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Nowadays, as a crucial component of intelligent transportation systems, traffic flow prediction 
has received extensive concern. However, most of the existing studies extracted spatial-temporal 
features with modules that do not differentiate with time and space, and failed to consider spatial-

temporal heterogeneities. Furthermore, although previous works have achieved synchronous 
modeling of spatial-temporal dependencies, the consideration of temporal causality is still lacking 
in their graph structures. To address these shortcomings, a spatial-temporal heterogeneous and 
synchronous graph convolution network (STHSGCN) is proposed for traffic flow prediction. To 
be specific, separate dilated causal spatial-temporal synchronous graph convolutional networks 
(DCSTSGCNs) for various node clusters are designed to reflect spatial heterogeneity, different 
dilated causal spatial-temporal synchronous graph convolutional modules (DCSTSGCMs) for 
diverse time steps are deployed to take account of temporal heterogeneity. In addition, causal 
spatial-temporal synchronous graph (CSTSG) is proposed to capture temporal causality in spatial-

temporal synchronous learning. We further conducted extensive experiments on four real-world 
datasets, and the results verified the consistent superiority of our proposed approach compared 
with various existing baselines.

1. Introduction

Applications of intelligent transportation systems (ITS) has been proved to be powerful in addressing urban transportation prob-

lems, and traffic flow prediction plays a key role in ITS. Modeling spatial-temporal dependencies to accurately predict traffic flow 
enables reasonable planning of travel routes and rational avoidance of traffic congestion [1]. Recently, many studies have been con-

ducted to capture spatial correlation by defining graph structures and then employing graph convolutional network (GCN) [2–11]. 
Besides, recurrent neural network variants, such as long-short term memory (LSTM) and gated recurrent unit (GRU), as well as 
convolutional neural network (CNN) are introduced to learn temporal dependency [12–23]. Although existing works have achieved 
promising results, modeling spatial-temporal dependencies of traffic flow is still a challenging task due to the spatial-temporal dy-

namics.

First, traffic flow varies with both spatial and temporal changes. As indicated in Fig. 1(a), on the one hand, the traffic flow of the 
same node exhibits different rules at different times. For example, the traffic peak in office areas occurs during commuting hours, 
while the flow is relatively flat at other times. On the other hand, the traffic flow of nodes in different regions shows different 
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Fig. 1. Example of spatial-temporal variations and temporal correlation of traffic flow. (a) shows that the flow of node A varies with time, and the flow of node B 
from another area exhibits different characteristics compared with A. (b) illustrates unidirectional correlations between different time steps by the red arrows, and 
the black dotted lines indicate the spatial adjacencies.

patterns. For instance, the flow in residential areas has distinct peaks in the morning and evening of weekdays, while the flow in 
tourist areas has more peaks during holidays. Second, traffic flow is correlated in the temporal dimension. There are unidirectional 
influences between different time steps. To be specific, the traffic flow of a node and its spatial neighbors at the previous time step 
affects the features of the node at future time steps. As shown in Fig. 1(b), the traffic flow of node A at time step 𝑡2 is influenced 
by the features of node A and its spatial neighbor B at time step 𝑡1. If node A or node B has traffic congestion at 𝑡1, the traffic flow 
of node A at 𝑡2 will change significantly. Two shortcomings remain in modeling the dynamic spatial-temporal correlations of traffic 
flow caused by the above reasons.

(1) Modeling both spatial and temporal heterogeneities. The variations of traffic flow in temporal and spatial dimensions lead 
to the necessity of taking both spatial and temporal heterogeneities into account when modeling spatial-temporal dependencies. 
The study by Zhang et al. [24] proposed a two-step K-Means clustering model to divide subway stations into different categories for 
passenger flow forecasting. Ryu et al. [25] designed a clustering-based traffic flow prediction method by introducing spatial-temporal 
correlation matrices. These works took account of spatial heterogeneity but not temporal heterogeneity by clustering traffic nodes. 
STSGCN [26] and STFGNN [27] reflected temporal heterogeneity by deploying various modules at different time steps. However, 
they treated all the nodes as one cluster in each time step, so both ignored spatial heterogeneity. Failure to consider both spatial and 
temporal heterogeneities limits the abilities of existing models to capture spatial-temporal correlations.

(2) Considering temporal causality of spatial-temporal synchronous graph. DCRNN [28], Graph WaveNet [29], STGCN [30], AST-

GCN [31], as well as T-GCN [32] utilized graph convolutions to capture spatial correlation, and applied GRU or CNN to modeling 
temporal dependency, but they all employed separate components to learn spatial and temporal features. STSGCN [26] and STFGNN 
[27] proposed localized spatial-temporal graph and spatial-temporal fusion graph, respectively, to model temporal and spatial de-

pendencies simultaneously, but each node at time step 𝑡𝑚 not only captured correlations from the historical time step 𝑡𝑚−1 but also 
from the future time step 𝑡𝑚+1 in their graph structures, which is contrary to the reality that the traffic flow of the previous time step 
determines the features of the next time step, not the other way around, and for time step 𝑡𝑚, the flow at 𝑡𝑚+1 is unknown, so they 
failed to take into consideration temporal causality.

To overcome the mentioned shortcomings, a novel framework named Spatial-Temporal Heterogeneous and Synchronous Graph 
Convolution Network (STHSGCN) is proposed in this paper. Specifically, we designed separate dilated causal spatial-temporal syn-

chronous graph convolutional networks (DCSTSGCNs) for various node clusters to reflect spatial heterogeneity and deployed different 
dilated causal spatial-temporal synchronous graph convolutional modules (DCSTSGCMs) for diverse time steps to take account of 
temporal heterogeneity. Moreover, causal spatial-temporal synchronous graph (CSTSG) is proposed to capture temporal causality in 
spatial-temporal synchronous learning. The main contributions of this paper can be summarized as follows:

• We proposed a novel STHSGCN to learn spatial-temporal correlations, which utilizes separate DCSTSGCNs for various node 
clusters to reflect spatial heterogeneity and deploys different DCSTSGCMs for diverse time steps to take account of temporal 
heterogeneity.

• We designed CSTSG to capture temporal causality in spatial-temporal synchronous modeling. In contrast to existing studies, 
CSTSG considers temporal causality by aggregating traffic features from the previous time step and the current time step instead 
of the next one.

• In order to evaluate the performance of our model, extensive experiments are conducted on four real-world datasets. The results 
demonstrate that STHSGCN obtains the best prediction compared with the baselines, indicating the effectiveness of our model.

The rest of this paper is organized as follows. Section 2 introduces the related work. Section 3 presents the preliminaries. Section 4

describes the details of the proposed methodology. In Section 5, extensive experiments are conducted on four real-world datasets, 
2

and the results are discussed. In the end, Section 6 concludes this paper.
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2. Related work

2.1. Graph convolution network

Graph convolution network (GCN) has been playing a significant role in many graph-based studies, such as classifying diverse 
nodes and learning hidden representations. GCN can be defined in both spectral and spatial domains. In terms of spectral domain, 
GCN was formulated by finding the corresponding Fourier basis [27]. In [33], Bruna et al. proposed a learnable diagonal matrix to 
replace the convolution kernel, which enabled the graph convolution operation. Defferrard et al. addressed the problem of excessive 
computation by employing Chebyshev polynomials instead of convolution kernels [34]. The graph convolution operation was further 
simplified by considering only first-order Chebyshev polynomials [35], which greatly reduced the number of parameters. As for 
spatial domain, GCN was defined by generalizing spatial neighbors. Graph sample and aggregate (GraphSAGE) performed feature 
learning by sampling a fixed number of neighbors and then aggregating the information from neighbors [36]. Graph attention 
network (GAT) achieved adaptive learning of the weights for different neighbors by utilizing attention mechanisms to perform 
aggregation operations on neighboring nodes [37].

2.2. Traffic prediction

In recent years, neural networks have been widely applied in traffic flow prediction because of their outstanding ability to model 
spatial-temporal correlations [32]. Most of the studies integrated graph structures and temporal components to learn spatial-temporal 
dependencies [38]. DCRNN [28] proposed an encoder-decoder model, in which bidirectional random walks on the graph were utilized 
to model the spatial correlation, and GRU was employed to learn the temporal dependence. On the basis of this, Graph WaveNet 
[29] incorporated self-adaptive adjacency matrix with dilated causal convolution to strengthen the learning ability of the model. 
STGCN [30] first introduced GCN in capturing spatial features, and made use of CNN to learn temporal correlation, which had faster-

training speed with fewer parameters compared to GRU. Based on this, ASTGCN [31] applied both spatial and temporal attention 
mechanisms to enhancing the model’s performance in dependence learning. GCN followed by GRU was designed in T-GCN [32] to 
capture spatial-temporal correlations. Besides, multi-head attention was applied in GMAN [39] to spatial-temporal modeling due to 
its powerful learning capability. STSGCN [26] proposed localized spatial-temporal graph to learn spatial and temporal dependencies 
synchronously. Based on this, STFGNN [27] designed a temporal graph and deployed gated convolution modules to improve the 
accuracy of predictions, Auto-DSTSG [38] further presented dilated convolution and graph structure search approach to enhance the 
performance, AC-STSGCN [40] proposed a fused feature attention module to consider the influence of other traffic factors on traffic 
flow, and STGSA [41] designed a tailored graph aggregation method to model spatial-temporal dependencies more lightly.

However, the existing studies not only failed to take into account both spatial and temporal heterogeneities, but also ignored 
the temporal causality in spatial-temporal synchronous graph. Different from them, in this research we proposed a novel approach 
that treats traffic nodes as various clusters and deployed parallel modules for different time steps to take account of both spatial and 
temporal heterogeneities, we also designed causal spatial-temporal synchronous graph which is able to consider temporal causality.

3. Preliminaries

3.1. Problem definition

A road network with 𝑁 traffic sensors can be represented by a graph structure as  = (𝑉 ,𝐸,𝐴), where 𝑉 (|𝑉 | =𝑁) denotes 
the set of traffic nodes, 𝐸 denotes the connectivity between the nodes, and 𝐴 denotes the spatial adjacency matrix between the 
nodes, which does not change with time. The graph signal matrix at time 𝑡 can be expressed as 𝑋(𝑡)


∈ ℝ𝑁×𝐶 , where 𝐶 denotes the 

dimensions of traffic features. The problem of traffic flow prediction can be defined as follows: Forecasting the future traffic signals [
𝑋

(𝑡+1)


,𝑋
(𝑡+2)


,… ,𝑋

(
𝑡+𝑇𝑝

)


]
of the road network  by learning a nonlinear transformation function 𝑓 (⋅) when the historical traffic 

signals 
[
𝑋
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)
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(
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(𝑡)
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]
of  is given, where 𝑇ℎ denotes the time span of the historical traffic signals and 𝑇𝑝 denotes the 

time span of the future traffic signals. The mathematical expression of the problem can be defined as:[
𝑋

(
𝑡−𝑇ℎ+1

)


,… ,𝑋
(𝑡)


]
𝑓 (⋅)
⟶

[
𝑋

(𝑡+1)


,… ,𝑋

(
𝑡+𝑇𝑝

)


]
.

3.2. Fast-DTW

Dynamic Time Warping (DTW) is a classical algorithm used to compare the similarity between two time series. Suppose there are 
two time series 𝑂 =

(
𝑜1, 𝑜2,… , 𝑜𝑛

)
and 𝑄 =

(
𝑞1, 𝑞2,… , 𝑞𝑚

)
, DTW algorithm first calculates the distance matrix 𝑀𝑛×𝑚 between the two 

series by |||𝑜𝑖 − 𝑞𝑗
|||, and then finds an optimal path from the upper left corner of the matrix 𝑀𝑛×𝑚 to the lower right corner, so that the 

sum of elements on the path is minimized, and its calculation process can be defined as:
3

𝑀 (𝑖, 𝑗) = |||𝑜𝑖 − 𝑞𝑗
|||+𝑚𝑖𝑛 (𝑀 (𝑖− 1, 𝑗) ,𝑀 (𝑖, 𝑗 − 1) ,𝑀 (𝑖− 1, 𝑗 − 1)) .
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The 𝑀 (𝑖, 𝑗), after the computation is done denotes the distance between time series 𝑂 and 𝑄. The smaller 𝑀 (𝑖, 𝑗), the more similar 𝑂
and 𝑄 are. By limiting the search range in the warping path to 𝑇 , STFGNN [27] proposes fast-DTW algorithm. As in [27], fast-DTW 
algorithm is used in this paper to calculate the similarity between the time series of different nodes, which in turn generates the 
temporal graph, and the temporal adjacency matrix 𝐴𝑇𝐺 is formed by setting the threshold 𝑎 = 0.01 that denotes the sparsity rate.

3.3. BiKmeans

BiKmeans algorithm is a typical Partition-based Method, which is improved on the basis of Kmeans algorithm, solving the short-

coming that Kmeans algorithm will fall into local optima [42]. BiKmeans algorithm uses the within-cluster sum of squared errors 
(𝑆𝑆𝐸) as a measure of clustering effectiveness. For a sample 𝑉 =

(
𝑉𝐺1

, 𝑉𝐺2
,… , 𝑉𝐺𝐾

)
, 𝑆𝑆𝐸 is defined as follows:

𝑆𝑆𝐸 =
𝐾∑
𝑘=1

∑
𝑣𝑖∈𝐺𝑘

‖𝑣𝑖 − 𝜇𝑘‖22 (1)

where 𝐾 denotes the number of clusters, 𝐺𝑘 denotes the 𝑘-th cluster, and 𝜇𝑘 denotes the centroid of 𝐺𝑘. BiKmeans algorithm is 
based on the principle of SSE minimization, where nodes are first considered as one cluster, and then the existing clusters are 
continuously dichotomized with the aim of minimizing 𝑆𝑆𝐸 until a predetermined number of clusters is obtained. Compared with 
Kmeans algorithm, 𝑆𝑆𝐸 computed by BiKmeans algorithm is not only more stable but also smaller. In order to cluster traffic nodes, 
we combined graph auto-encoder (GAE) with BiKmeans algorithm to design BiKmeans algorithm based on GAE, which can learn the 
high-dimensional embedding of traffic features, and obtain a better clustering effect compared to the original BiKmeans algorithm.

4. Methodology

The overall architecture of STHSGCN is shown in Fig. 2(a). We trained GAE using traffic sequence data and spatial adjacency 
matrix to obtain a higher-order representation of traffic features, and then employed BiKmeans algorithm to cluster the traffic 
nodes. To better model the spatial-temporal correlations of various nodes group, we designed different Dilated Causal Spatial-

Temporal Synchronous Graph Convolutional Networks (DCSTSGCNs) for various clusters, which reflects the spatial heterogeneity. In 
each DCSTSGCN, we deployed independent modules at different time steps, which takes into account temporal heterogeneity, and 
addresses the first shortcoming mentioned in Section 1. As for each cluster, we constructed Causal Spatial-Temporal Synchronous 
Graph (CSTSG) based on the spatial-temporal relationships of the traffic nodes within the cluster to capture spatial and temporal 
dependencies synchronously. Specifically, in CSTSG, traffic nodes at each time step only aggregate the spatial-temporal features from 
nodes at the previous time step, but not from those at the future time step, thus taking into consideration the temporal causality, 
which deals with the second shortcoming mentioned in Section 1.

Fig. 2(b) presents the architecture of DCSTSGCN. In each DCSTSGCN, a fully connected layer is utilized to map the traffic se-

quence data from low dimensions to high dimensions, which enhance the expressiveness of the model, and then multiple Dilated 
Causal Spatial-Temporal Synchronous Graph Convolution Layers (DCSTSGCLs) are stacked to capture the deep spatial-temporal 
dependencies. In each DCSTSGCL, we designed parallel Dilated Causal Spatial-Temporal Synchronous Graph Convolution Modules 
(DCSTSGCMs) for different time steps, which take into account temporal heterogeneity. Specifically, each DCSTSGCM consists of sev-

eral graph convolutions that incorporate a spatial-temporal attention mechanism to model the complex spatial-temporal correlations, 
which is illustrated in Fig. 2(c). Besides, Jumping Knowledge Network (JK-Net) between different graph convolutions are applied to 
mitigate vanishing gradient. In addition, cropping and max pooling are also included in a DCSTSGCM. We also deployed a Dilated 
Causal Time Convolution Module (DCTCM) in each DCSTSSGCL to extract the long-term dependencies in the temporal dimension. 
The output of each DCSGCL is obtained by summing the outputs of all DCSGCMs and the output of the DCTCM, and the output of 
the previous DCSGCL forms the input of the next DCSGCL. On the other hand, the outputs of all DCSGSGCLs are also concatenated 
by introducing JK-Net, and then pass through two fully connected layers to gain the output of DCSGSGCN. And all the outputs of 
DCSGSGCNs are put together to finally obtain the prediction results of STHSGCN.

4.1. BiKmeans based on GAE

BiKmeans algorithm is an improvement of Kmeans algorithm, which overcomes the problem caused by the possible extreme 
positions of incipient centroids when initialization [43], that makes it suitable for clustering traffic nodes. Traffic features are 
effective expressions of node attributes and can be utilized for node clustering, but limited by the expressiveness of low dimension, 
there are shortcomings in applying original traffic features as inputs to BiKmeans algorithm. GAE is a typical model for Representation 
Learning based on Deep Learning, which can learn the embedding of inputs in a high-dimensional feature space [44]. Therefore, we 
first employed GAE for training the traffic sequence data to obtain the high-dimensional embedding of traffic features, then combined 
it with BiKmeans algorithm to cluster traffic nodes, which is shown in Alg. 1.

GAE is composed of an encoder and a decoder. In the first place, the encoder is designed as a two-layer attention mechanism, 
which is mathematically defined as:

𝑧
(2) = 𝜎

⎛⎜ ∑
𝛼
(1)
𝑊 (1)

⎛⎜𝜎 ⎛⎜ ∑
𝛼
(0)
𝑊 (0)𝑥

⎞⎟⎞⎟⎞⎟ ,

4

𝑖 ⎜⎝𝑣𝑗∈𝑁𝑒𝑖

𝑖,𝑗 ⎜⎝ ⎜⎝𝑣𝑗∈𝑁𝑒𝑖

𝑖,𝑗 𝑗⎟⎠⎟⎠⎟⎠
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Fig. 2. Detailed framework of STHSGCN. (a) indicates the overall architecture of STHSGCN. BiKmeans based on GAE is employed to cluster traffic nodes, and 
parallel DCSTSGCNs are deployed for various clusters. (b) presents the architecture of DCSTSGCN. Each DCSTSGCN contains four DCSTSGCLs with dilated step sizes. 
Independent DCSTSGCMs for different time steps as well as a DCTCM are designed in each DCSTSGCL. (c) illustrates the architecture of DCSTSGCM. Several graph 
convolutions that incorporate a spatial-temporal attention mechanism are followed by cropping operation as well as max pooling.

where 𝑧(2)
𝑖

denotes the high-dimensional embedding of node 𝑣𝑖, 𝜎 (⋅) denotes the sigmoid activation function, 𝑁𝑒𝑖 denotes the set 
of neighboring nodes of 𝑣𝑖, 𝑊 (0) and 𝑊 (1) denote the weight matrices in the first layer and the second layer respectively, 𝛼(0)

𝑖,𝑗
and 

𝛼
(1)
𝑖,𝑗

individually denotes the attention coefficients between 𝑣𝑖 and 𝑣𝑗 in the two different layers. The attention coefficient 𝛼(𝑙)𝑣𝑖,𝑣𝑗 is 
obtained in three steps. Firstly, the nonlinear transformation function is defined as:

𝑔 (𝑥) =𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝑥𝑊 + 𝑏) ,

where 𝑊 , 𝑏 are learnable parameters, and 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (⋅) is the activation function. Secondly, the correlation coefficient is calculated 
by employing the scaled dot product:

𝑒(𝑙)
𝑣𝑖,𝑣𝑗

=
⟨𝑔1 (𝑧(𝑙)𝑣𝑖 ) , 𝑔2 (𝑧(𝑙)𝑣𝑗 )⟩√

𝐶 (𝑙)
, 𝑙 = 0,1 ,

where 𝐶 (𝑙) denotes the number of features in the 𝑙-th layer, and then the correlation coefficient is normalized by the softmax function 
to obtain the attention coefficient:

𝛼(𝑙)
𝑣𝑖,𝑣𝑗

=
exp

(
𝑒
(𝑙)
𝑣𝑖,𝑣𝑗

)
∑

𝑣𝑟∈𝑁𝑒𝑖
exp

(
𝑒
(𝑙)
𝑣𝑖,𝑣𝑟

) , 𝑙 = 0,1 .

In the next place, the decoder is formulated as the inner product of node pairs as:

𝐴̂𝑖𝑗 = 𝜎
(
𝑧𝑇
𝑖
𝑧𝑗
)
.

After that, GAE is trained in combination with the reconstruction loss function:

𝐿𝐺𝐴𝐸 = −
𝑁∑

𝑖,𝑗=1
𝐴𝑖𝑗 log 𝐴̂𝑖𝑗 .

Finally, the embedding of the nodes are obtained: 𝑍 ∈ ℝ𝑇×𝑁×𝐶′
, where 𝑇 denotes the length of time series, and 𝐶 ′ denotes the 

number of high-dimensional features.

The embedding 𝑍 is introduced to BiKmeans algorithm, in which Euclidean Distance is adopted as the distance between nodes, 
which can be formulated as:√( )
5

𝑑𝑣𝑖,𝑣𝑗
= 𝑍𝑖 −𝑍𝑗

2
,
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where 𝑍𝑖, 𝑍𝑗 ∈ℝ𝑇×𝐶′
are the high-dimensional features of 𝑣𝑖, 𝑣𝑗 respectively. According to Eq. (1), 𝑆𝑆𝐸 can be written as:

𝑆𝑆𝐸 =
𝐾∑
𝑘=1

∑
𝑣𝑖∈𝐺𝑘

𝑑2
𝑣𝑖,𝜇𝑘

,

where 𝐺𝑘 denotes the 𝑘-th cluster, 𝜇𝑘 denotes the centroid of 𝐺𝑘. Then, as shown in Alg. 1, all nodes are first considered as one 
cluster, and then the existing clusters are continuously dichotomized on the principle of minimizing 𝑆𝑆𝐸 until the number of clusters 
reaches 𝐾 , which is predetermined. Different 𝐾 and the corresponding 𝑆𝑆𝐸 can be obtained by Alg. 1. The curve of 𝐾 and 𝑆𝑆𝐸
within a certain range is in the shape of an elbow, and the value of 𝐾 corresponding to the turning point of the elbow is the optimal 
number of clusters.

Algorithm 1 BiKmeans base on GAE.

Input: The traffic series data: 𝑋 =
(
𝑋1 ,𝑋2 ,… ,𝑋𝑁

)
Output: The cluster list: 𝐶𝐿 = (

𝑉𝐺1
, 𝑉𝐺2

,… , 𝑉𝐺𝐾

)
, the minimum 𝑆𝑆𝐸.

1: Build GAE with a two-layer attention mechanism;

2: Train GAE to obtain the high-dimensional features:𝑍;

3: Define distance 𝑑𝑣𝑖 ,𝑣𝑗 and 𝑆𝑆𝐸 according to 𝑍;

4: Initialization: 𝑛 = 1, 𝑗 = 1, 𝐶𝐿 = 𝑉𝐺1
= 𝑉 ;

5: while 𝑛 <𝐾 do

6: 𝑆𝑆𝐸𝑚𝑎𝑥_𝑟𝑒 = 0;

7: for 𝑖 in 𝑛 do

8: Dichotomize 𝑉𝐺𝑘
into 𝑉𝐺𝑘

[0], 𝑉𝐺𝑘
[1];

9: if 𝑆𝑆𝐸𝑏𝑒𝑓𝑜𝑟𝑒 −𝑆𝑆𝐸𝑎𝑓𝑡𝑒𝑟 > 𝑆𝑆𝐸𝑚𝑎𝑥_𝑟𝑒 then

10: 𝑆𝑆𝐸𝑚𝑎𝑥_𝑟𝑒 = 𝑆𝑆𝐸𝑏𝑒𝑓𝑜𝑟𝑒 −𝑆𝑆𝐸𝑎𝑓𝑡𝑒𝑟 ;

11: 𝑗 = 𝑖;𝑆𝑆𝐸 = 𝑆𝑆𝐸𝑎𝑓𝑡𝑒𝑟

12: end if

13: end for

14: Remove 𝑉𝐺𝑗
from CL, Add 𝑉𝐺𝑗

[0], 𝑉𝐺𝑗
[1] into CL;

15: 𝑛 = 𝑛 + 1, 𝑗 = 1
16: end while

17: Return 𝐶𝐿, 𝑆𝑆𝐸

After the clustering is completed, the traffic nodes are divided into 𝐾 clusters:

𝑉 =
(
𝑉𝐺1

, 𝑉𝐺2
,… , 𝑉𝐺𝐾

)
,

where 𝑉𝐺𝑘
, 1 ≤ 𝑘 ≤𝐾 denotes the 𝑘-th cluster, the number of traffic nodes is:

𝑁 =
(
𝑁𝐺1

+𝑁𝐺2
+…+𝑁𝐺𝐾

)
,

where 𝑁𝐺𝑘
, 1 ≤ 𝑘 ≤𝐾 denotes the number of traffic nodes in the 𝑘-th cluster, and the input sequence can be formulated as:

𝑋 =
(
𝑋𝐺1

,𝑋𝐺2
,… ,𝑋𝐺𝐾

)
,

where 𝑋𝐺𝑘
, 1 ≤ 𝑘 ≤𝐾 denotes the embedding of the 𝑘-th cluster.

4.2. Causal spatial-temporal synchronous graph construction

In order to capture both temporal and spatial correlations, STSGCN [26] designed Localized Spatial-Temporal Graph, which is 
comprised of three time steps, and its adjacency matrix has the shape of 3𝑁 ×3𝑁 , containing the spatial adjacency matrix 𝐴𝑆𝐺 and the 
temporal connectivity matrix 𝐴𝑇𝐶 . In Localized Spatial-Temporal Graph, each node is connected to both its spatial neighbors at the 
same time step and itself at the previous and subsequent time steps. By introducing fast-DTW, STFGNN [27] generated the temporal 
graph and temporal adjacency matrix 𝐴𝑇𝐺 , then the Spatial-Temporal Fusion Graph is proposed, where each node has connections 
not only with its spatial and temporal neighbors but also with nodes in the same temporal pattern, its adjacency matrix is extended 
to 4𝑁 × 4𝑁 . In these works, each node captures correlations from the previous time step and the next time step simultaneously, but 
for the nodes at time 𝑡, the features at time 𝑡𝑚+1 are unknown, so it is unreasonable to extract spatial-temporal features from time 
𝑡𝑚+1 for obtaining the hidden state at time 𝑡, which ignores the temporal causality.

To deal with the shortcoming, Causal Spatial-Temporal Synchronous Graph (CSTSG) is proposed. As shown in Fig. 3, two adjacent 
time steps 𝑡𝑚−1 and 𝑡𝑚 are included in each CSTSG. For each node cluster 𝑉𝐺𝑘

, the causal spatial-temporal adjacency matrix 𝐴𝐺𝑘

𝑆𝑇
is 

designed as 2𝑁 × 2𝑁 with [𝐴𝐺𝑘

𝑇𝐺
, 𝐴𝐺𝑘

𝑇𝐺
] on the main diagonal, indicating that each node in 𝑉𝐺𝑘

is connected to the nodes in the same 
time pattern at the same time step, where 𝐴𝐺𝑘

𝑇𝐺
is the temporal adjacency matrix of 𝑉𝐺𝑘

, which is calculated by fast-DTW and defined 
as:

𝐺𝑘

{
1, if 𝑣𝑖, 𝑣𝑗 in the same pattern, 𝑣𝑖, 𝑣𝑗 ∈ 𝑉𝐺𝑘
6

𝐴
𝑇𝐺

=
0, else

.
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Fig. 3. Description of CSTSG and the spatial-temporal adjacency matrix. (a) indicates that each CSTSG contains two adjacent time steps 𝑡𝑚−1 and 𝑡𝑚 . (b) is the structure 
of the spatial-temporal adjacency matrix.

The counter-diagonal is [𝐴𝐺𝑘

𝑆𝐺
, 0], denoting the one-way connection between nodes in 𝑉𝐺𝑘

at time step 𝑡 and their spatial neighbors 
at time step 𝑡 −1, which ensures that each node only obtains spatial-temporal features from the previous time step. 𝐴𝐺𝑘

𝑆𝐺
is the spatial 

adjacency matrix of 𝑉𝐺𝑘
, which is generated by the spatial graph structure and can be formulated as:

𝐴
𝐺𝑘

𝑆𝐺
=

{
1, if 𝑣𝑖 connects to 𝑣𝑗 , 𝑣𝑖, 𝑣𝑗 ∈ 𝑉𝐺𝑘

0, else

By proposing CSTSG, we could not only model temporal and spatial dependencies simultaneously, but also take account of the 
temporal causality.

4.3. Dilated causal spatial-temporal synchronous graph convolutional network

In addition to temporal heterogeneity, spatial heterogeneity should also be taken into consideration in modeling spatial-temporal 
correlations. To achieve this goal, we deployed a DCSTSGCN for each cluster, Fig. 2(b) illustrates the architecture of DCSTSGCN. Four 
DCSTSGCLs with different step sizes are stacked in each DCSGCN to extract long-term spatial-temporal dependencies. A DCSTSGCL 
consists of parallel DCSTSGCMs and a DCTCM. A DCSTSGCN also contains Spatial-Temporal Embedding (STE), input layer, Jumping 
Knowledge Network (JK-Net), and output layer. It can be described as follows:

𝑌𝐺𝑘
= 𝐹𝐶𝑠

(
𝐶𝑂𝑁𝐶𝐴𝑇

(
𝐷𝐶𝑆𝑇𝑆𝐺𝐶𝐿𝑠

(
𝐹𝐶

(
𝑋𝐺𝑘

))))
,

where 𝑋𝐺𝑘
∈ ℝ𝑇ℎ×𝑁𝐺𝑘×𝐶 , 𝑌𝐺𝑘

∈ ℝ𝑇𝑝×𝑁𝐺𝑘×𝐶 are the input and output of the 𝑘-th DCSTSGCN, respectively. 𝐹𝐶 (⋅) , 𝐹𝐶𝑠 (⋅) means fully 
connected layers, 𝐶𝑂𝑁𝐶𝐴𝑇 (⋅) denotes the concatenate operation. The outputs of 𝐾 DCSTSGCNs form the output of the STHSGCN:

𝑌 =
(
𝑌𝐺1

, 𝑌𝐺2
,… , 𝑌𝐺𝐾

)
∈ℝ𝑇𝑝×𝑁×𝐶 . (2)

4.3.1. Dilated causal spatial-temporal synchronous graph convolutional layer

In order to expand the receptive field of DCSTSGCN, we employed dilated rather than fixed step sizes to construct CSTSGs in 
different DCSTSGCLs. Specifically, the step size of the 𝑙-th layer is defined as:

𝑑𝑙 = 2𝑚𝑖𝑛(𝑙−1,2), 1 ≤ 𝑙 ≤ 4. (3)

The input sequence of the 𝑙-th DCSGCL can be described as:

𝑋𝑙 =
(
𝑥𝑙1, 𝑥

𝑙
2,… , 𝑥𝑙

𝑇𝑙

)
,

where 𝑇𝑙 denotes the length of the input sequence, we selected time step pairs with distance 𝑑𝑙 to construct CSTSGs: [(
𝑥𝑙1, 𝑥

𝑙

1+𝑑𝑙

)
,

(
𝑥𝑙2, 𝑥

𝑙

2+𝑑𝑙

)
,… ,

(
𝑥𝑙
𝑇𝑙−𝑑𝑙

, 𝑥𝑙
𝑇𝑙

)]
, which is shown in Fig. 4. By stacking four DCSGCLs with step sizes [1,2,4,4] which is 

calculated by Eq. (3) respectively, the receptive field of each DCSGCN can cover up to 12 input time steps, which is exactly the 
length of the input traffic sequence in this paper.

Traffic sequence data at different times exhibit various patterns, which is temporal heterogeneity, so it is more reasonable to 
utilize multiple modules instead of one to capture temporal correlation for different time steps. In each DCSGCL, we deployed 
diverse DCSGCMs for different CSTSGs, so the number of DCSGCMs deployed in the 𝑙-th DCSGCL can be calculated as:

𝑀𝑙 = 𝑇𝑙 − 𝑑𝑙.

Each time step pair as well as the spatial-temporal adjacency matrix 𝐴𝐺𝑘

𝑆𝑇
are fed into a DCTSGCM to model the spatial and temporal 
7

dependencies synchronously. Moreover, the input sequence of the 𝑙-th DCSGCL is also treated as the input of DCTCM.
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Fig. 4. Dilated step sizes in four DCSTSGCLs.

4.3.2. Dilated causal spatial-temporal synchronous graph convolutional module

The architecture of DCSTSGCM is illustrated in Fig. 2(c). Multiple graph convolutions with spatial-temporal attention mechanisms 
are stacked in DCSTSGCM to extract deep spatial-temporal features, cropping operation as well as max pooling are also included.

First, we enhanced the module’s ability to characterize the relationships between nodes and their spatial-temporal neighbors by 
designing a spatial-temporal attention matrix 𝐴𝑡𝑡 with the shape of 2𝑁𝐺𝑘

× 2𝑁𝐺𝑘
. On the main diagonal, there are two temporal at-

tention matrices 
[
𝐸1′ ,𝐸2′

]
, denoting the attention of nodes and their temporal neighbors at the same time step, whose computational 

formula is defined as:

𝐸𝑛 = 𝜎

((
𝑋(𝑙,𝑚)𝑉1

)(
𝑋(𝑙,𝑚)𝑉2

)𝑇 + 𝑏𝑡

)
, 𝑛 = 1,2

𝐸𝑛′
𝑖,𝑗

=
exp

(
𝐸𝑛
𝑖,𝑗

)
∑𝑁𝐺𝑘

𝑟=1 exp
(
𝐸𝑛
𝑖,𝑟

) , 𝑛 = 1,2

where 𝑋(𝑙,𝑚) ∈ ℝ2𝑁𝐺𝑘
×𝐷

denotes the input of 𝑚-th DCSTSGCM in 𝑙-th DCSTSGCL, 𝑉1, 𝑉2 ∈ ℝ𝐷×𝑁𝐺𝑘 and 𝑏𝑡 ∈ ℝ𝑁𝐺𝑘
×𝑁𝐺𝑘 are learnable 

parameters. On the counter-diagonal, there are a spatial attention matrix and an all-zero matrix 
[
𝑆′,0

]
, denoting the attention of 

nodes in the current time step with their spatial neighbors at the previous time step. The mathematical equation of 𝑆′ is formulated 
as:

𝑆 = 𝜎

((
𝑋(𝑙,𝑚)𝑈1

)(
𝑋(𝑙,𝑚)𝑈2

)𝑇 + 𝑏𝑠

)
,

𝑆′
𝑖,𝑗

=
exp

(
𝑆𝑖,𝑗

)
∑𝑁𝐺𝑘

𝑟=1 exp
(
𝑆𝑖,𝑟

) ,
where 𝑈1, 𝑈2 ∈ℝ𝐷×𝑁𝐺𝑘 and 𝑏𝑠 ∈ℝ𝑁𝐺𝑘

×𝑁𝐺𝑘 are learnable parameters.

Then the spatial-temporal adjacency matrix used in graph convolution can be obtained by:

𝐴′
𝑆𝑇

=𝐴
𝐺𝑘

𝑆𝑇
⊗𝐴𝑡𝑡

where ⊗ denotes element-wise product. Considering that adding spatial-temporal attention matrices in all the DCSTSGCLs will 
over-inflate the number of learnable parameters and increase the training difficulty, we only arranged attention mechanisms in 
DCSTSGCMs of the first DCSTSGCL, which is able to reduce the complexity of the model while ensuring that each input time step 
has a corresponding spatial-temporal attention matrix.

Employing GLU as the activation function enables a richer expression of the convolution operation than utilizing the sigmoid 
function alone. Thus, we introduced Graph Convolution with GLU as the mapping function to extract spatial-temporal features, the 
mathematical expression can be formulated as:

ℎ𝑟 =
(
𝐴′
𝑆𝑇

ℎ𝑟−1𝑊1 + 𝑏1
)
⊗𝜎

(
𝐴′
𝑆𝑇

ℎ𝑟−1𝑊2 + 𝑏2
)
,

where ℎ𝑟−1, ℎ𝑟 ∈ℝ2𝑁𝐺𝑘
×𝐷

are the input and output of the 𝑟-th graph operation respectively, 𝑊1, 𝑊2 ∈ℝ𝐷×𝐷 as well as 𝑏1, 𝑏2 ∈ℝ2𝑁𝐺𝑘
×𝐷

are learnable parameters.

After the convolution operation, the spatial-temporal features of time step 𝑡𝑞−1 have already been aggregated in time step 𝑡𝑞 , and 
discarding time step 𝑡𝑞−1 can reduce the complexity without affecting the module’s ability to capture spatial-temporal dependencies. 
Therefore, we removed the previous time step from each CSTSG by cropping operation, which changes the shape of the output from 
ℎ𝑟 ∈ℝ2𝑁𝐺𝑘

×𝐷
to ℎ𝑟

𝑐
∈ℝ𝑁𝐺𝑘

×𝐷
.

Finally, the outputs of multiple graph convolutions are aggregated by max pooling to obtain the output of DCSTSGCM:( )

8

ℎ𝑀𝑃 =𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔 ℎ1
𝑐
, ℎ2

𝑐
,… , ℎ𝑅

𝑐
∈ℝ𝑁𝐺𝑘

×𝐷
,
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where 𝑅 denotes the number of graph convolutions. The output of all DCSTSGCMs in 𝑙-th DCSTSGCL can be described as:

𝑌𝑀𝑙 =
(
ℎ1
𝑀𝑃

,ℎ2
𝑀𝑃

,… , ℎ𝑀
𝑙

𝑀𝑃

)
∈ℝ𝑀𝑙×𝑁𝐺𝑘

×𝐷
. (4)

4.3.3. Dilated causal temporal convolutional module

In the time dimension, both local and global dependencies are important [27,38]. Various DCSTSGCMs have diverse learnable 
parameters at different time steps, which makes them more suitable for capturing temporal dependency in the local temporal range, 
but also leaves them with limitations in extracting global dependency of the input sequence. Therefore, 1D dilated causal convolutions 
sharing weights in long term is employed to extract the global temporal correlation, which also integrates the gating mechanism. 
The mathematical expression of 1D dilated causal convolutions can be defined as:

𝑌𝑇 = 𝑡𝑎𝑛ℎ(Θ1 ∗𝑋𝑙 + 𝑏1)⊗𝜎(Θ2 ∗𝑋𝑙 + 𝑏2) ∈ℝ𝑀𝑙×𝑁𝐺𝑘
×𝐷

, (5)

where 𝑋𝑙 is the input of 𝑙-th DCSTSGCL, 𝑡𝑎𝑛ℎ (⋅) means tanh mapping function, Θ1, Θ2 denote two 1D dilated causal convolutions 
respectively, 𝑏1, 𝑏2 are learnable parameters. The kernel sizes of Θ1 and Θ2 are always 2, and the step sizes are the same as the step 
sizes of current DCSTSGCL, which are [1,2,4,4].

The output of each DCSTSGCL consists of the outputs of all DCSTSGCMs and the output of DCTCN, which can be described as:

𝑌 𝑙 = 𝑌𝑀𝑙 + 𝑌𝑇 ∈ℝ𝑀𝑙×𝑁𝐺𝑘
×𝐷

, (6)

where 𝑌𝑀𝑙 , 𝑌𝑇 come from Eq. (4) and Eq. (5), respectively.

4.3.4. Other components

Spatial-temporal embedding Integrating nodes at different time steps into the same graph will blur the temporal and spatial attributes 
to some extent [26]. To address this issue, temporal embedding 𝑇𝑒𝑚𝑏 ∈ ℝ𝑇×𝐶 and spatial embedding 𝑆𝑒𝑚𝑏 ∈ ℝ𝑁×𝐶 are added in the 
input sequence to improve the model’s ability of capturing spatial-temporal dependencies:

𝑋+𝑡𝑒𝑚𝑏+𝑠𝑒𝑚𝑏 =𝑋 + 𝑇𝑒𝑚𝑏 +𝑆𝑒𝑚𝑏 ∈ℝ𝑇×𝑁×𝐶 .

Input layer and output layer In DCSTSGCN, we first transformed the input sequence by a fully connected layer to obtain the high-

dimensional embedding of traffic features, which can strengthen the expressiveness. As for output layer, by introducing JK-Net, we 
performed a concatenate operation on the outputs of DCSTSGCLs, and then went through two fully connected layers to obtain the 
output of DCSTSGCN, which can be described as:

𝑌𝐺𝑘
=𝑅𝑒𝐿𝑈

(((
𝑌 1, 𝑌 2,… , 𝑌 𝐿

)
Θ1 + 𝑏1

)
Θ2 + 𝑏2

)
.

Where 𝑌𝐺𝑘
∈ ℝ𝑇𝑝×𝑁𝐺𝑘

×𝐶
, 𝐿 is the number of DCSTSGCLs in the 𝑘-th DCSTSGCN, 𝑌𝑙 (1 ≤ 𝑙 ≤𝐿) comes from Eq. (6), Θ1, Θ2, 𝑏1, 𝑏2 are 

learnable parameters. All the outputs of DCSTSGCN form the output of STHSGCN, which can be obtained according to Eq. (2).

4.4. Loss function

We selected smooth L1 loss as the loss function. Compared to L1 loss, the smooth L1 loss modified the unsmooth problem at the 
zero-point [45].

𝐿(𝑌 ,𝑌 ) =

{ 1
2

(
𝑌 − 𝑌

)2∕𝛿, 𝑖𝑓
|||𝑌 − 𝑌

||| ≤ 𝛿,|||𝑌 − 𝑌
|||− 1

2 𝛿, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,

where 𝑌 , 𝑌 denote ground truth and predicted values respectively, 𝛿 is a threshold parameter.

5. Experiments and discussion

5.1. Datasets

We evaluated the performance of STHSGCN on four public datasets: PEMS03, PEMS04, PEMS07, PEMS08 [26], which are gener-

ated by California Transportation Agency Performance Measurement System (PeMS). These datasets are collected by sensors deployed 
on the freeways in the State of California every five minutes, which means there are 288 points in the flow data for each day. The 
adjacencies between sensors are constructed based on the actual road network. We standardized the traffic features of each dataset 
by Z-score normalization. Neighborhood values are employed to fill in the missing data. For these four traffic flow datasets, we 
assumed that their distributions vary periodically over time. The detailed information of four datasets is illustrated in Table 1.

5.2. Experiment settings and evaluation metrics

All datasets are split into training sets, validation sets and test sets in the ratio of 6: 2: 2. To evaluate the fitness of the model, 
9

the validation sets during training are continuously used to test the validity of the model for unknown data. We made use of the 
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Table 1

Dataset description.

Datasets Sensors Time Steps Traffic Features

PEMS03 358 26208 flow

PEMS04 307 16992 flow,speed,occupancy

PEMS07 883 28224 flow,speed,occupancy

PEMS08 170 17856 flow

historical data in the past hour to forecast the traffic flow in the next hour. Experiments are implemented by Pytorch 1.13 under the 
environment with AMD Ryzen 5 5600G CPU and NVIDIA RTX 3060 GPU. The hyperparameters are determined by the performance 
of the model. Each DCSTSGCM comprises 3 graph convolutions, and the hidden representations of convolutional operations are set to 
[64,64,64]. The output dimension of FCs in the input layer and output layer are set to [64], [128,1], respectively. We utilized Adam 
as the optimizer. The batch sizes for PEMS03, PEMS04, PEMS07, PEMS08 are set to [64,64,16,64]. The learning rate is initialized to 
0.003, and then it is multiplied by 0.3 at the 20th and the 40th epoch, which can speed up training. Early stopping with tolerance 
20 for 200 epochs is applied to training process.

We employed mean absolute error (MAE), mean absolute percentage error (MAPE) and root mean square error (RMSE) as the 
evaluation metrics, which can be defined as follows:

𝑀𝐴𝐸
(
𝑦𝑖, 𝑦𝑖

)
= 1
𝑛

𝑛∑
𝑖=1

||𝑦𝑖 − 𝑦𝑖
|| ,

𝑀𝐴𝑃𝐸
(
𝑦𝑖, 𝑦𝑖

)
= 1
𝑛

𝑛∑
𝑖=1

||𝑦𝑖 − 𝑦𝑖
||

𝑦𝑖
,

𝑅𝑀𝑆𝐸
(
𝑦𝑖, 𝑦𝑖

)
=

√√√√1
𝑛

𝑛∑
𝑖=1

(
𝑦𝑖 − 𝑦𝑖

)2
,

where 𝑦𝑖, 𝑦𝑖 denote the ground truth and the prediction values, respectively. The smaller the three evaluation metrics, the better the 
performance of the model.

5.3. Baseline methods

We compared STHSGCN with the following six models:

• GRU: Gate Recurrent Unit, it is a variant of LSTM, which consists of reset gates and update gates. The hidden dimensions of the 
two gates are set as 64.

• T-GCN: Temporal Graph Convolutional Network, which integrates GCNs into GRUs. The number of GRUs is set as 64 in this 
model [32].

• DCRNN: Diffusion Convolution Recurrent Neural Network, which combines graph convolutions with encoder-decoder gated 
recurrent units. The hidden dimensions are set as 64 in this model [28].

• STGCN: Spatio-Temporal Graph Convolution Network, which utilizes GCNs and 1D convolution units to model the spatio-

temporal dependencies. It is comprised of two ST-Conv Blocks and an output layer. The hidden dimensions are set as 64 [30].

• STSGCN: Spatial-Temporal Graph Convolutional Network, which introduces localized spatial-temporal graphs and spatial-

temporal synchronous graph convolutional modules to capture the dependencies between traffic nodes and their spatial-temporal 
neighbors. The hidden dimensions in each module are set as 64 [26].

• STFGNN: Spatial-Temporal Fusion Graph Neural Network, which designs temporal graphs and applies spatial-temporal fusion 
graph neural modules as well as gated convolution modules to modeling the hidden spatial-temporal correlations. The hidden 
dimensions are set as 64 in this model [27].

5.4. Experimental results

The relationships between the number of clusters and 𝑆𝑆𝐸 on PEMS03, PEMS04, PEMS07, PEMS08 can be found in Fig. 5. It is 
observed that 𝑆𝑆𝐸 decreases gradually with the increasing number of clusters, and BiKmeans based on GAE consistently outperforms 
original BiKmeans. The turning points on the four datasets are chosen as [4, 4, 4, 3] according to the shape of elbows, respectively, 
which also represent the optimal numbers of clusters. In addition, we conducted parameters experiments to validate the optimum 
numbers of clusters, which will be shown in section 5.6.

Table 2 presents the performance of STHSGCN and six baselines for traffic flow prediction on PEMS03, PEMS04, PEMS07 and 
PEMS08. By means of numerical results, it is verified that STHSGCN overwhelmingly outperforms the baselines on all four datasets. 
In order to evaluate the ability of models to capture spatial-temporal dependencies at different time steps, a comparison of the 
prediction performance at 12 time steps on PEMS03 is made, as shown in Fig. 6, STHSGCN consistently outperforms all baselines. 
10

Moreover, to make the capacities for prediction intuitive visually, we compared the prediction results of best baselines and the 
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Fig. 5. Relationships between the number of clusters and 𝑆𝑆𝐸 on the four datasets. (a) illustrates the relationships on PEMS03 and PEMS04. (b) presents the

relationships on PEMS07 and PEMS08.

Table 2

Performance comparison of STHSGCN and baselines for traffic flow prediction.

Datasets Metric GRU T-GCN DCRNN STGCN STSGCN STFGNN STHSGCN

PEMS03 MAE 27.19 20.83 21.07 20.29 18.30 17.33 15.46

MAPE(%) 24.92 21.58 20.43 18.98 17.58 16.90 14.81

RMSE 42.24 31.18 33.23 33.08 30.20 29.04 26.61

PEMS04 MAE 34.13 26.02 27.57 25.37 22.38 20.14 19.50

MAPE(%) 21.53 17.08 18.29 15.50 15.03 13.76 12.89

RMSE 49.98 38.19 42.07 39.11 35.33 32.62 31.39

PEMS07 MAE 37.79 30.37 31.29 30.91 25.15 23.76 21.39

MAPE(%) 16.83 13.83 15.09 14.49 10.74 9.96 9.21

RMSE 56.72 43.39 47.21 47.12 40.79 38.48 34.98

PEMS08 MAE 28.12 21.37 21.21 21.39 17.72 16.99 15.50

MAPE(%) 16.92 13.66 13.08 13.13 11.61 10.96 9.95

RMSE 41.85 30.69 31.43 31.42 27.21 26.80 24.51

proposed model for predicting traffic flow on a random day of PEMS08, as illustrated in Fig. 7, STHSGCN fits the ground-truth 
better. The better-fitting predictions and higher accuracy indicate that STHSGCN is more suitable for predicting road traffic flows.

5.5. Ablation experiments

To further verify the effectiveness of different modules in STHSGCN, various ablation experiments are conducted on PEMS03 and 
PEMS08. As illustrated in Table 3, we designed seven variants of STHSGCN and compare STHSGCN with these variants.

• N-Cluster, which removes BiKmeans based on GAE, and treats all the nodes as one cluster.

• N-Causality, which replaces causal spatial-temporal synchronous graph with noncausal spatial-temporal synchronous graph, that 
means the shape of spatial-temporal adjacency matrix remains 2𝑁 × 2𝑁 , while the counter-diagonal becomes [𝐴𝐺𝑘

𝑆𝐺
, 𝐴𝐺𝑘

𝑆𝐺
].

• N-Dilation, which employs fixed instead of dilated step sizes to construct CSTSGs in all DCSTSGCLs. The fixed size is set as 1.

• N-DCTCM, which removes DCTCMs from each DCSTSGCL.

• N-STAtt, which removes spatial-temporal attention mechanism from DCSTSGCMs.

• N-JK-Net, which removes the concatenate operation on the outputs of four DCSTSGCLs.
11

• N-STE, which removes spatial embedding and temporal embedding from our model.
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Fig. 6. Prediction performance at 12 time steps on PEMS03. (a) illustrates MAE of the seven models. (b) shows MAPE of STHSGCN and the baselines. (c) presents 
RMSE of STHSGCN and six other models.

Fig. 7. Prediction results of STSGCN, STFGNN and STHSGCN.

Table 3

Ablation experiments.

Dataset Model&Variants MAE MAPE(%) RMSE

PEMS03 STHSGCN 15.46 14.81 26.61

N-Cluster 16.13 15.61 27.49

N-Causality 15.82 15.13 26.91

N-Dilation 15.62 15.04 26.88

N-DCTCM 16.49 15.63 28.24

N-STAtt 16.36 15.48 27.72

N-JK-Net 16.72 15.96 29.03

N-STE 15.66 15.11 26.98

PEMS08 STHSGCN 15.50 9.95 24.51

N-Cluster 15.94 10.23 25.13

N-Causality 15.84 10.16 25.02

N-Dilation 15.88 10.23 24.95

N-DCTCM 16.77 10.78 26.01

N-STAtt 16.23 10.66 25.60

N-JK-Net 16.44 10.73 25.75

N-STE 16.04 10.41 25.18

Table 3 shows that STHSGCN obtains minimal metrics compared with all the baselines on both PEMS03 and PEMS08. In contrast 
with the metrics of N-Cluster, STHSGCN improves 4.15%, 5.12% and 3.20% in terms of MAE, MAPE and RMSE on PEMS03. In 
the meantime, it also achieves 2.76%, 2.74% and 2.47% improvements for MAE, MAPE and RMSE on PEMS08, which clarifies the 
effectiveness of our BiKmeans algorithm on learning spatial heterogeneity. In contrast with the metrics of N-Causality, STHSGCN 
improves 2.28%, 2.12% and 1.11% in terms of MAE, MAPE and RMSE on PEMS03. Meanwhile, it also outperforms N-Causality 
with 2.15%, 2.07% and 2.04% improvements for MAE, MAPE and RMSE on PEMS08, which verifies the effectiveness of causal 
12

spatial-temporal synchronous graph on model temporal correlations. In contrast with the metrics of N-STAtt, STHSGCN improves 
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Fig. 8. Experimental results of parameters on PEMS03 and PEMS08. (a) shows the results of different hidden dimensions. (b) illustrates the results of different numbers 
in clustering.

5.50%, 4.33% and 4.00% in terms of MAE, MAPE and RMSE on PEMS03. In the meanwhile, it also achieves 4.50%, 6.66% and 4.26% 
improvements for MAE, MAPE and RMSE on PEMS08, which demonstrates the effectiveness of spatial-temporal attention mechanism 
on learning spatial-temporal dependencies.

5.6. Parameters experiments

In order to validate the effectiveness of STHSGCN, parameters experiments are conducted on PEMS03 as well as PEMS08. The 
parameters consist of the hidden dimension 𝐷 in graph convolutions and the number of clusters 𝐾 in BiKmeans based on GAE, Fig. 8

illustrates the experimental results. It can be observed from Fig. 8(a) that STHSGCN obtains minimal MAE, MAPE, RMSE on both 
PEMS03 and PEMS08 when 𝐷 is set as 64. As for the number of clusters 𝐾 , Fig. 8(b) indicates that STHSGCN achieves optimal results 
on PEMS03 and PEMS08 when 𝐾 is set as [4, 3] respectively, which is exactly the turning points chosen in Fig. 5, revealing that 
appropriate number of clusters contributes to learning spatial-temporal correlations.

5.7. Discussion

The experimental results in Section 5.4 illustrate the superiority of STHSGCN over the baselines. GRU is only applicable to fea-

ture extraction of time series, and cannot take into account the spatial relationships between nodes, so the performance is not ideal. 
T-GCN, DCRNN and STGCN extract spatial features by graph convolution, and learn temporal features using GRU or 1D CNN, lead-

ing to better performances than the model that only considers time series, but they fail to capture spatial-temporal dependencies 
synchronously. STSGCN and STFGNN model spatial-temporal correlations synchronously by Localized Spatial-Temporal Graph and 
Spatial-Temporal Fusion Graph, respectively, deploying parallel modules in the temporal dimension to reflect temporal heterogene-

ity, but they employ shared networks for all nodes to capture spatial-temporal dependencies and thus fail in considering spatial 
heterogeneity. In addition, they are also unable to capture temporal causality in spatial-temporal synchronous modeling, resulting 
in limiting the ability to extract spatial-temporal features. Our model first employs BiKmeans based on GAE to cluster traffic nodes 
at different spatial locations, and then takes advantage of separate DCSTSGCNs for various node clusters and different DCSTSGCMs 
for diverse time steps, leading to a consideration of both spatial and temporal heterogeneities. Moreover, our CSTSG not only learns 
13

spatial-temporal correlations synchronously, but also reflects temporal causality in the graph structure. These designs enhance the 
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performance of STHSGCN for extracting spatial-temporal features. The advantages also allow our model to predict traffic flows in 
the road network more accurately, further improving the availability of ITS.

Ablation Experiments in Section 5.5 indicate that the parallel networks for diverse clusters in our model are able to charac-

terize spatial heterogeneity. Causal Spatial-Temporal Synchronous Graph of STHSGCN can extracts spatial-temporal features more 
accurately by taking temporal causality into account. Spatial-temporal attention mechanism also contributes to the enhancement of 
learning spatial-temporal dependencies. Besides, the comparisons with other variants also verify the effectiveness of corresponding 
parts on capturing spatial-temporal features. These are the reasons why STHSGCN has the ability to outperform the variants.

In addition, parameters experiments in Section 5.6 show that appropriate hidden dimension 𝐷 and number of clusters 𝐾
strengthen the capacity for modeling spatial-temporal dependencies. When 𝐷 is set as 16 or 32, inefficient representation of hidden 
dimension limits the ability of our model to capture spatial-temporal features, while setting 𝐷 as 128 leads to over-fitting. When 𝐾 is 
too small, the spatial heterogeneity of nodes cannot be fully considered, while an excessive number of clusters results in a fragmented 
graph structure that losses part of the adjacency relationships between nodes.

5.8. Limitations

Despite various experiments demonstrating the advantages of the proposed method, some limitations still exist. First, there is 
a lack of considering external factors, such as temperature, visibility and holiday. Second, the structure of the graph in the model 
is fixed and does not change with time. In the future, we intend to take external factors into account, we also plan to explore the 
influence of dynamic graph structure on traffic flow prediction.

5.9. Policy recommendations

Research on traffic flow forecasting is clearly influenced by transportation policies, especially those regarding the construction 
of intelligent transportation systems. Traffic feature acquisition equipment is the main means to obtain traffic flow from the road 
network, and extensive placement of acquisition equipment can strengthen the basis of traffic flow prediction. Therefore, we suggest 
that the competent authorities should introduce more policies to support the construction of intelligent traffic systems. The lag in 
the construction of traffic feature acquisition equipment in some road networks is a possible reason why future research cannot be 
carried out smoothly.

6. Conclusion

In this paper, we proposed a spatial-temporal heterogeneous and synchronous graph convolution networks to model the dynamic 
spatial-temporal dependencies in traffic flow prediction. STHSGCN not only takes into consideration both spatial and temporal 
heterogeneities, but also takes account of temporal causality in spatial-temporal synchronous graph. We further conducted extensive 
experiments on four real-world datasets, and the results verified the consistent superiority of our proposed approach compared with 
various existing baselines. This study also has some possible limitations, such as the lack of consideration of external factors and the 
neglect of the flexible graph structure. In the future work, we will attempt to investigate further improvements of our model and 
extend it to more general fields of spatial-temporal forecasting.
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