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AKT; conducted to examine the activation of protein kinase B (AKT), small mothers against decapen-
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related transcription factor 2 (Runx2).
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Results: TGF-B1 stimulated AKT, Smad3, p38 MAPK, Erk1/2 and JNK phosphorylation in DPSCs
within 120 min. TGF-B1 enhanced ALP activity and elevated levels of COL1A, DMP-1 and Runx2.
LY294002, U0126 and SB203580 attenuated the effect of TGF-B1 on DPSCs, however, the SIS3
and SP600125 treated groups had no significant effect.

Conclusion: TGF-B1 promotes the early stage of odontoblastic differentiation in DPSCs by acti-
vating AKT, Erk1/2 and p38 MAPK signaling pathways, but not by Smad3 and JNK.

© 2022 Association for Dental Sciences of the Republic of China. Publishing services by Elsevier
B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).

Introduction

Dental pulp stem cells (DPSCs) are isolated from the dental
pulp of permanent teeth and display the same ability to
differentiate into multiple cell types as mesenchymal stem
cells (MSCs). It is known that DPSCs have the ability to
differentiate into odontoblast-like cells after given the
appropriate stimulus.” Taking into account their functional
abilities, DPSCs are an exciting new source for regenerative
endodontic treatment (RET).?* Transplantation of DPSCs or
stem cells from human exfoliated deciduous teeth (SHED)
has achieved regeneration of the pulp and dentin-pulp
complex in several studies.” In addition, a recent study
found that human dental pulp with irreversible pulpitis
contained putative stem cells,® which indicated that the
inflamed pulp had the capacity to heal itself. Several clin-
ical trials have suggested that irreversible pulpitis can be
treated with vital pulp therapy (VPT) instead of root canal
treatment.”® Therefore, more research is needed to un-
derstand how to regulate the fate of DPSCs to ensure the
RET and VPT work efficiently.

Cell fate can be controlled by growth factors by regulating
migration, proliferation, and differentiation.”'® A reservoir
of growth factors is embedded within the dentin matrix and
released upon decayed dentin or root canal irrigation to
modulate cellular functions.® Furthermore, a selection of
effective growth factors can be transplanted into the root
canal alone or in combination with stem cells to regenerate
the pulpal-dentin complex.'"'? Hence it is important to note
how these molecules regulate cellular events during the
regeneration process of dentin-pulp complex.

TGF-B1 (Transforming growth factor-p1) is a member of
the TGF-B family, which is a pleiotropic molecule involved
in multiple biological processes.’® Ethylenediamine tetra-
acetic acid (EDTA) irrigation or mineral trioxide aggregate
significantly increased TGF-B1 release from dentin.'*'®
Furthermore, TGF-B1 can be released from the extracel-
lular matrix during pulp repair due to reduced blood flow."’
But the biological function of TGF-B1 on cell activity re-
mains controversial. Some previous studies indicated that
TGF-B1 functioned as a positive regulator in proliferation,
migration or differentiation of stem cells from dental.'®%°
However, overexpressing TGF-B1 significantly reduced
tooth mineralization and dentin sialophosphoprotein gene
expression in transgenic mice.?' When treated with TGF-p1,
the mineralization capacity of DPSCs or stem cells from the
apical papilla (SCAPs) was inhibited.?>?* In general, the
function of TGF-B1 depends on treatment, cell types or
different stages of dentin formation.
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Complex signaling pathways may be the determinants of
TGF-B1 function. TGF-B1 regulates cell differentiation not
only via canonical small mothers against decapentaplegic 2
(Smad2) and Smad3 signaling, but also through noncanoni-
cal pathways like mitogen-activated protein kinase (MAPK),
and phosphatidylinositol 3-kinase (PI3K)/protein kinase B
(AKT).?* Therefore, maybe the multifunction of TGF-B1 on
cell odontoblastic differentiation is related to the different
signaling pathways regulating different downstream
cellular activities. However, the regulatory mechanism of
TGF-B1 in the differentiation of DPSCs remains to be
elucidated, this could be due to the signaling pathways
affect specific stages differently.

As a result, in this study, we focused on the function of
TGF-B1 on the early differentiation of DPSCs aimed to find
out the signaling mechanisms involved.

Materials and methods
Cells isolation and culture

The third molars without diseases were collected from pa-
tients for tooth extraction at the Stomatological Hospital of
the Air force Medical University (n = 10, aged between 15 and
25 years, no gender requirement). All protocols were
approved by the institutional review board. DPSCs were iso-
lated based on the method previously reported.’ Briefly, pulp
tissue was retrieved from the dental pulp cavity and dissoci-
ated with 4 mg/mL type | collagenase (Gibco, Grand Island,
NY, USA) at 37 °C for 1 h. The reaction was terminated by
adding a-minimum essential medium (a-MEM) (Gibco) sup-
plemented with 10% fetal bovine serum (FBS) (Gibco). Then
the pulp tissue and cells were transferred into a 6-well plate
containing o-MEM supplemented with 20% FBS, 1%
penicillin—streptomycin (HyClone, Logan, OH, USA) and
culturedat 37°Cina5%CO, incubator. Cells were harvested at
80% confluence with 0.25% (w/v) trypsin and EDTA (HyClone).
Two to five passages were used for this experiment.

Identification of human DPSCs

For the multi-lineage differentiation assay, cells were
seeded in 6-well plate. Some of cells were treated with
osteo/odontoblast differentiation medium (OM) containing
10% FBS, 1% penicillin—streptomycin, 50 mg/mL ascorbic
acid, 10 mM B-glycerophosphate, and 10 nM dexametha-
sone (Sigma-Aldrich, St Louis, MO, USA) for 2 weeks and the
cells were stained with 2% Alizarin Red S (pH 4.2) (Sigma).
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The rest were incubated in adipogenic medium containing
10% FBS, 1% penicillin-streptomycin, 0.1 uM dexametha-
sone, 0.2 mM indomethacin, 0.01 mg/mL insulin, and
0.5 mM IBMX (Sigma) for 4 weeks and stained with 0.5% Oil
Red O and hematoxylin (Sigma).

The expression of stem cell associated phenotypic
markers were analyzed by flow cytometry. Cells in the third
passage (1.0 x 10° cells) were harvested and washed with
PBS three times, then incubated with the following specific
antibodies: CD29-phycoerythrin (PE), CD34-PE, CD45-PE,
CD90-PE, and CD146-PE (1:100; all from BioLegend, San
Diego, CA, USA) for 1 h at room temperature. After being
washed with PBS the cells were resuspended and analyzed
by Becton & Dickinson flow cytometry. The data were
assessed with the Mod-Fit 2.0 cell cycle analysis program.

Treatments

To investigate the involvement of signaling pathways, cells
were treated with 1 ng/mL TGF-B1 for 0, 15, 30, 60 and
120 min. DPSCs were blocked with specific signaling
pathway inhibitors after being serum starved for 24 h as
follows: 10 uM LY294002 (PI3K inhibitor), 5 uM SIS3 (Smad3
inhibitor), 10 uM SB203580 (p38 mitogen-activated protein
kinase [p38 MAPK] inhibitor), 10 uM SP600125 (c-Jun N-
terminal kinase [JNK] inhibitor) and 10 uM U0126 (extra-
cellular signal-regulated kinase 1/2 [Erk1/2] inhibitor) were
purchased from Selleck Chemicals (Houston, TX, USA), then
incubated in 1 ng/mL TGF-B1 for 15 or 60 min. Cell lysates
were collected for Western blot analysis.

A further investigation of whether signaling pathways
are involved in TGF-B1-induced osteogenic differentiation
of dental pulp cells was performed as follows: cells were
treated in OM with or without PI3K inhibitors, Smad3 in-
hibitors and MAPK inhibitors for 7 days. Then we examined
the activity of alkaline phosphatase (ALP) or expression of
mineral-associated proteins in the samples.

Alkaline phosphatase activity and staining

For ALP activity analysis, cells were lysed with 200 pL/well
RIPA lysate (Beyotime, Shanghai, China) on ice. Then ALP
activity was determined in the lysate by measuring the
release of p-nitrophenol according to the manufacturer’s
protocol (Beyotime). After being fixed in 4% para-
formaldehyde for 30 min and rinsed with phosphate buffer,
the cells were stained according to the manufacturer’s in-
structions with an ALP staining kit (Beyotime).

Western blot analysis

Cells were lysed in RIPA buffer with protease inhibition and
phosphatase inhibitors (Roche, Mannheim, Germany) on ice
and the protein concentration was determined by bicincho-
ninic acid protein assay (Beyotime). Then proteins (20 pg)
were separated by 10% sodium dodecyl sulphate-
polyacrylamide gel electrophoresis (Bio-Rad, Hercules, CA,
USA) and transferred onto 0.22 um polyvinylidene fluoride
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membrane (EMD Millipore, Billerica, MA, USA). After blocking
in QuickBlock Blocking Buffer (Beyotime) for 20 min, the
membrane was incubated overnight at 4 °C with primary
antibodies as follows: anti-AKT, anti-phosphor-AKT (p-AKT),
anti-Erk1/2, anti-p-Erk1/2, anti-p38 MAPK, anti-p-p38 MAPK,
anti-Smad3, anti-p-Smad3, anti-JNK, anti-p-JNK, anti-
collagen type 1 alpha 1 (COL1A), anti-runt-related tran-
scription factor 2 (Runx2) (1:1000; all purchased from CST,
Boston, MA, USA), anti-dentin matrix protein-1 (DMP-1)
(1:1000; Novus, Littleton, CO, USA) and anti-glycer-
aldenhyde-3-phosphate dehydrogenase (GAPDH) (1:10000;
Proteintech, Rosemont, IL, USA). The membranes were
rinsed and incubated with a diluted 1:6000 concentration of
Horseradish peroxidase-conjugated secondary antibody
(Yeasen, Shanghai, China). Enhanced chemiluminescence
reagents (Millipore) were added and protein bands were
captured using the ChemiDoc MP system (Bio-Rad). A gray
value (intensity) of each protein band was determined using
ImageJ software to enable comparison.

Statistical analyses

Data are presented as mean + standard deviation (SD) and
all experiments were performed at least three independent
experiments. GraphPad 8 (GraphPad Software Inc., La
Jolla, CA, USA) was used to perform one-way ANOVA or
Student’s t-tests for comparisons between groups, and as-
terisks indicate significant differences (P < 0.05, =#
P < 0.01, *++P < 0.001).

Results
Isolation and characterization of DPSCs

Clone-like growth of primary cells emerged after 5 days
culture (Fig. 1A). The cells from clones were spindly in
shape (Fig. 1B). DPSCs cultured with OM showed significant
mineralized nodules two weeks after culturing (Fig. 1C).
Staining of the cells with oil red O revealed the presence of
lipid deposits after 4 weeks of adipogenic induction
(Fig. 1D). Cell surface marker analysis of DPSCs showed
they positively expressed CD29 (99.8%), CD90 (97.2%) and
CD146 (64%) and negative for CD34 (1.1%) and CD45 (1.0%)
(Fig. 1E).

TGF-B1 caused the activation of AKT, Smad3 and
MAPK pathways in DPSCs

To explore which pathways in DPSCs can be activated by
TGF-B1, we evaluated the phosphorylated protein expres-
sion levels of critical members. The results showed that
TGF-B1 upregulated levels of phosphorylated AKT, p38
MAPK, Smad3, JNK and Erk1/2, which indicated that the
AKT, Smad3 and MAPK pathways were activated by TGF-p1
in DPSCs (Fig. 2A). Compared with the TGF-B1 treated
group, Western blot analysis indicated the inhibitors
blocked the corresponding pathways efficiently (Fig. 2B).
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Figure 1

Characterization of DPSCs. (A) Primary DPSCs cultures on day 5 (40x). (B) DPSCs at passage 3 exhibit a spindle-shaped

morphology (40x). (C) Calcified nodules stained with Alizarin red S (50x). D: Oil red O staining for lipid droplets (200x). E: Flow
cytometry showed that cells were positive for CD29, CD90, and CD146, but negative for CD34 and CD45. Scale bars are shown.

DPSCs, dental pulp stem cells.

Involvement of the AKT, p38 MAPK and Erk1/2
signaling pathways in TGF-B1 induced early
odontoblastic differentiation of DPSCs

ALP staining was more intense and ALP activity was statisti-
cally significantly higher in TGF-B1 treated group (Fig. 3A).
Consistent with ALP activity, levels of COL1A, DMP-1 and
Runx2 were increased obviously when DPSCs were cultured
with 1 ng/mL TGF-B1 (Fig. 3B). After incubated in different
medium for 7 days, compared with TGF-treated group, the
LY294002, U0126 and SB203580 attenuated ALP staining and
activity induced by 1 ng/mL TGF-B1, while the SP600125 and
SIS3 exerted minimal effect (Fig. 3A). Consistently, the
protein levels of COL1A, DMP-1 and Runx2 were reduced
significantly when cotreated with LY294002, UO126 and
SB203580, but no significant differences presented in SIS3
and SP600125 treated groups (Fig. 3B).

Discussion

It has been long established that biological molecule like
growth factors have potential contributions to reparative/
regenerative events.” The growth factors function as
signaling molecules that modulate cellular activity by
mediating intracellular communication, including migra-
tion, proliferation, and differentiation of cells.'® TGF-B1 is
a ubiquitous multifunctional growth factor that embeds
itself in the dentin matrix or be stored as a latent complex
in the pulp’s extracellular matrix. It can be released in
some cases and influence cellular events during the pulp
regeneration or repair process.?>’?® But the role of TGF-B1
in regulating cell differentiation and dentinogenesis is still
controversial. The reason may be the signaling pathways
differentially affect specific stages.?*

A previous study pointed out that, the levels of TGFp re-
ceptor | (TBRI) and TGFp receptor Il (TBRII) increased at early
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odontoblast differentiation and another research found that
Biodentine™ prompted early reparative dentine formation
may be related to modulation of pulp cell TGF-B1 secre-
tion.?”"? So we hypothesized that TGF-B1 enhanced the early
differentiation of DPSCs. Various markers were used to eval-
uate odontogenic differentiation of DPSCs, such as ALP,
Runx2, COL1A and DMP-1 are well characterized indicator of
early stages of odontoblastic differentiation. In this study, we
showed that 1 ng/mL TGF-B1 increased ALP levels and
expression of Runx2, COL1A and DMP-1, which indicated TGF-
B1 enhanced the early stage of differentiation.

TGF-B1 triggers signaling by binding to TBRI and TBRII of
receptor serine/threonine kinases.?’ The two pairs of TBRI
and TPBRIl may signal as independent units, for instance,
TGF-B can activate the p38 MAPK by promoting the binding
of tumor necrosis factor receptor-associated factor 6
(TRAF6) to TPRI, leading to ubiquitination of MAP-kinase.*°
TGF-B efficiently activated Erk1/2 when TBRII levels are
high in dermal cells, whereas lower expression inhibits
Erk1/2 activation.®' It has been reported TBRI and TBRII
were expressed in odontoblasts and pulp cells,*? so that the
levels of their expression and downstream signals may lead
to different outcomes of the effects of TGF-B1 on cell dif-
ferentiation. The present study reported that 1 ng/mL TGF-
B1 can active the MAPK, AKT, and Smad3 pathway in DPSCs.
The findings are similar to those in previous studies that
found that TGF-B1 can active MAPK and Smad2/3
signaling,?*>* however it is the first time to find out that
TGF-B1 can induce AKT activation in this study. Nonethe-
less, the function of those pathways has not been well
studied in previous studies.

TGF-B1 induces phosphorylation of Smad2/3 by TpRI,
and the phosphorylated complexes and co-Smad trans-
locate into the nucleus, where they regulate the tran-
scription of target genes. Our previous studies have shown
that Smad3 pathway involved in the inhibitory effects of
TGF-B1 on late differentiation of SCAPs or odontoblast cell
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Figure 2 TGF-B1 actives AKT, Smad3 and MAPK pathways in DPSCs. (A) Western blot analysis of p-AKT, AKT, p-p38 MAPK, p38
MAPK, p-Smad3, Smad3, p-JNK, JNK, p-Erk and Erk from DPSCs treated with 1 ng/mL TGF-B1 in a time course. (B) Western blot
analysis of p-AKT, p-p38, p-Smad3, p-JNK, p-Erk in DPSCs after treatment with pathways inhibitor respectively for 1 h. Error
bars = means =+ standard deviation (SD), n = 3, *P < 0.05, **P < 0.01, ***P < 0.001. AKT, protein kinase B; DPSCs, dental pulp stem
cells; Erk 1/2, extracellular signal-regulated kinase 1/2; JNK, c-Jun N-terminal kinase and; p38 MAPK, p38 mitogen-activated
protein kinase; Smad3, small mothers against decapentaplegic 3; TGF-1, Transforming growth factor-p1.

line,?** and another study reported that TGF-p1 reduced

Runx-2 and ALP expression via the ALK5/Smad2/3 pathway
in dental pulp cells (DPCs).?* This study concluded that
TGF-B1 did not promote early differentiation of DPSCs via
Smads3 signaling.

AKT signaling pathway is reportedly involved in differ-
entiation of MSCs. In this study, LY294002 inhibited the ALP

9

staining and the levels of COL1A, DMP-1 and Runx2 induced
by TGF-B1. The result is consistent with previous results in
MC3T3-E1 cells, which indicated that TGF-B1 enhanced
osteoblast differentiation by activating Akt in the early but
not the late phases of differentiation.>”

MAPK family is comprised of three main subfamilies: p38
MAPK, Erk1/2 and JNK. The MAPK pathway has been shown
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Figure 3 Involvement of p38 MAPK, Erk1/2 and AKT signaling in the TGF-B1-induced early odontoblastic differentiation of
DPSCs. (A) ALP activities and ALP staining in the control group, TGF-B1 treated groups with or without pathways inhibitors at day
7(50x). (B) The protein expressions of DMP-1, COL1A, and Runx2 in different groups at day 7. Scale bars are shown. Error
bars = means + standard deviation (SD), n = 3. *P < 0.05, **P < 0.01, ***P < 0.001. NS P > 0.5. COL1A, collagen type 1 alpha 1;
DPSCs, dental pulp stem cells; DMP-1, dentin matrix protein 1; Runx2, runt-related transcription factor 2; TGF-B1, Transforming
growth factor-p1.

to be involved in dentinogenesis, the inflammation of previous research had detected TGF-B1 can activate the
dental pulp and differentiation of DPSCs.>® However, = MAPK pathway in DPCs or DPSCs,"”>** but only Erk1/2 was
studies about whether MAPK is involved in the effect of confirmed not being the main signaling pathway by which
TGF-B1 on DPSCs differentiation are limited. Also, the TGF-B1 inhibits ALP activity in DPCs.?® The current study
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Figure 4 Schematic illustration showing the molecular
mechanism of TGF-B1 on early odontoblastic differentiation
of DPSCs. AKT, protein kinase B; DPSCs, dental pulp stem cells;
Erk 1/2, extracellular signal-regulated kinase 1/2; JNK, c-Jun
N-terminal kinase and; p38 MAPK, p38 mitogen-activated pro-
tein kinase; Smad3, small mothers against decapentaplegic 3;
TGF-B1, Transforming growth factor-p1.

suggested that activation of Erk1/2 and p38 MAPK pathways
contributed to TGF-B1-induced early differentiation of
DPSCs, but not JNK pathway. A previous study suggested
that JNK was not involved in the early odontoblastic dif-
ferentiation but required for the late stage differentiation
of odontoblasts induced by bone morphogenetic proteins-
2.%7 Combined with the results of the current study, we
hypothesize that the JNK signaling pathway does not
contribute to the early stage differentiation of DPSCs
regulated by TGF-B1.

In conclusion, we showed that the TGF-B1 promoted the
early phases of differentiation in DPSCs by activating AKT,
Erk1/2 and p38 MAPK signaling pathways, but not Smad3
and JNK in this research (Fig. 4). TGF-B1 can trigger
different signaling ligands and corresponding antagonists
depending on the cellular environment.*® Further research
is needed to illustrate the exactly mechanisms paradoxes,
such as how the nature and intensity of the signal in the
nucleus or the crosstalk between the signaling pathways
determine the expression of downstream target genes.
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