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State-level stay-at-home orders were monitored to determine their effect on the rate of confirmed COVID-19
diagnoses. Confirmed cases were tracked before and after state-level stay-at-home orders were put in place.
Linear regression techniques were used to determine slopes for log case count data, and meta analyses were
conducted to combine data across states. The results were remarkably consistent across states and support
the usefulness of stay-at-home orders in reducing COVID-19 infection rates.
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BACKGROUND

The emergence of the COVID-19 virus and the lack of therapeutic
responses have led to widespread implementation of nonpharmaceuti-
cal interventions (NPIs) across the United States. Substantial evidence
exists for the effectiveness of NPIs in preventing the spread of infec-
tion.1,2 However, significant controversy still exists about the value and
cost-benefit of these interventions in response to the current pandemic.
Specifically, it is unclear what social isolation actions must be man-
dated by government policy to reach desired mitigation outcomes.3

In response to the rising death toll associated with COVID-19, 42
states and the District of Columbia have implemented some variation
of a state-wide stay-at-home order. In each case, there was contro-
versy regarding the appropriateness of the order, and it is widely
understood that these decisions incur human and economic costs.4 In
the current analysis, we present data from the states with stay-at-
home orders and examine the effect of these policies on the rate of
increase in COVID-19 diagnoses.
METHODS

Data sources

Google searches were conducted daily to assess state-level
responses to the COVID-19 pandemic. Once stay-at-home orders were
sighted, state government webpages were searched to confirm the
dates that the orders went into effect. Forty-two states and the District
of Columbia were identified to have issued a stay-at-home order
between March 19, 2020 and April 7, 2020. Stay-at-home orders were
defined as statewide mandates that included (a) mandatory nonessen-
tial business closures, (b) furloughs enforced for most government and
commercial employees, (c) prohibition of public events and gatherings,
and (d) travel restrictions including orders to avoid leaving the home
except for necessities such as groceries and medical care.5 Daily con-
firmed COVID-19 cases were obtained from the Johns Hopkins Center
for Health Security Application and downloaded via GitHub.
Analysis

COVID-19 confirmed case counts were matched to stay-at-home
order dates and divided into preorder and postorder datasets for
every state. Eight states without state-wide stay-at-home orders
were excluded from this analysis. For the pre- and postorder sets,
slopes were calculated from both raw and logged case count data
using linear regression techniques and R2 fit statistics were obtained.
As expected, R2 fits were substantially better for the logged data and
this approach was used throughout the analysis. Ninety-five percent
confidence intervals were obtained for all parameters. Meta-analytic
techniques were used to combine data across states using the METAN
command suite in Stata. A sensitivity analysis was conducted using
the same linear regression and meta-analytic approach to determine
whether delaying the days counted as postorder by 1 week would
impact the infection rates and R2 fit statistics.
RESULTS

Table 1 displays the dates stay-at-home orders went into effect as
well as logged, preorder and postorder slopes and 95% confidence
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Table 1
Infection rates before and after stay at home orders went into effect*,y

State Order date Number of days
before order

Infection rate and
confidence interval
(before order)

R squared
(before order)

Number of
days after
order

Infection rate and
confidence interval
(after order)

R squared
(after order)

Alabama 4/4/2020 21 0.099 (0.088, 0.109) 0.951 9 0.042 (0.039, 0.045) 0.994
Alaska 3/28/2020 9 0.11 (0.095, 0.126) 0.976 16 0.03 (0.027, 0.032) 0.982
Arizona 3/31/2020 18 0.134 (0.124, 0.143) 0.981 13 0.03 (0.025, 0.036) 0.932
California 3/19/2020 28 0.084 (0.077, 0.091) 0.957 25 0.055 (0.05, 0.06) 0.959
Colorado 3/26/2020 17 0.11 (0.1, 0.121) 0.973 18 0.04 (0.035, 0.044) 0.951
Connecticut 3/23/2020 11 0.154 (0.136, 0.172) 0.976 21 0.065 (0.059, 0.07) 0.968
Delaware 3/24/2020 8 0.111 (0.096, 0.126) 0.983 20 0.064 (0.061, 0.066) 0.993
District of Columbia 4/1/2020 17 0.091 (0.082, 0.099) 0.972 12 0.044 (0.038, 0.049) 0.974
Florida 4/3/2020 27 0.12 (0.114, 0.127) 0.981 10 0.029 (0.028, 0.03) 0.997
Georgia 4/3/2020 26 0.109 (0.102, 0.116) 0.979 10 0.039 (0.032, 0.045) 0.959
Hawaii 3/25/2020 9 0.117 (0.095, 0.14) 0.956 19 0.04 (0.034, 0.046) 0.92
Idaho 3/25/2020 7 0.097 (0.072, 0.122) 0.951 19 0.054 (0.043, 0.064) 0.874
Illinois 3/21/2020 12 0.158 (0.142, 0.173) 0.981 23 0.059 (0.054, 0.064) 0.965
Indiana 3/24/2020 14 0.123 (0.108, 0.138) 0.964 20 0.061 (0.054, 0.069) 0.94
Kansas 3/30/2020 15 0.105 (0.098, 0.112) 0.987 14 0.039 (0.036, 0.043) 0.982
Kentucky 3/26/2020 15 0.102 (0.095, 0.109) 0.987 18 0.046 (0.042, 0.049) 0.98
Louisiana 3/23/2020 12 0.159 (0.141, 0.177) 0.976 21 0.061 (0.054, 0.068) 0.945
Maine 4/2/2020 18 0.072 (0.065, 0.08) 0.961 11 0.019 (0.018, 0.021) 0.991
Maryland 3/30/2020 19 0.115 (0.109, 0.12) 0.991 14 0.057 (0.053, 0.06) 0.991
Massachusetts 3/24/2020 17 0.098 (0.086, 0.109) 0.958 20 0.057 (0.052, 0.063) 0.965
Michigan 3/24/2020 12 0.197 (0.183, 0.211) 0.99 20 0.054 (0.047, 0.061) 0.938
Minnesota 3/27/2020 15 0.102 (0.09, 0.114) 0.962 17 0.034 (0.033, 0.036) 0.992
Mississippi 4/3/2020 19 0.107 (0.091, 0.123) 0.919 10 0.034 (0.032, 0.037) 0.992
Missouri 4/6/2020 21 0.113 (0.099, 0.128) 0.934 7 0.029 (0.023, 0.034) 0.971
Montana 3/28/2020 11 0.113 (0.101, 0.125) 0.982 16 0.027 (0.023, 0.03) 0.956
Nevada 4/1/2020 21 0.104 (0.097, 0.111) 0.979 12 0.029 (0.026, 0.032) 0.982
New Hampshire 3/27/2020 12 0.081 (0.07, 0.092) 0.964 17 0.042 (0.036, 0.049) 0.924
New Jersey 3/21/2020 12 0.182 (0.169, 0.196) 0.989 23 0.066 (0.058, 0.074) 0.927
NewMexico 3/24/2020 12 0.09 (0.084, 0.096) 0.99 20 0.058 (0.053, 0.064) 0.966
New York 3/22/2020 19 0.164 (0.153, 0.174) 0.985 22 0.045 (0.04, 0.049) 0.955
North Carolina 3/30/2020 19 0.115 (0.107, 0.124) 0.98 14 0.038 (0.035, 0.042) 0.982
Ohio 3/23/2020 11 0.15 (0.138, 0.161) 0.99 21 0.053 (0.047, 0.059) 0.948
Oregon 3/23/2020 16 0.082 (0.076, 0.087) 0.985 21 0.04 (0.034, 0.045) 0.93
Pennsylvania 4/1/2020 23 0.126 (0.122, 0.131) 0.993 12 0.047 (0.042, 0.053) 0.975
Rhode Island 3/28/2020 16 0.086 (0.08, 0.091) 0.988 16 0.062 (0.058, 0.065) 0.991
South Carolina 4/7/2020 28 0.091 (0.082, 0.099) 0.948 6 0.028 (0.014, 0.042) 0.887
Tennessee 4/2/2020 22 0.112 (0.104, 0.121) 0.973 11 0.026 (0.024, 0.028) 0.99
Texas 4/2/2020 26 0.114 (0.108, 0.12) 0.984 11 0.041 (0.037, 0.045) 0.985
Vermont 3/25/2020 10 0.125 (0.109, 0.141) 0.975 19 0.038 (0.035, 0.042) 0.968
Virginia 3/30/2020 19 0.099 (0.094, 0.105) 0.988 14 0.051 (0.047, 0.054) 0.986
Washington 3/23/2020 23 0.101 (0.093, 0.11) 0.966 21 0.033 (0.029, 0.036) 0.951
West Virginia 3/24/2020 4 0.079 (-0.002, 0.16) 0.899 20 0.061 (0.054, 0.067) 0.951
Wisconsin 3/25/2020 13 0.133 (0.12, 0.147) 0.977 19 0.036 (0.032, 0.039) 0.964

* The COVID-19 infection rates above are logged, preorder and postorder slopes.
y Results shown above were updated through April 13, 2020.
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intervals for all 42 states and the District of Columbia. R2 fit statistics
are also shown. In general, the fit of the slopes to the logged data is
excellent, as would be expected from an exponentially growing pan-
demic in a naive population. The average rate of increase preorder
was 0.113 (95% C.I.: 0.110, 0.115) per day and postorder was 0.047
(95% C.I.: 0.045, 0.048) per day

Fig 1 presents meta analyses results using combined data across
states. Two meta analyses were conducted using different sets of
weights: number of days during the period and final number of cases
during the period. Weighing by number of days yielded a pooled
standardized mean difference of 3.847 (95% C.I.: 3.653, 4.041; P <
.0001). Weighing by final number of cases yielded a similar result,
with a pooled standardized mean difference of 6.847 (95% C.I.: 6.831,
6.863; P < .0001). Overall, these slope changes translate to a reduc-
tion from about 12% more cases per day (and thus a 5 to 6-day dou-
bling rate) to 5% more cases per day (and thus a 14-day doubling
rate).

The same analyses were repeated with postorder datasets starting
1 week after stay-at-home orders went into effect. In this sensitivity
analysis, the pooled standardized mean difference was 4.229 (95%
C.I.: 4.011, 4.448; P < .0001) after weighing by number of days and
was 6.811 (95% C.I.: 6.798, 6.824; P < .0001) after weighing by final
number of cases.

DISCUSSION

These data suggest a remarkably consistent and important effect
associated with the issuing of stay-at-home orders and are generally
supportive of such measures. In combination with other social isola-
tion approaches and NPIs, these orders may play a significant role in
“flattening the curve.” However, this study has a number of impor-
tant limitations. First, it would be impossible to isolate the effect of
these orders against the background of numerous other local, state,
and federal interventions occurring at the same time. Second, the
expected COVID-19 expansion curve in the absence of interventions
to reduce the transmission is unknown. As such, it is possible that the
observed slope changes are driven by the natural history of the pan-
demic as well as the specific policies in question. Two sensitivity
analyses were conducted to examine whether the number of days in
the pre- and postperiods were drivers of either the slopes or the



Fig 1. (a) Meta-analysis weighed by the number of days. 95% confidence intervals (CI) and standardized mean difference (SMD) are shown. (b) Meta-analysis weighed by the final
number of cases 95% confidence intervals (CI) and standardized mean difference (SMD) are shown.
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change in the slopes between periods. In both cases, we found no
relationship. Third, states implemented stay-at-home orders in
response to the pandemic and these observations are thus pro-
foundly threatened by selection and indication biases. Fourth, even
with the use of trend data in this analysis, there is a threat of regres-
sion to the mean if stay-at-home orders were consistently placed at
the peak of epidemic growth.

Finally, and perhaps most importantly, a major limitation of this
work is the endogenous relationship between case counts and both
the availability and use of testing. The availability of testing was a sig-
nificant barrier to COVID-19 diagnoses in the early stages of the pan-
demic in the United States and improved gradually over the month of
March. Tests per day increased roughly 10-fold between March 15th
and March 31st and have increased at a more gradual rate of 4-fold
over the last 6 weeks.6 We conducted an additional sensitivity analy-
sis to examine whether the decrease in case incidence between pre-
and postorder periods was different if the order occurred before or
after April 1st and found the change in slopes to be nearly identical.
As mentioned earlier, we also conducted a sensitivity analysis to
account for the effect of time on these slopes and found no effect.
Overall, the results must be interpreted in the context of this threat.
Not only was the availability of tests evolving over this time period,
but there is a direct relationship between the number of infections
and public awareness of the pandemic and the number of tests per-
formed. As such, it would be difficult to begin to parse out the effect
of testing on the rate of incidence of COVID-19. That said, it is likely
that the availability of tests may have an unmeasured impact on
these results, but we cannot know if the impact was to increase or
decrease the incidence rates. Despite these limitations, the consis-
tency and strength of the results is notable. The results presented
here will be updated daily and available for public download at
www.hpmcovidpolicy.org.

CONCLUSIONS

Stay-at-home orders are generally supported by our results. This
data is publicly available and provides daily updates on national
infection rates. By tracking stay-at-home orders and the resulting
infection rates, information is gathered on the effectiveness of such
orders in mitigating the spread of COVID-19. The data may also
inform policy and mitigation efforts for future infection outbreaks.
Further research is needed to examine the effect of these policies in
the longer term and in combination with other interventions.
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