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Aneuploidy has been recognized as a common characteristic of cancers. Aneuploidy frequently results from errors of
themitotic checkpoint, themajor cell cycle controlmechanism that acts to prevent chromosomemissegregation.Mu-
tation of the genes that control chromosome segregation during mitosis may explain the high rate of chromosomal
instability and aneuploidy, a characteristic of most solid tumors, including glioblastoma (GBM) (Gordon et al., 2012
[1]; Singh et al., 2012 [2]). Monopolar spindle 1 (MPS1) is an essential spindle assembly checkpoint kinase that is
overexpressed in several human cancers (Kilpinen et al., 2010 [3]; Mills et al., 1992 [4]; Yuan et al., 2006 [5]). In
our previous publication, we have shown the role of MPS1 kinase in DNA repair and enhanced radiosensitivity in
GBM (Maachani et al., 2015 [6]). Here, we provide methodological and analytical details of that study, to compare
mRNA expression profile of siMPS1-silenced U251 cells with untransfected control, and siRNA control (siNeg) at 6,
24, and 48 h after transfection. The raw data of this study is deposited in Gene Expression Omnibus under the acces-
sion number GSE57091.

Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Specifications
rganism/cell
line/tissue
Homo sapiens/immortalized cell line from Glioblastoma
patient derived U251/brain
x
 Male

quencer or
array type
GeneChip Human Genome U133A 2.0 Array (Affymetrix)
ata format
 Raw and processed

xperimental
factors
Control (untransfected), siNegative and siMPS1 transfected
U251 cells at 6, 24, and 48 h after transfection
xperimental
features
Microarray analysis was conducted in duplicate for each
experimental condition to determine the changes in full
transcriptome
onsent
 N/A

mple source
location
National Cancer Institute Frederick Tumor Repository,
MD, USA
1. Direct link to deposited data

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE57091.

2. Experimental design, materials and methods

2.1. Cell lines

For this study, U251 (National Cancer Institute Frederick Tumor
Repository) human glioblastoma (GBM) cells were cultured in a
ss article under the CC BY-NC-ND lic
Dulbecco's Modified Eagle Medium (DMEM; Gibco®) supplemented
with 10% fetal bovine serum (FBS; Gibco®). Cells were grown and main-
tained in a humidified atmosphere at 37 °C and 5% (v/v) CO2.
2.2. Cell transfections

U251 cells were transfected with 2-pmol siMPS1 using RNAi Max
lipid transfection reagent (Invitrogen). Briefly, siRNA was complexed
with lipid in DMEM media for 15 min at room temperature. Two-
thousand cells suspended in DMEM containing 20% FBS were added
and continued incubating at room temperature for additional 15 min.
Plates were maintained at 37 °C/5% CO2. Untransfected cells and wells
transfected with negative (All star siNegative [siNeg], Qiagen) control
siRNAs were used as controls.

siMPS1: 5′ TTGGACTGTTATACTCTTGAA 3′ (SI00071624, Qiagen Inc.,
Germantown, MD).
2.3. RNA isolation, purification, and quality control

Total RNA was isolated after 6, 24 and 48 h post-siRNA transfection.
The TRIzol reagent (Life Technologies™) was used to extract the total
cellular RNA from duplicate samples at each time point. Extracted RNA
was purified using the RNeasy kit (Qiagen®) and quantified using the
Agilent 2100 bioanalyzer (Agilent Technologies; Table 1). All RNA sam-
ples presented A260/A280 ratios above 1.8, and RNA integrity numbers
(RIN) above 8 (except for 1 control sample), as recommended for mi-
croarray analysis.
ense (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
RNA purity and quality assessment for microarray experiments.

Sample no. Sample ID ng/μl A260 A280 260/280 260/230 RIN

1 Control 1, 6 h 28.39 0.71 0.379 1.87 0.61 9.2
2 Control 2, 6 h 28.65 0.716 0.365 1.96 0.07 6.3
3 Control 1, 24 h 19.45 0.486 0.229 2.12 0.05 8.8
4 Control 2, 24 h 15.27 0.382 0.175 2.18 0.04 9
5 Control 1, 48 h 15.08 0.377 0.192 1.97 0.37 9
6 Control 2, 48 h 9.99 0.25 0.116 2.15 0.57 8.7
7 siNeg 1, 6 h 30.76 0.769 0.408 1.88 0.77 8.2
8 siNeg 2, 6 h 26.05 0.651 0.322 2.02 0.74 8.5
9 siNeg 1, 24 h 14.17 0.354 0.185 1.91 0.51 8.2
10 siNeg 2, 24 h 17.26 0.432 0.229 1.88 0.52 8.3
11 siNeg 1, 48 h 22.33 0.558 0.272 2.05 0.7 9.3
12 siNeg 2, 48 h 16.21 0.405 0.18 2.25 0.11 9
13 siMPS1 1, 6 h 30.71 0.768 0.38 2.02 0.11 8.9
14 siMPS1 2, 6 h 33.68 0.842 0.419 2.01 1.31 8.3
15 siMPS1 1, 24 h 15.9 0.397 0.208 1.91 0.14 8.6
16 siMPS1 2, 24 h 20.38 0.51 0.273 1.87 0.33 8.7
17 siMPS1 1, 48 h 14.64 0.366 0.165 2.22 0.81 9.1
18 siMPS1 2, 48 h 21.22 0.53 0.269 1.97 0.34 9

Fig. 1.Quality control measures for the data set. (A, B) Boxplot and histograms of pm intensities
ent calls for spiked-in and control genes. (E) Principal component plot of duplicate data. Lines

37U. Shankavaram et al. / Genomics Data 6 (2015) 36–39
2.4. Microarray experiments and gene expression analysis

2.4.1. cRNA preparation, labeling, purification and quality control analysis
RNA was processed for use on Affymetrix (Santa Clara, CA, USA)

GeneChip Human Genome U133A 2.0 Arrays, according to the
manufacturer's GeneChip 3′ IVT Express kit user manual. Briefly,
250 ng of total RNA containing spiked in Poly-A RNA controls was
used in a reverse transcription reaction (GeneChip 3′ IVT Express Kit;
Affymetrix) to generate first-strand cDNA. After second-strand synthe-
sis, double-stranded cDNA was used in a 16 h in vitro transcription
(IVT) reaction to generate aRNA (GeneChip 3′ IVT Express Kit;
Affymetrix).
2.4.2. Hybridization and washing
12 μg of fragmented aRNA was used in a 200-μl hybridization cock-

tail containing added hybridization controls. 130 μl of mixture was hy-
bridized on arrays for 16 h at 45 °C. Standard post-hybridization wash
and double-stain protocols (FS450; GeneChip HWS kit, Affymetrix)
. (C) RNA degradation plot. (D) QC plot of 3′:5′ ratios, background levels, and percent pres-
extending from sample labels show replicate samples of that treatment.
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were used on an Affymetrix GeneChip Fluidics Station 450. Arrays were
scanned on an Affymetrix GeneChip scanner 3000.
2.4.3. Quality control and data analysis
Microarray data pre-processing and analysis was performed using

packages from the Bioconductor software platform (http://www.
bioconductor.org) [7]. Affymetrix CEL files were normalized using
MAS 5.0 signal algorithm using simpleaffy package [8]. Data quality
was assessed using various quality control measures as suggested by
Affymetrix platform QC metrics (Fig. 1). The boxplots and histogram
of pm intensities of each were similar (Fig. 1A, B). RNA degradation
was examined and all samples were determined to be adequate
(Fig. 1C). For each array, ratios of 3′ vs. 5′ends of control probes for
GAPDH andβ-actinwere plotted (Fig. 1D). The plot also shows percent-
age of present gene calls and background levels alongwith scale factors.
The percent present calls (53–57%) and average background levels
(38–49) showed a similar distribution indicating general agreement
with other samples. The scale factors were within 3-fold from the aver-
age of all samples indicating a good measure of intensity. A principal
components analysis (PCA) was performed and the first two principal
components plotted. Replicates of each sample clustered together. Ad-
ditionally, samples were seen to be clustered by early time (6 h) and
late times (24 and 48 h) post-transfection. Importantly, control and
siNeg transfected samples clearly grouped differently from siMPS1
transfected samples. These results indicate that siMPS1 transfection
leads to time dependent gene expression changes.
Fig. 2. Molecular profiling reveals changes in genes associated with DNA replication, recombin
profile of siMPS1 silenced U251 cells compared to siNeg transfected or untransfected cells (Cont
Up-regulation, red; down-regulation, blue. (B, C) Ingenuity pathway analysis of top networks g
work functions and (C)molecular network showing involvement of DNA damage and repair m
fection expression of DNAPK and TOPO2A was assessed using gene specific RT-PCR (GAPDH no
standard deviation from three independent experiments.
Figure adapted from original publication [6].
2.4.4. Annotation
Themapping between probe identifiers and gene symbols was done

using hgu133adb annotation package from Bioconductor [7]. Probeset
level data was collapsed into gene level by custom algorithm. Some of
the probesets of a given gene were designed to correspond to alternate-
ly spliced variants, and taking the overall average of all probesets would
lead to incorrect estimation. To prevent this effect, our algorithm com-
putes pairwise correlations of all the probesets for a given gene, and sig-
nal from probesets with maximum correlation will be averaged.

2.4.5. Differential expression
Intensity values were log2 scaled, and Z score transformed. A filter

with standard deviation of 1.5 was implemented to remove invariant
genes. To find differentially expressed transcripts between the un-
transfected control, siNeg and siMPS1 transfected U251 at each of the
time points measured, we used one-way analysis of variance
(ANOVA) and p values are adjusted with the post-hoc Scheffe method.
Paired comparisonswere estimated by the Tukey honest significant dif-
ference method, applied to the fitted ANOVA model. Genes changed
(P ≤ .05) between control, siNeg, and siMPS1 were considered for fur-
ther analysis. Paired comparisons were performed for each time point.

2.4.6. Molecular profiling and functional enrichment analysis
To characterize the molecular mechanism underlying the enhanced

radiosensitivity exhibited by GBM cells after MPS1 inhibition, we used
gene expression profiling ofMPS1-silenced U251 cells. Two-way hierar-
chical clustering of mRNA expression profile of siMPS1-silenced U251
ation and repair. (A) Two-way hierarchical clustering representation of mRNA expression
rol) at 6, 24 and 48 h post-transfection. Values shown derived using a cutoff p-value b0.05.
enerated from processing mRNA targets from siMPS1 transfected cells, (B) associated net-
olecules. (D) U251 cells were transfectedwith either siNeg or siMPS1 and 48 h post-trans-
rmalized). Untransfected cells (Ctrl) are also shown. Data presented are the mean ± the
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cells compared with siNeg-transfected or untransfected cells (control)
at 6, 24, and 48 h after transfection is shown (Fig. 2A). Values were de-
rived using a cutoff P ≤ 0.05 and fold change of ≥1.33.We observed 237,
391, and 891 genes as differentially expressed in siMPS1-silenced U251
cells compared with siNeg-transfected cells at 6, 24, and 48 h, respec-
tively. Ingenuity pathway analysis of these differentially expressed
genes identified enrichment for genes associated with the neurological
disease, nervous system development, DNA replication, recombination,
and repair pathway (DRRRp; Fig. 2B and C). DRRRp was one of the top
identified pathways (IPA score, 29), aswell as the topmolecular and cel-
lular function with 20 molecules affected by downregulation of MPS1
(Fig. 2B and C). Genes identified as deregulated following MPS1 loss-
of-function that are associated with DNA damage and repair were
DNAPK [also known as protein kinase DNA-activated (PRKDC)], and
topoisomerase II alpha (TOPO2A).

2.5. Discussion

We describe detailed technical methods to reproduce the analysis of
si-MPS1 silenced U251 cells compared with siRNA control (siNeg) and
untransfected controls at 6, 24 and 48h using Affymetrix GeneChip
HumanGenomeU133A2.0 Arrays. Aneuploidy and chromosomal insta-
bility are characteristic of solid tumors including GBM [1,2]. MPS1 gene
was implicated as an essential spindle assembly checkpoint kinase in
several cancers [3–5]. Our earlier study demonstrated prognostic value
ofMPS1 gene inGBM. Inhibition ofMPS1was shown to alter the expres-
sion of transcripts associated with DNA damage, repair, and replication
including DNA-dependent protein kinase (PRKDC/DNAPK) [6]. This
data can contribute to future investigations examining spindle assembly
regulation as a therapeutic intervention in GBM.
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