bartolomei and colleagues (46) investigated the topological
properties of the epileptogenic networks of 11 patients present-
ing drug-resistant mesial temporal lobe epilepsy (MTLE) using as
control group 8 patients with neocortical epilepsy. They found that
the network organization of the interictal SEEG activity in both
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groups were characterized by a small-world model; network topol-
ogy was however more altered in the MTLE group with respect
to non-MTLE patients and corresponded to a more regular (less
random) configuration, interpretable as an increase of local and
a decrease of long distance connections. The authors suggested
that these changes in topology could be a potential biomarker of
epileptogenic network.

Overall, these studies indicate that a complex network approach
may offer new methodologies not only for improving our under-
standing on the basic mechanisms of epilepsy, but also could
potentially yield quantitative measures to be used as indicators
or biomarkers for early detection and diagnosis of epilepsy, the
assessment of its course, and for the evaluation of the effect and
the efficacy of treatments.

EZ LOCALIZATION
So far, only a few studies have investigated network alterations
in relation to the EZ using graph theory in patients under-
going surgery for intractable epilepsies. Wilke et al. (29) used
DTF and betweenness centrality to identify critical network
nodes during ictal and interictal electrocorticogram recordings.
They found that the betweenness centrality correlated with the
location of the resected cortical regions in patients who were
seizure-free following epilepsy surgery. Furthermore, the bet-
ter outcome was associated with the resection of brain regions
showing the highest betweenness centrality. This finding sug-
gested that critical highly interconnected nodes played a crucial
role in seizure onset and spreading. Importantly, the authors
observed patterns of altered network interactions (mainly in the
gamma band) not only during seizures, but also during interictal
spike activity and random non-ictal periods. This result sup-
ported the hypothesis that functional brain networks of patients
with focal epilepsies may be altered even during the seizure-free
periods (47).

In a very recent paper, van Mierlo et al. (48) studied the tem-
poral changes in effective connectivity during the first 20 s of
ictal rhythmic intracranial EEG activity in the 3–20 Hz band, in
eight patients suffering from focal intractable epilepsy who under-
went successful resective surgery. In all the patients, the authors
found that the SEEG contact showing maximal ictal out-degree
was among those visually classified by clinicians as belonging to
the seizure onset zone (49), and it was always included within
the resected brain region. Furthermore, the patient-specific con-
nectivity patterns were consistent over the majority of seizures,
suggesting that most of the seizures originated from the same
area and that the same driving hubs play a leading role into the
epileptogenic network.

We (50) studied the changes in connectivity patterns in 10
patients with Taylor-type focal cortical dysplasia (type II FCD)
under interictal, pre-ictal, and ictal conditions to characterize
the network properties of the SEEG signals recorded from inside
the dysplasia and distinguish them from those of other regions
involved in ictal activity or not. We selected this type of focal
epilepsy in order to validate the appropriateness of our approach
because this type of dysplasia is intrinsically epileptogenic (51),
the EZ normally overlaps the dysplasia. We applied the PDC to
study the effective connectivity in the frequency domain, and

characterized the epileptogenic network by means of out-density
and betweenness centrality measures.

Our findings indicated that the region inside the dysplasia was
characterized by abnormal out-going connectivity in comparison
with the other examined areas. The main changes were observed
in the gamma band, between 30 and 70 Hz. This specific connec-
tivity pattern was also present in the interictal state, temporally
distant from seizures several minutes, and even in the absence of
obvious epileptiform activity. This suggests that key information
that can help clinicians in localizing the EZ are included in the
interictal SEEG activity and that effective connectivity and graph
theory indexes are useful tools capable of disclosing them.

As a further step, we compared the differences in connectiv-
ity patterns occurring between the interictal, pre-ictal, and ictal
conditions. The time course of the increase in synchronization of
SEEG activity recorded from the dysplasia and other regions show-
ing epileptiform activity was different; indeed a significant increase
in out-going synchronization between the contacts within the EZ
and from the EZ toward other areas occurred during the pre-ictal
period with respect to the interictal state, whereas an increase of
interactions in regions outside the dysplasia but involved in the
ictal events occurred later on, at the time of seizure onset, marking
the significant differences in connectivity between the ictal and
pre-ictal state.

Altogether, our findings suggest that, in patients with type II
FCD, the region inside the dysplasia plays a leading role in gener-
ating and propagating ictal EEG activity, and in recruiting other
distant areas to become involved in the seizure; this area acts as
an abnormal hub of the epileptic network that originates and sus-
tains the seizures. The cortical areas outside the dysplasia involved
in the SEEG ictal activity, act essentially as “secondary” genera-
tors of synchronous activity. The leading role of the dysplasia may
account for the good post-surgical outcome of patients with type
II FCD because the resection of dysplastic tissue removes the entire
EZ responsible for seizure onset.

CONCLUSION
Accurate localization of the EZ is the goal of pre-surgical work-
up in patients with drug-resistant focal epilepsies. Over the last
years, much research has been dedicated to develop advanced sig-
nal processing techniques with the aim of studying the topological
properties of functional brain networks in patients with epilepsy.
Under the hypothesis that the brain tissue associated with the EZ
is differently connected within an epileptic network compared to
other regions, in the last years few groups have begun to investigate
how the EZ gives rise to network alterations in patients with focal
epilepsy, using an approach based on brain connectivity and graph
theory. These studies indicate that this network-based approach
may add new and valuable information, providing quantitative
measures useful for localizing the EZ or for greatly reducing the
number of contacts.

Interesting and promising is the finding that network alter-
ations related to EZ are present and could be detected also during
EEG interictal periods, since it suggests that, in the future,network-
based algorithms could potentially be used to reduce the need
for long-term monitoring in patients with drug-resistant focal
epilepsy.
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More studies in larger and possibly multicentre patient popu-
lations that include patients with drug-resistant focal epilepsy of
different (or unknown) etiology, however, are expected to clarify
which network measures work best in localizing the epileptogenic
network and to validate them.
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