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Abstract

We demonstrate a data-driven approach for calculating a “causal connectome” of directed 

connectivity from resting-state fMRI data using a greedy adjacency search and pairwise non-

Gaussian edge orientations. We used this approach to construct n = 442 causal connectomes. 

These connectomes were very sparse in comparison to typical Pearson correlation-based graphs 

(roughly 2.25% edge density) yet were fully connected in nearly all cases. Prominent highly 

connected hubs of the causal connectome were situated in attentional (dorsal attention) and 

executive (frontoparietal and cingulo-opercular) networks. These hub networks had distinctly 

different connectivity profiles: attentional networks shared incoming connections with sensory 

regions and outgoing connections with higher cognitive networks, while executive networks 

primarily connected to other higher cognitive networks and had a high degree of bidirected 

connectivity. Virtual lesion analyses accentuated these findings, demonstrating that attentional and 

executive hub networks are points of critical vulnerability in the human causal connectome. These 

data highlight the central role of attention and executive control networks in the human cortical 

connectome and set the stage for future applications of data-driven causal connectivity analysis in 

psychiatry.
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1. Introduction

Brain network interactions give rise to information processing and cognition (Bressler, 1995; 

Bullmore and Sporns, 2009; Friston, 2002; McIntosh, 2000). Brain networks have a non-

random topological organization (Bullmore and Sporns, 2009), including both segregated 

modules and a small number of highly connected nodes (Achard et al., 2006; Eguíluz et al., 

2005; Sporns et al., 2007; van den Heuvel and Sporns, 2013), the “hubs” of the connectome. 

These hubs coordinate the transfer of large amounts of information through brain circuits 

(Mišić et al., 2015, 2014; van den Heuvel et al., 2012) and play a critical role in coordinating 

communication between disparate brain regions (Cole et al., 2013; Sporns, 2013, 2012; van 

den Heuvel and Sporns, 2011). Here we present data on a “causal connectome” derived 

from resting-state neuroimaging data using a data-driven causal discovery method that 

first estimates directly connected brain regions without the false positives produced by 

typical connectivity methods (Reid et al., 2019), then additionally estimates the direction 

of those connections. We describe the characteristics of this causal connectome, with a 

specific focus on the central hubs of the resting-state causal connectome. While networks 

with directional information have several designations in the literature (effective, causal, 

directed), for consistency we will refer to these networks as causal networks throughout this 

manuscript.

Hub-like connectivity can be characterized using measures of centrality, a set of metrics 

that quantify the capacity of a node in a graph to influence (or be influenced by) other 

nodes. Over 100 measures of centrality have been proposed (Jalili et al., 2015), only a subset 

of which are commonly applied to brain network analysis (Rubinov and Sporns, 2010; 

van den Heuvel and Sporns, 2013). The most common is degree centrality (the number of 

connections attached to each node), which has a simple and intuitive interpretation, but alone 

provides limited information. For example, a node might have relatively few connections, 

but still act as an important bottleneck for communication between many other nodes in the 

network. Such a node could be thought of as a city highway. While it might have relatively 

few direct connections (entrances and exits), the highway still serves as the quickest path 

between many locations in the city. To capture this type of connectivity, measures such as 

betweenness centrality (how often a node lies on the shortest path between two other nodes; 

(Freeman, 1977)) have been developed.

Different metrics for centrality are often highly correlated with each other (Oldham et al., 

2019; Oldham and Fornito, 2019), but some centrality metrics may be more appropriate for 

certain types of networks than for others. For example, while degree centrality is frequently 

used for characterizing structural brain hubs (Crossley et al., 2014; Rubinov et al., 2015), 

degree in correlation-based fMRI networks is biased to identify nodes that are part of 

the largest (number of nodes/regions) resting-state networks (RSNs) of the brain (Power 

et al., 2013; van den Heuvel and Sporns, 2013). Thus, early degree-based analyses often 

identified high-degree nodes in the default mode network (Buckner et al., 2009; Cole et 

al., 2010; Power et al., 2013; Tomasi and Volkow, 2011; van den Heuvel and Sporns, 

2013), one of the brain’s largest resting-state subnetworks. Because of this confound, groups 

using Pearson correlation-based network analyses of fMRI data have considered alternative 

methods for identifying functional hubs, including metrics that consider the diversity of 
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between-RSN connections such as participation coefficient (Bertolero et al., 2018; Grayson 

et al., 2014; Power et al., 2013; Reber et al., 2021), and coactivation/connectivity over 

multiple cognitive tasks (Cocuzza et al., 2020; Cole et al., 2013; Crossley et al., 2014, 2013; 

Ray et al., 2020). These more recent analyses reveal a set of brain hubs distributed broadly 

through frontal, parietal, and temporal cortices. Notably, defining what constitutes “high” 

centrality is dependent on the distribution of centralities exhibited by the network, and there 

is no evidence that one-size-fits-all cutoffs for categorizing network nodes as hubs can be 

meaningfully applied to brain networks. For example, when a cutoff for defining hubs as 

proposed in (Guimerà and Nunes Amaral, 2005) was applied to the brain network examined 

in Power et al. (2013), only a single local hub was identified. As such, the distinction 

between what constitutes a hub as opposed to a non-hub is essentially arbitrary (Oldham and 

Fornito, 2019). Our analysis of hub connectivity will thus focus on continuous measures of 

centrality, providing a quantitative comparative measure of which brain networks or nodes 

are more hub-like than others in the investigated causal connectome.

Critical to our current investigation, most resting-state fMRI connectivity studies use 

Pearson correlations to estimate undirected connectomes, providing information about 

connected brain regions (hereafter adjacencies), but not the direction of these connections 

(hereafter orientations). There is a recognized need for network modeling methods that 

can accurately estimate adjacencies without the false positives inherent to correlation-based 

approaches (Reid et al., 2019; Smith et al., 2011), as well as estimating the direction or 

orientation of these edges (referred to as causal or effective connectivity (Ramsey et al., 

2010; Reid et al., 2019; Smith, 2012). However, current methods for fMRI resting-state 

causal connectivity are limited (Ramsey et al., 2014, 2010; Sanchez-Romero et al., 2019; 

Smith et al., 2011). Granger causality (Granger, 1969) attempts to recover causal influences 

using time-lagged regressions. Smith et al. (2011) found that several variations of Granger 

causality have negligible accuracy in detecting adjacencies or orientations in simulated 

fMRI data, and Sanchez-Romero et al. (2019) tested two additional variations of Granger 

causality (multivariate Granger causality; (Barnett and Seth, 2014); autoregressive modeling 

with permutation testing; (Gilson et al., 2017)), finding that these more recent methods 

also had low precision for adjacencies and orientations in the presence of realistic noise. 

GIMME (Gates and Molenaar, 2012), a group-level algorithm that also uses time lags to 

infer causality, achieves better performance, but is computationally intensive and can only 

scale to a small number of brain regions (Sanchez-Romero et al., 2019). Dynamic causal 

modeling DCM; (Friston et al., 2003) was originally designed for task-based fMRI data, but 

the stochastic DCM (Li et al., 2011) and spectral DCM (Friston et al., 2014) variants can 

be applied to resting-state fMRI data (albeit only for a small number of brain regions due 

to computational demands). Frässle et al. (2021) recently proposed a highly scalable variant 

of regression DCM (Frässle et al., 2017) for resting-state fMRI data that is scalable enough 

to support whole-cortex analyses. While the connectomes generated by this newly proposed 

method appear to have face validity (Frässle et al., 2021), a quantitative analysis of large-

scale resting-state connectivity patterns using regression-DCM has not yet been completed. 

Instead, the current report focuses on a distinct set of methods grounded on Bayes networks, 

which have promise for uncovering causal connectivity from fMRI (Mumford and Ramsey, 

2014; Ramsey et al., 2014; Sanchez-Romero et al., 2019), and for dealing with the high 
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dimensionality of whole-cortex data (Ramsey et al., 2017). Unlike GIMME, spectral DCM, 

and stochastic DCM, Bayes net methods are highly scalable, and unlike regression DCM, 

these methods do not require specification of priors or hemodynamic response function and 

make no assumptions about the physiology giving rise to the observed hemodynamic signal. 

Suitable combinations of causal discovery-based methods can achieve near-perfect precision 

and recall in simulated fMRI data (Hyvärinen and Smith, 2013; Ramsey et al., 2014), even 

for networks with feedback cycles (Sanchez-Romero et al., 2019).

In the current study, we capitalize on these recent advances in causal discovery machine 

learning to build whole-cortex causal connectomes from single-subject resting-state fMRI 

data. We apply a variation of a previously proposed ((Ramsey et al., 2011), 2014; Sanchez-

Romero et al., 2019) two-step causal discovery framework that breaks the connectome 

computation into separate adjacency and orientation steps. For convenience we refer to our 

approach as GANGO (Greedy Adjacencies and Non-Gaussian Orientations). GANGO first 

estimates whole-cortex adjacencies using Fast Greedy Equivalence Search (FGES; (Ramsey 

et al., 2017)). FGES is a parallelized version of Greedy Equivalence Search (Chickering, 

2002), a Bayes Network method with high sensitivity for detecting adjacencies, but poor 

accuracy for orientations in simulated fMRI data (Smith et al., 2011). Thus, we follow 

this initial adjacency search with a pairwise edge orientation algorithm that exploits non-

Gaussian information in the hemodynamic signal (Hyvärinen and Smith, 2013), shown 

in Ramsey et al. (2014), Sanchez-Romero et al. (2019) to have high precision and recall 

for determining edge orientation of the Smith et al. (2011) simulations. We thus obtain, 

on a single-subject basis, a whole-cortex graph summarizing dominant causal connectivity 

between brain regions. We focus our investigation on the hub structure of this novel causal 

connectome. Overall, we demonstrate hub-like causal connectivity profiles of the dorsal 

attention network, frontoparietal network, and cingulo-opercular network.

2. Methods

2.1. Subjects

All analyses used publicly available resting-state functional neuroimaging data from 442 

unrelated healthy young adult subjects recruited as part of the Washington University 

– Minnesota (WU-Minn) Human Connectome Project Consortium (56% [n = 248] 

female; aged 22–35 [mean age = 28.6 years]; https://db.humanconnectome.org/data/projects/

HCP_1200) (Barch et al., 2013; Glasser et al., 2013; Marcus et al., 2013; Smith et al., 2013; 

Uğurbil et al., 2013; Van Essen et al., 2013). All subjects provided written informed consent 

at Washington University.

2.2. Resting-state fMRI acquisition and preprocessing

Structural (T1 and T2 images, required for preprocessing functional neuroimaging data) 

and functional MRI data were collected at Washington University on the Siemens 3T 

Connectome Skyra scanner. Full details of the acquisition parameters for the HCP data 

are described in (Uğurbil et al., 2013). Each subject’s resting-state data was collected 

over two days in four sessions (14:33/session; 1200 samples/session). In this study we 

analyzed only one day of data (two runs, individually z-scored and concatenated) to limit 
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potential state influences on fMRI measures. Structural and functional data preprocessing is 

described in Glasser et al. (2013), and used version 3.21 of the HCP preprocessing pipeline. 

Structural data preprocessing consisted of bias field and gradient distortion correction, 

coregistration of T1/T2 images, and registration to MNI space. Cortical surface meshes were 

constructed using FreeSurfer, transformed to MNI space, registered to individual surfaces, 

and downsampled. Functional MRI preprocessing consisted of gradient distortion correction, 

motion correction, EPI distortion correction, followed by T1 registration. Transforms were 

concatenated and run in a single nonlinear resampling to MNI space followed by intensity 

normalization. Data were masked by the FreeSurfer brain mask, and volumetric data were 

mapped to a combined cortical surface vertex and subcortical voxel space (“grayordinates”) 

using a multimodal surface registration algorithm (Robinson et al., 2014) and smoothed with 

a 2 mm FWHM Gaussian in surface space (thus avoiding smoothing over gyral banks). 

fMRI data were conservatively high-pass filtered with FWHM = 2000 s and cleaned of 

artifacts using ICA-FIX (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014). This filter was 

implemented as a weighted linear function in FSL v6.0.2, which was shown in Ramsey et 

al. (2014) to not introduce Gaussian trends into the data (unlike e.g., Butterworth filters or 

the built-in SPM filter). Artifact components and 24 motion parameters were regressed out 

of the functional data in a single step, producing the final ICA-FIX denoised version of the 

data in CIFTI (“grayordinates”) space (Glasser et al., 2016b) that was used in subsequent 

analyses.

2.3. Construction of whole-brain causal connectomes

Our analysis pipeline began with n = 442 sets of preprocessed, multimodally surface 

registered, ICA-FIX denoised fMRI data provided by the HCP consortium. We parcellated 

cortex surface vertices into 360 regions using a recently developed multimodal parcellation 

(Glasser et al., 2016a).

We implement a computational strategy to define causal connectomes on a per-subject basis 

using a two-step process we refer to as GANGO (Greedy Adjacencies and Non-Gaussian 

Orientations). This approach is motivated by previous work ((Ramsey et al., 2011), 2014; 

Sanchez-Romero et al., 2019; Smith et al., 2011) indicating that (1) Bayes net algorithms 

such as PC (Spirtes et al., 2001) and Greedy Equivalence Search (Chickering, 2002) 

provide a highly precise solution to identify nodal adjacencies (but not orientations) in 

simulated fMRI data, and (2) pairwise orientation algorithms based on data skewness can 

accurately identify edge orientations in simulated fMRI data. In the first step, the GANGO 

approach defines nodal adjacencies (connected regions) using Fast Greedy Equivalence 

Search (FGES; (Ramsey et al., 2017)), a parallelized and highly scalable version of GES. 

This algorithm finds a sparse set of directed and undirected connections between continuous 

variables by minimizing a penalized likelihood score over the entire graph, typically scored 

using the Bayesian Information Criterion (BIC; (Schwarz, 1978)). FGES proceeds in two 

stages, first adding edges until the BIC stops improving, then removing edges until the 

BIC stops improving (Ramsey et al., 2017). While FGES has not commonly been used 

for analysis of empirical neuroimaging data, this method was applied (in combination 

with direct stimulation) to test causal connectivity patterns of the amygdala (Dubois et al., 

2020) with promising initial findings for mapping human emotion networks. We computed 
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FGES with causal-cmd v1.2.0 (https://bd2kccd.github.io/docs/causal-cmd/) using default 

parameters (BIC penalized likelihood score, penalty discount = 1 corresponding to the 

classic BIC score). GES has been shown in simulations to obtain highly accurate estimates 

of nodal adjacencies, but relatively inaccurate orientations (Smith et al., 2011). Therefore, 

we made the FGES-derived graph undirected by symmetrizing it across the diagonal.

The GANGO approach then orients these undirected edges using non-Gaussian information 

in the BOLD signal. We applied an estimate of the direction of causal effect based on 

pairwise likelihood ratios under the linear non-Gaussian acyclic model (Hyvärinen and 

Smith, 2013). Several approaches have been proposed to orient causal graph edges using 

non-Gaussian information. For example, Ramsey et al. (Ramsey et al., 2011) used IMaGES 

(a group-level version of GES) to infer adjacencies from fMRI data and proposed two 

early measures for orienting edges using non-Gaussian information. More recent approaches 

(Hyvärinen and Smith, 2013; Ramsey et al., 2014; Sanchez-Romero et al., 2019) have built 

on these early algorithms, with improved orientation accuracy. For the GANGO framework, 

we adopt the RSkew method, an outlier-robust skew-based measure (Hyvärinen and Smith, 

2013). RSkew has shown to generate optimal estimates of causal direction in simulated 

fMRI data (Ramsey et al., 2014; Sanchez-Romero et al., 2019), and was calculated using the 

authors’ MATLAB implementation of RSkew (https://www.cs.helsinki.fi/u/ahyvarin/code/

pwcausal/; RSkew is method 4). Hyvärinen and Smith (2013) provide an explanation of 

how non-Gaussian information can be used to orient edges between pairs of variables. 

Assuming x > y, both variables will have large values in cases where x is large (but x will 

not necessarily take on large values when y is large). Due to regression towards the mean, 

the value of x must typically be larger than that of y. Cumulant-based approaches such as 

RSkew, the method used here, calculate pairwise contrasts that magnify extreme values of 

either x or y, allowing determination of the most likely causal direction. For an in-depth 

explanation, we refer the reader to (Hyvärinen and Smith, 2013).

Since the RSkew orientation method requires that data be skewed to obtain accurate 

measures, we tested whether the resting-state data met these assumptions. For each subject, 

we tested whether the BOLD data were significantly skewed with reference to Gaussian 

data using an approach adapted from Sanchez-Romero et al. (2019). Within each single 

participant, we calculated the skewness of the BOLD time series separately for each parcel, 

resulting in 360 skewness values per subject. For each subject, we then simulated 360 

Gaussian time series of the same length as the BOLD data (n = 2400 points) for use as 

surrogate data and calculated the skewness of each of the Gaussian time series. For each 

subject, we then statistically tested whether the skewness of the observed BOLD data (n = 

360 values) exceeded the skewness derived from Gaussian surrogate data (n = 360 values) 

using a one-tailed Wilcoxon rank sum test. Since both positive and negative skewness values 

indicate skewed data, for all analyses we used the absolute value of skewness.

2.4. Resting-State network connectivity statistics

For each subject, we categorized brain regions into 12 resting-state networks (RSNs) using 

the recently developed Cole-Anticevic Brain-wide Network Partition (CAB-NP) (Ji et al., 

2019). We established whether each RSN shared a statistically significant proportion of 
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connections with each other RSN (Fig. 1b) by calculating the total number of connections 

that the RSN shared with the other 11 RSNs (the total number of out-of-RSN connections). 

Then, by dividing that total by 11, we arrive at a suitable null hypothesis of equal inter-RSN 

connectivity (i.e., that the RSN shared out-of-RSN connections equally between the other 

11 RSNs). For each of the other 11 RSNs, we tested the actual number of shared between-

RSN connections against the null hypothesis of equal connectivity to all 11 RSNs using 

Wilcoxon signed-rank tests, which we corrected for multiple corrections using the false 

discovery rate (FDR) procedure (Benjamini and Hochberg, 1995), thus establishing whether 

pairs of RSNs were significantly connected. To clarify the direction of causal connectivity 

between significantly connected pairs of RSNs, we calculated the proportion of causal 

connections from each RSN to each other RSN, then compared that proportion against a 

null hypothesis of 50% (i.e., that the connections between the pair of RSNs A & B are 

equally from A to B and from B to A) using Wilcoxon signed-rank tests (FDR-corrected 

for multiple comparisons). For each pair of RSNs found to be significant with reference to 

a null hypothesis of equal (i.e., random) inter-RSN connectivity, we calculated the effect 

size of the test for significant shared connections using Cohen’s d, and masked inter-RSN 

connections that did not meet at least the threshold for a small effect size (Cohen’s d > = 

0.2). We plot this result in the form of a force-directed graph, by first drawing connections 

between pairs of significantly connected networks. If we were able to determine a significant 

direction of connectivity, this connection was unidirectional; otherwise, the connection was 

drawn bidirectional. For significantly one-directional connections, we also recorded the 

proportion of connections going in the significant direction. This analysis clarified (a) which 

RSNs are significantly connected with at least a small effect size, and (b) which RSNs 

significantly send (vs. receive) information to (vs. from) other RSNs. We supplemented this 

with an analysis of participation coefficient (a measure of the diversity of RSNs a node 

connects to), calculated separately for incoming and outgoing connections. Participation 

coefficient Pi of node i is calculated according to the equation Pi = 1 − ∑s = 1
NM κis

Ki

2
 where 

κis is the number of connections between node i and RSN s and Ki is the total degree of 

node i (Guimerà and Nunes Amaral, 2005). For nodes that connect entirely within their own 

RSN, this equation results in a participation coefficient of zero, and for nodes that connect 

homogeneously over all RSNs the participation coefficient will approach one (Guimerà and 

Nunes Amaral, 2005; Power et al., 2013). We computed participation coefficients using 

the part_coeff function in the Brain Connectivity Toolbox (Rubinov and Sporns, 2010). 

We compared nodal participation coefficients in 12 established RSNs (Ji et al., 2019) that 

have been validated for our current parcellation using Friedman tests (since network is 

a within-subject measure) and conducted post-hoc pairwise comparisons with control for 

multiple comparisons using the Nemenyi test.

2.5. Centrality distributions in human cortex

For each causal graph, we calculated nodal (n = 360) centrality statistics using indegree 

(number of incoming connections), outdegree (number of outgoing connections), and 

betweenness centrality (number of shortest paths the node participates in) (Fig. 1c). To 

statistically quantify whether centrality-based cortical hubs existed based on significantly 

heavy-tailed centrality distributions, we generated a reference set of 1000 random directed 
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graphs with the same number of nodes (360) and connections as the cortical causal 

graphs (Fig. 1c). Specifically, for each run (of 1000), we chose the exact number of 

connections by drawing a random number from a normal distribution with the same mean 

and standard deviation as the number of connections across subjects (mean n connections 

= 1452, SD = 107); thus, the surrogate graphs approximated the distribution of connection 

counts present in the actual data. Random graphs were created using the makerandCIJ_dir 
function from the Brain Connectivity Toolbox (Rubinov and Sporns, 2010), which creates 

a random directed (causal) graph with a specified number of connections. As the degree 

distribution is the main variable in this analysis, this function (adding connections randomly 

off the diagonal) produces random graphs with no constraints other than having the overall 

number of connections be equivalent to the observed data. This does not bias the resulting 

graphs to have small-world properties (e.g., an Erdő s–Rényi graph; (Erdő s and Rényi, 

1960)) or to be constrained to having the same degree distribution as the FGES graphs 

(e.g., randomizing graphs derived from FGES). We then used Wilcoxon rank-sum tests to 

compare the skewness of centrality distributions (indegree, outdegree, betweenness) of the 

causal connectivity graphs to the random graphs. We additionally applied this permutation 

analysis to categorize cortical nodes as hubs or non-hubs, based on whether a node’s 

centrality exceeded the 95th percentile of the surrogate distribution (i.e., whether a node was 

significantly in the highly central tail of the distribution). These binary masks of regions thus 

categorized as significant hubs are provided in the supplement.

2.6. Resting-state network differences in centrality-based hubs

We compared the average nodal centralities (degree, betweenness) in 12 established RSNs 

(Ji et al., 2019) that have been validated for our current parcellation (Fig. 1d), to obtain a 

continuous ranking of which networks are the most “hub-like” in the causal connectome. 

For each subject, we calculated the average nodal indegree, outdegree, total degree, and 

betweenness centrality for nodes within each of these 12 RSNs using the MATLAB 

centrality function. We compared centrality across the 12 RSNs using Friedman tests 

and conducted post-hoc pairwise comparisons with control for multiple comparisons using 

Nemenyi tests. Additionally, we compared indegree and outdegree within each of the 12 

RSNs using Wilcoxon signed-rank tests, and FDR-corrected the resulting p -values for n = 

12 multiple comparisons.

2.7. Network vulnerability to targeted and random attack

To clarify the functional role of hubs in the causal cortical network, we subjected each 

subject’s causal connectome to a targeted attack analysis. Broadly, virtual attack analyses 

proceed by deleting nodes from the network and recording some measure of whole-network 

fitness as nodes are removed. The dependent value in this analysis is chosen to be a measure 

of network functional integration, to characterize nodes that are most critical for network 

communication (Rubinov and Sporns, 2010). As discussed in (Rubinov and Sporns, 2010), 

the most common measure of network functional integration is the characteristic path length 

(Watts and Strogatz, 1998). However, characteristic path length cannot be meaningfully 

computed on networks with disconnected nodes, as disconnected nodes are defined to 

have infinite path length. Thus, authors have argued that global efficiency (the inverse 

shortest path lengths in the network, defined to be zero for disconnected nodes (Latora 
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and Marchiori, 2001)) is a superior measure of network functional integration (Achard and 

Bullmore, 2007; Bassett and Bullmore, 2006; Rubinov and Sporns, 2010). As such, network 

global efficiency is typically used as the dependent value in published virtual attack analyses 

(Crossley et al., 2014; Lin et al., 2018; Lo et al., 2015; van den Heuvel et al., 2018; van den 

Heuvel and Sporns, 2011).

To assess cortical vulnerability at the RSN level, we deleted the nodes of each RSN (one at a 

time) from the individual subject-level cortical causal connectivity graphs, and we recorded 

changes in connectome communication efficiency as percent change in global efficiency 

(Fig. 1e), calculated using the efficiency_bin function in the Brain Connectivity Toolbox 

(Rubinov and Sporns, 2010). We supplemented this targeted attack analysis with a random 

attack analysis, by deleting randomly selected nodes rather than specifically targeting nodes 

from one RSN at a time. To minimize order effects in the virtual lesion analysis we ran 

the analysis 10 times for every subject, deleting the nodes within each RSN in a random 

order each time, then we took the mean of the efficiency loss over the 10 runs. This 

resulted in a set of 13 loss-of-efficiency curves per subject that quantified how strongly 

communication was impaired as successive nodes from each RSN were deleted. We took 

the pointwise derivative of each subject’s loss-of-efficiency curves (for each of 13 deletion 

schedules) and compared the average pointwise slope between RSNs (plus random deletion) 

to quantify which RSN resulted in the most rapid loss-of-efficiency. RSN deletion slopes 

were statistically compared using a Friedman test with post-hoc significance testing using 

the Nemenyi test. Additionally, we examined which nodes had the greatest overall impact on 

connectome loss-of-efficiency by deleting (in single subjects) each node (of 360) one at a 

time and recording the change in overall global efficiency.

3. Results

3.1. Individual subjects functional neuroimaging data are non-Gaussian and skewed

Within each single subject, we compared the skewness of the fMRI time series to the 

skewness of random Gaussian data. This analysis revealed that every single subject’s BOLD 

time series were significantly (rank sum tests, p <. 05) more skewed than surrogate Gaussian 

data. At the group level, data were significantly more skewed than random Gaussian data as 

well (p <. 001). Thus, we conclude that the functional neuroimaging data analyzed in the 

current report are non-Gaussian, specifically skewed, and therefore it is appropriate to apply 

the skew-based orientation step to the analysis.

3.2. Whole-cortex causal graphs are sparse but well-connected

The resulting whole-cortex causal connectomes were sparse, containing only ~2.25% of all 

possible connections (360 parcels: mean n connections = 1452). Nevertheless, the graphs 

were well-connected – in most graphs (93.7%), every node was connected to at least one 

other node, and of the 6.3% of graphs that contained disconnected nodes, each graph had 

very few disconnected nodes (median = 1, max = 2). Thus, despite the sparsity of the 

cortical causal connectivity graphs, these graphs appear to capture global causal patterns of 

connectivity.
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3.3. Diversity of inter-network connections highlights hub roles of multiple brain 
networks

To summarize the overall connectivity structure of our cortical causal graphs, we categorized 

each of 360 cortical nodes into 12 resting-state networks (RSNs) (Ji et al., 2019). For a 

visual of these 12 RSNs plotted on the cortical surface, see Fig. 2a. We first examined 

patterns of connectivity between these large-scale brain RSNs. We established whether each 

RSN shared a statistically significant proportion of connections with each other RSN. We 

additionally tested for a preferred direction of connectivity between significantly connected 

pairs of RSNs.

The result of this analysis is plotted as a force-directed graph, with connections drawn 

between RSNs that were found to be significantly connected. Connections are shown 

as unidirectional if rank-sum testing indicated a preferred direction of connectivity, and 

connections are shown as bidirectional if rank-sum testing was unable to determine a 

preferred direction of connections (Fig. 2a). A clear hub-periphery structure was apparent. 

We found that visual RSNs 1 and 2 were bidirectionally interconnected, and that visual 

RSNs projected to the dorsal attention network. The dorsal attention network projected 

to multimodal association networks (posterior and ventral) and the frontoparietal network. 

The frontoparietal network was situated in the center of the graph, being the most highly 

connected RSN and sending information to the ventral attention/language, limbic/orbito-

affective, and default mode RSNs, while bidirectionally sharing connections with the 

cingulo-opercular network. This network connectivity diagram also demonstrated significant 

bidirectional connectivity between auditory network and the ventral attention/language 

network, as well as showing strong connectivity between somatomotor and auditory 

network, which is to be expected since these networks are spatially adjacent and are strongly 

interconnected (so strongly that they are frequently merged into the same network in the 

literature; (Ji et al., 2019)).

We supplemented this analysis by an examination of the average participation coefficient 

within each RSN. Since we used causal connectivity graphs, we calculated participation 

coefficient separately using outgoing and incoming connections, resulting in two summary 

measures per RSN, per subject (hereafter out-part and in-part, respectively). We found 

that across subjects, the twelve RSNs differed statistically in both out-part and in-part 

(Friedman tests; both p <. 001). Post hoc comparisons (Nemenyi test) demonstrated 

similar patterns of RSN differences for out-part and in-part. The posterior multimodal and 

dorsal attention RSNs demonstrated the highest participation coefficient values, followed 

by the frontoparietal, ventral attention, cingulo-opercular, and visual-1 RSNs (all p <. 

001). This analysis of participation coefficients demonstrated that the dorsal attention, 

posterior multimodal association, frontoparietal, ventral attention, cingulo-opercular, and 

visual-1 RSNs maintain the greatest diversity of inter-RSN connections in the causal human 

connectome (Fig. 2b,c).

3.4. The causal connectome has a heavy-tailed centrality structure

Thus far we have clarified patterns of inter-RSN connectivity in the causal connectome. 

From here, we examined the most important hubs of the cortical causal connectome using 
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two common centrality metrics: degree centrality, which characterizes highly connected 

nodes, and betweenness centrality, which characterizes nodes that lie on many shortest 

paths between other nodes and thus facilitate efficient network communication (Rubinov 

and Sporns, 2010). If nodes are to be considered hubs based on centrality metrics, the 

distribution of those metrics should be heavy tailed, with a minority of highly central 

nodes. We found that the centrality distributions of the obtained causal graphs were indeed 

heavy-tailed, with most nodes having very low centrality and relatively few nodes having 

very high causal centrality (Fig. 3a–d). Centrality values of the causal connectivity graphs 

were significantly more heavy-tailed than equally connected random comparison graphs, 

as confirmed by comparing the skewness of the indegree, outdegree, total degree, and 

betweenness distributions of these two sets of graphs (rank-sum tests, all p <. 001). We 

additionally leveraged this analysis to produce categorical labels of individual brain regions 

as hubs if their centrality exceeded the 95th percentile of the surrogate distribution. These 

binary labels almost exclusively designated regions of the lateral and superior parietal cortex 

as hubs, along with some frontal nodes (Supplement).

3.5. The most central hubs of the causal connectome cluster in executive and attentional 
networks

The 12 RSNs differed in average indegree, outdegree, and total degree (Friedman tests, all 

p <. 001). Most relevant for the current work, post hoc testing for RSN degree differences 

(Nemenyi tests) demonstrated that the dorsal attention and frontoparietal networks had 

significantly higher indegrees, outdegrees, and total degrees than the other 10 RSNs (all p 
<. 001). Similarly, comparison of average betweenness centrality across the 12 RSNs (Fig. 

3j) established that frontoparietal nodes participated in the greatest number of efficient paths, 

followed by dorsal attention nodes; these RSNs had higher betweenness centrality averages 

than the other 10 RSNs, and frontoparietal had significantly higher betweenness than 

dorsal attention (all p <. 001). The cingulo-opercular network had the third highest average 

betweenness centrality scores, despite having only modest degree centrality, thus suggesting 

that while cingulo-opercular regions might not be the most highly connected regions in 

cortex, these regions are nevertheless particularly important for cortical communication. 

Note that while Power et al. (2013) showed that degree-based hubs in Pearson correlation 

networks are confounded by the size of the functional communities the nodes belong to (i.e., 

the number of nodes in each RSN), in a critical control analysis we did not find significant 

correlations between community size and degree or betweenness centrality (Fig. 3k–n), 

suggesting that our measures of causal centrality cannot be ascribed to the size of the RSNs 

in our analysis.

3.6. Executive and attentional networks equally send and receive connections

Since causal graphs separate incoming and outgoing causal connections, we were 

additionally able to assess whether each RSN primarily sent or received information. 

Most RSNs could be characterized as either primarily “senders” (visual, somatomotor), 

or as primarily “receivers” (cingulo-opercular, auditory, default mode, posterior/ventral 

multimodal, and limbic/orbito-affective). However, a small number of RSNs were found 

to send and receive equal numbers of connections (frontoparietal, dorsal attention, ventral 

attention/language; Fig. 3i).
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3.7. Executive and attentional hubs are points of causal connectome vulnerability

Our analyses up to this point have demonstrated that the frontoparietal, dorsal attention, 

and cingulo-opercular RSNs are highly central hubs in the causal connectome. Based on 

previous reports, it is likely that the identified central hubs of the causal human connectome 

are also points of system-level vulnerability to insult. To test this hypothesis, we conducted 

a series of simulated attacks on the causal connectomes presented in this study. For each 

RSN, we sequentially deleted nodes in that RSN from each subject’s cortical graph, and 

measured loss-of-function via percent change in global efficiency (Latora and Marchiori, 

2001; Rubinov and Sporns, 2010). Fig. 4a shows the average of these network-level loss-of-

function curves for all 442 subjects. As a summary measure of the impact of nodal targeted 

attacks on each RSN, we took the average pointwise derivative of the global efficiency 

loss curve for each subject and RSN (plus random deletion, as a control analysis; Fig. 4b). 

Results indicated that the RSN loss functions differed significantly in average pointwise 

slope (Friedman test, p <. 001). Post-hoc multiple testing (Nemenyi test) indicated that the 

frontoparietal network had the steepest loss-of-efficiency function, followed by the dorsal 

attention network. These RSNs had steeper loss functions than the other 10 RSNs (all p 
<. 001). Visual-1, cingulo-opercular, and posterior multimodal network also showed strong 

efficiency loss effects when lesioned.

Counterintuitively, the virtual lesion analysis indicated that for the auditory, ventral 

multimodal and orbito-affective networks the average global efficiency increased as nodes 

were deleted. This is likely a result of the very low connectivity of these networks, which 

have the three lowest degree and betweenness of the RSNs and are among the lowest 

participation in the connectome as well. This low global connectedness likely means 

that as nodes are removed the network generally becomes more efficient. In summary, 

the targeted attack analysis demonstrated that the hub RSNs we previously identified 

(frontoparietal, dorsal attention, cingulo-opercular) are critical points of vulnerability in 

cortical efficiency, and that loss-of-function (virtual lesions) in these RSNs impairs global 

cortical communication efficiency to a greater degree than other RSNs.

3.8. Comparison of GANGO causal connectivity graphs with Pearson correlation graphs

To examine how the cortical causal human connectome compares to more typical 

connectivity analyses (Pearson correlation graphs), we ran the presented analyses using two 

sets of binarized correlation graphs. The first set was proportionally thresholded at a 15% 

cost (that is, each graph retained the 15% largest positive values). Proportional thresholding 

was chosen to improve stability of measures over absolute thresholds ((Garrison et al., 

2015)), and the chosen 15% cost is in the middle of an ideal cost range for producing 

small-world graphs in Pearson correlation networks (Achard and Bullmore, 2007; Bullmore 

and Bassett, 2011) and as such is among the most typical thresholding procedures in the 

literature. The second set was thresholded to retain the same number of connections as the 

subject-specific causal graph, thus matching the density of the causal connectomes exactly. 

Detailed results of these comparison analyses are presented in the Supplement.

Overall, this comparison suggests that Pearson correlation graphs emphasize the importance 

of sensory regions and motor cortex as cortical hubs, while causal connectivity graphs 
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instead emphasize higher cognitive regions, particularly frontoparietal and cingulo-opercular 

networks (which did not exhibit hub-like connectivity in any analysis for Pearson correlation 

graphs). We also found that the sparser set of correlation graphs were very poorly connected 

– on average, over 40% of nodes were completely disconnected at this threshold. At this 

2.25% (average) density, we also found that graphs were significantly less hub-like than 

surrogate random graphs, suggesting that centrality-based hubs break down at this level of 

sparsity in Pearson correlation graphs.

Furthermore, in 15% density Pearson correlation graphs we found that both degree and 

betweenness centrality were highly confounded by the size of the RSN nodes belonged 

to, unlike in the causal graphs. This was not the case for the sparser correlation graphs. 

These differences between Pearson correlation and causal connectomes were somewhat 

attenuated when using participation coefficient as a measure. However, in the sparse 2.25% 

density correlation graphs, we were unable to estimate participation coefficient for the 

two least-connected networks (ventral multimodal, limbic/orbito-affective) due to extremely 

low levels of connectivity (zero in nearly all subjects). We also observed that applying 

the virtual lesion analysis to the 15% density Pearson correlation graph resulted in many 

RSNs increasing global efficiency when deleted. This effect was magnified for the sparser 

2.25% density correlation graphs. This is likely due to the much greater incidence of 

completely unconnected nodes in thresholded Pearson correlation graphs, as opposed to 

the well-connected causal graphs we generated using the GANGO method. Note that 

unconnected nodes have this effect because the global efficiency of a node is calculated as 

the inverse shortest path (number of edges) from that node to each other node in the network 

(Latora and Marchiori, 2001). The global efficiency of the network is then the average of 

all nodal global efficiencies. An unconnected node is defined to have an infinite path length 

and a global efficiency of zero (Rubinov and Sporns, 2010) – thus, these unconnected nodes 

reduce the average global efficiency (connected nodes will always have global efficiency 

> 0). It follows then, that the deletion of an unconnected node removes a zero from being 

averaged into the global efficiency score, improving the average network efficiency.

4. Discussion

Functional connectivity analyses of the human cortex typically use undirected connectivity 

estimates, derived by computing Pearson correlation coefficients between the time series 

of the hemodynamic signals of individual brain regions (nodes). The need to extend 

functional connectivity analyses to causal connectivity is recognized (Reid et al., 2019; 

Smith, 2012), but data-driven methods for calculating high-dimensional causal graphs within 

single subjects have not been thoroughly tested yet. Here, we present an examination of the 

causal connectivity patterns of the human cortex using a two-stage causal discovery machine 

learning approach. Two-stage causal discovery methods break the graph creation process 

into separate adjacency search and orientation phases. Ramsey et al. (2014) and Sanchez-

Romero et al. (2019) both used the PC algorithm (Spirtes et al., 2001) for the adjacency 

search, and demonstrated that non-Gaussian pairwise likelihood measures (particularly 

skew-based measures) could accurately identify correct edge orientations. We demonstrate 

the utility of a scalable version of these two-step causal discovery algorithms, which we call 

GANGO for convenience. Scalability is achieved by substituting the PC adjacency search 

Rawls et al. Page 13

Neuroimage. Author manuscript; available in PMC 2022 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with FGES (Fast Greedy Equivalence Search; (Ramsey et al., 2017)), itself a parallelized 

version of Greedy Equivalence Search (Chickering, 2002), which was shown to produce 

high precision for adjacency search in Smith et al. (2011).

The causal connectomes produced by the GANGO approach were quite different from 

those produced by the more typical Pearson correlations - despite very low density, these 

graphs were fully connected in nearly all cases. For this initial justification of the GANGO 

approach, we used the standard BIC score (penalty discount = 1) to penalize the connectivity 

density of the produced graphs; notably, the FGES method can be parameterized to produce 

sparser graphs with penalty discounts > 1, and to produce denser graphs with penalty 

discounts < 1. As such, future applications of the GANGO framework might capitalize on 

this flexibility to produce graphs with the desired density for the research question under 

investigation. Furthermore, GANGO networks did not exhibit any relationship between RSN 

size (number of nodes) and degree centrality, unlike standard Pearson correlation-based 

graphs. This dependency arises in correlation-based graphs whenever the graph exhibits 

a modular community structure, as explained in Power et al. (2013). Specifically, in 

cases where graphs exhibit community structure, a node in a larger community would 

have a higher chance to form more connections simply because connections are more 

common within communities than between them. However, many of these connections 

will be indirect, and nodal correlations within a community will be high due to indirect 

connections. Bayes net methods, on the other hand, enforce sparsity wherever possible via 

a Markovian screening-off property and retain only direct connections while eliminating 

indirect connections (Spirtes et al., 2001). Thus, our results provide support for the viability 

of the GANGO approach for providing unbiased centrality measures from resting-state 

fMRI data.

Prominent hubs of the causal connectome overlap many regions previously identified by 

resting-state fMRI (Achard et al., 2006; Buckner et al., 2009; Tomasi and Volkow, 2011; 

van den Heuvel and Sporns, 2013; Zuo et al., 2012), with the GANGO method reliably 

recovering these network properties when applied on a single subject level. Importantly, 

control analyses indicated that nodal hub metrics (degree, betweenness centrality) were 

unconfounded by the size of the RSN that nodes belonged to. In contrast, degree and 

betweenness centrality were strongly confounded by RSN size for thresholded correlation 

graphs (Supplement). Overall, we found prominent causal connectivity hubs and points of 

vulnerability of the causal connectome in dorsal attention network (DAN), frontoparietal 

network (FPN) and cingulo-opercular network (COP), with each of these hub networks 

showing distinctly different connectivity profiles.

The dorsal attention network (DAN) exhibited theoretically interesting properties that 

contributed to its high level of connectivity. In our analysis, DAN had among the greatest 

diversity of connections with other RSNs (measured using participation coefficient), as well 

as having overall high connectivity (measured using degree centrality) and participating 

in many efficient paths (measured using betweenness centrality). Our analysis of the inter-

RSN connectivity structure of the cortical causal connectome revealed that DAN owed 

its high centrality to its role in receiving information from visual networks, processing 

that information, and then transmitting information to multimodal association networks 

Rawls et al. Page 14

Neuroimage. Author manuscript; available in PMC 2022 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(posterior/ventral multimodal association networks, FPN). This is in line with long-standing 

evidence that DAN plays an important role in top-down visual selective attention (Corbetta 

and Shulman, 2002; Vossel et al., 2014). While we found that causal connections usually 

progressed from visual to dorsal attention networks, a large proportion of these connections 

still progressed in the opposite direction as well. Thus, our results support a role of DAN 

in top-down control over visual systems as well, providing further evidence that the dorsal 

attention network supports both bottom-up sensory integration and top-down attentional 

control (Long and Kuhl, 2018).

The cingulo-opercular network (COP) was found to mediate many efficient paths in the 

cortex (betweenness) and shared a large diversity of inter-RSN connections (participation 

coefficient) but did not have particularly high connectivity (degree). COP has a role 

in maintaining task sets, initiating goal-directed behaviors, and consolidating motor 

programs (Dosenbach et al., 2008, 2006; Fair et al., 2007; Newbold et al., 2021). In our 

consensus network structure, we found that COP received significant connections from the 

somatomotor network, sent significant connections to the orbito-affective (reward) network, 

and was bidirectionally connected to FPN. The uncovered functional connectivity between 

the reward networks and COP is in line with evidence that COP has a role in coordinating 

the response of brain reward-related regions (Huckins et al., 2019), and the connectivity 

between COP and somatomotor networks corroborates evidence that COP plays a role in 

consolidation, planning, and plasticity of motor regions (Newbold et al., 2021). Connectivity 

between COP and somatomotor networks also increases through development and is linked 

to the development of improved cognitive control (Marek et al., 2015). Finally, COP was 

found to be tightly bidirectionally connected with frontoparietal network, echoing evidence 

that these RSNs work together as dual cognitive control networks (Dosenbach et al., 2008; 

Fair et al., 2007; Gratton et al., 2018).

Across all analyses, we found a critical role of frontoparietal executive network (FPN) 

connectivity. This represents an important point of agreement between our causal network 

results and recent advances in understanding the role of the FPN in overall function, as 

well as an important result that we did not find with traditional Pearson correlation graphs 

(Supplement). Due to its central position, FPN shared the greatest diversity of inter-RSN 

connectivity in the consensus graph, including significant received connections from DAN, 

significant sent connections to the ventral attention, orbito-affective, and default mode 

networks, and bidirectional connections with COP. Previous studies demonstrate that FPN 

flexibly shifts its connectivity patterns to fulfill task demands, while still retaining high 

correlations with its resting-state connectivity (Cocuzza et al., 2020; Cole et al., 2013; 

(Crittenden et al., 2016)), and another recent study demonstrated that resting-state network 

connectivity in FPN predicts transfer of task-relevant information through distributed brain 

circuitry (Ito et al., 2017). Overall, our finding that FPN nodes are, on average, the most 

highly central nodes in the causal human connectome is consistent with a theoretical role 

of FPN as a flexible executive coordinator of overall brain function ((Assem et al., 2020); 

Dosenbach et al., 2006; (Duncan, 2010); Fair et al., 2007; (Marek and Dosenbach, 2019)).

This is also consistent with recent control systems perspectives on brain connectivity, which 

have suggested that FPN has a particular role in shifting brain network configuration into 
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difficult-to-reach cognitive states (Gu et al., 2015). The causal connectivity from FPN 

to default mode network (DMN) deserves particular attention. These RSNs are typically 

anticorrelated during cognition (FPN activity increases and DMN activity decreases), a 

finding that replicates in experimental paradigms including attention (Hellyer et al., 2014), 

working memory (Kelly et al., 2008; Murphy et al., 2020), and cognitive reasoning (Hearne 

et al., 2015). We found that the connectivity between FPN and DMN preferentially flows 

from FPN to default mode network, suggesting that FPN might have an executive role 

in “turning off” or inhibiting the DMN in response to the need for control. The revealed 

causal hub role of the FPN is among the most important contributions of this study, as 

typically thresholded Pearson correlation graphs do not show hub-like connectivity in FPN 

(Supplement), despite ample theoretical and experimental evidence that the frontoparietal 

network is critical for overall organization and control of the connectome.

Our virtual lesion analysis of the causal human connectome suggests a potential application 

of the GANGO method to understand brain impairments in psychiatric disorders. A previous 

analysis (Crossley et al., 2014) demonstrated that virtual lesions to the hubs of the human 

connectome impair network global efficiency more than virtual lesions of non-hub brain 

nodes. The authors then followed this with a meta-analysis demonstrating that the hubs 

of the human connectome were more likely to contain gray matter lesions than non-hub 

regions across nine different disorders, including schizophrenia and Alzheimer’s disease. 

Many psychiatric and neurological disorders are associated with reduced brain global 

efficiency, including prenatal alcohol exposure (Wozniak et al., 2013) and fetal alcohol 

syndrome (Rodriguez et al., 2021), schizophrenia (Hummer et al., 2020), ADHD (Wang et 

al., 2020, 2021), generalized anxiety disorder (Guo et al., 2021), heavy smoking (Lin et al., 

2015), and major depressive disorder ((Meng et al., 2014); Wang et al., 2017; Zhi et al., 

2018), among others. Additionally, prefrontal tDCS for alcohol use disorder increased brain 

network global efficiency (Holla et al., 2020), suggesting that normalizing network global 

efficiency might contribute to improved treatment outcomes from neuromodulation therapy. 

Furthermore, mindfulness-based cognitive therapy in mood-dysregulated adolescents 

resulted in an increase in brain global efficiency, especially within frontoparietal and 

cingulo-opercular networks (Qin et al., 2021). GANGO causal connectomes, but not 

standard Pearson correlation connectomes, emphasize hub connectivity in frontoparietal 

and cingulo-opercular networks, as well as suggesting that these networks are points of 

vulnerability with regards to their impact on global network integration when lesioned. 

Thus, the causal human connectome might explain the high incidence of frontoparietal 

dysfunction and global efficiency reduction in patient groups, as well as predicting the 

therapeutic effects of frontoparietal stimulation in various psychiatric dysfunctions. As such, 

the GANGO framework might provide a powerful new tool to understand, predict, and 

ultimately treat brain network dysfunction in psychiatry.

The current investigation delivers a powerful new framework for quickly computing (~30 

s per connectome on a personal laptop with six cores and 32 Gb Ram) high-dimensional 

causal connectivity graphs from observed brain data as well as providing important insight 

into the hub structure of the causal human connectome, but it is not without limitations. 

One potential limitation lies in the use of a relatively coarse (n = 12) RSN partition for 

summarizing cortical hubs (Ji et al., 2019). However, the use of a published RSN partition 
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facilitates interpretation of results, as the results of higher-dimensional (e.g., ICA-based) 

RSN partitions are often difficult to interpret and require abstraction via multidimensional 

statistics to summarize. In the Supplement we report the consensus network structure of 

these same data using a larger number of RSNs [the 22 neuroanatomical regions reported in 

the supplement of Glasser et al. (2016a)]. The consensus structure of connectivity between 

these 22 regions also shows an orderly progression of information from visual sensory 

regions to the dorsal and ventral visual streams, through the parietal association cortex, and 

into the motor and prefrontal cortex. The organization of this more granular causal network 

also aligns well with recent perspectives on the hierarchical organization of the prefrontal 

cortex (Badre and Nee, 2018). An additional limitation of these results is that our method 

for calculating causal connectivity is unable to discover two-cycles (direct feedback cycles, 

where A > B and B > A). While two methods have been proposed for fMRI connectivity 

that are theoretically capable of recovering two-cycles (Sanchez-Romero et al., 2019), these 

methods have never been used in an applied research context, and often perform worse 

than the skew-based orientation method we use (Sanchez-Romero et al., 2019). Notably, 

the RSkew orientation method we adopt for the GANGO framework can discover 3-cycle 

or greater feedback loops, so only direct feedback loops remain unmeasured. Nevertheless, 

as methods for more accurately assessing feedback cycles from fMRI are developed, the 

framework we implement in the current investigation could be expanded to include such 

methods. Finally, we note that, while every single subject in this study had significantly 

skewed BOLD distributions (with reference to random Gaussian data), this is not guaranteed 

to be the case in all datasets. As some common preprocessing steps (aggressive temporal 

filtering) can introduce Gaussian trends into BOLD data, we recommend that application 

of the GANGO framework should only follow careful examination of BOLD skewness, to 

ensure that the assumptions of the methods are adequately met.

5. Conclusion

Using a causal discovery machine learning framework, we demonstrate that the most 

centrally connected hubs of the cortical connectome are situated in the frontoparietal, 

dorsal attention and cingulo-opercular networks. In particular, the causal human connectome 

highlights high connectivity of the frontoparietal network with all other higher cognitive 

RSNs. The discovered hub role of the frontoparietal network in the causal human 

connectome is especially attractive, as brain-based therapies for psychiatric conditions 

typically impact or directly stimulate nodes in the frontoparietal network (Belsher et al., 

2021; Ferrarelli and Phillips, 2021; Fitzgerald, 2021; Song et al., 2019; Voigt et al., 2021; 

Zhang et al., 2021; Zilverstand et al., 2017, 2016). Previously, we even demonstrated that 

connectivity in the frontoparietal network has downstream causal effects on the severity 

of alcohol use disorder (Rawls et al., 2021). As it is applied on a single-subject basis, 

the GANGO method could potentially even enable individualized causal connectivity-based 

neuromodulation targeting. Thus, the current study sets the stage for future applications of 

data-driven causal connectivity applications in psychiatry.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Summary of the strategy we employed to build single-subject (n = 442) causal connectivity 

graphs for further analysis, and the analyses we ran to characterize the hub structure of these 

RSNs.

A: Described in Section 2.3 (Methods). The brain surface in the plot is a single TR of a 

randomly selected subject’s resting-state data, representing the resting-state activation maps 

from which causal connectomes were computed, to illustrate the preprocessing steps.

B: Described in Section 2.4 (Methods) and Section 3.3 (Results).

C: Described in Section 2.5 (Methods) and Section 3.4 (Results).

D: Described in Section 2.6 (Methods) and Sections 3.5 and 3.6 (Results).

E: Described in Section 2.7 (Methods) and Section 3.7 (Results).
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Fig. 2. 
Diversity of inter-network connections highlights hub roles of multiple brain networks.

A: The cortical surface is a reference plot of the 12 RSNs from the Cole-Anticevic Brain-

wide Network Partition (CAB-NP; color-coded). Significant inter-RSN connectivity of the 

cortical causal network, plotted in a force-directed layout. A clear hub-periphery structure 

emerged. The dorsal attention network formed a causal pathway from early visual RSNs 

to multimodal association RSNs. The frontoparietal network was situated in the center of 

the graph and overall, the most interconnected RSN, receiving directed connections from 

dorsal attention network, sending directed connections to ventral attention/language, limbic/

orbito-affective, and default mode networks, and sharing bidirectional connections with 

cingulo-opercular network. Percentages on directed connections indicate the proportion of 

shared connections that were oriented in the statistically preferred direction.

B: Cortical surface plot shows the average of nodal in-participation and out-participation 

coefficient values. Prominent high-participation nodes were apparent in parietal and frontal 

cortex.
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C: RSN average participation coefficients. Generally, the posterior multimodal, dorsal 

attention, frontoparietal, ventral attention, cingulo-opercular, and visual-1 RSNs maintained 

a high diversity of out-of-RSN connections compared to the rest of the cortex.
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Fig. 3. 
The most central hubs of the causal connectome cluster in executive and attentional 

networks.

A–D: Median nodal centrality across n = 442 subjects, for each of 360 cortical nodes. 

Blue histogram indicates the distribution of median centralities for 1000 equally connected 

random graphs.

E,F,G,H: Centrality values plotted on inflated cortical surfaces to visualize the anatomical 

locations of highly connected hubs.
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I: Average indegree and outdegree across the 12 RSNs. To determine whether networks 

primarily send or receive information, for each network we tested for differences between 

indegree and outdegree. Visual (Vis1 and Vis2) and somatomotor (SMN) networks could 

be categorized as primarily sending information; cingulo-opercular (COP), auditory (Aud), 

default mode (DMN), posterior and ventral multimodal (PMM and VMM), and orbito-

affective/limbic (ORA) networks could be classified as primarily receiving information, 

and dorsal attention (DAN), ventral attention/language (VAN), and frontoparietal (FPN) 

networks equally sent and received information. Overall, the most connected RSNs were 

the dorsal attention and frontoparietal networks. Asterisks above violin plots indicate 

significance of the difference between indegree and outdegree for each network (* p <. 

05, ** p <. 01, *** p <. 001, n.s. = not significant).

J: Average betweenness across the 12 RSNs. Overall, frontoparietal network participated 

in the highest number of short paths, followed by dorsal attention and cingulo-opercular 

networks.

K–N: Control analyses ruled out the possibility that cortical hubs could be explained by the 

number of parcels in the RSN that each node belongs to. Blue line indicates a least-squares 

regression fit, and blue shading indicates the 95% confidence interval of the regression.
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Fig. 4. 
Executive and attentional hubs are points of causal network vulnerability.

A: Loss of network efficiency following node deletion as a percentage of network global 

efficiency. The resulting efficiency loss curves are color-coded by RSN. As a visual 

aid, we plotted RSNs with the most central (i.e., hub-like) connectivity profiles from 

previous analyses (cingulo-opercular, frontoparietal, dorsal attention) with solid lines, and 

the remaining (i.e., less central or less hub-like) RSNs are plotted with dotted lines. 

Additionally, a random attack was carried out (black line) by deleting nodes chosen at 

random (rather than from a specific RSN).
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B: We calculated the average pointwise slope of the loss curve for each RSN, and compared 

the average pointwise slopes, thus quantifying how quickly the cortical network loses 

efficiency when nodes from each RSN are deleted. Violin plots indicate the average slope for 

the efficiency loss function for each RSN (per subject).

C: The cortical surface contains nodal values for change in network global efficiency 

following deletion of individual cortical nodes (that is, the color of each node represents 

the global efficiency loss when that node is deleted; cold colors indicate gains to global 

efficiency when the node is deleted).
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