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Although immunotherapy has made great strides in cancer therapy, its

effectiveness varies widely among individual patients as well as tumor types,

and there is an urgent need to develop biomarkers for effectively assessing

immunotherapy response. In recent years, RNA methylation regulators have

demonstrated to be novel potential biomarkers for prognosis as well as

immunotherapy of cancers, such as N6-methyladenine (m6A) and 5-

methylcytosine (m5C). N7-methylguanosine (m7G) is a prevalent RNA

modification in eukaryotes, but the relationship between m7G regulators and

prognosis as well as tumor immune microenvironment is still unclear. In this

study, a pan-cancer analysis of 26 m7G regulators across 17 cancer types was

conducted based on the bioinformatics approach. On the one hand, a

comprehensive analysis of expression features, genetic variations and

epigenetic regulation of m7G regulators was carried out, and we found that

the expression tendency of m7G regulators were different among tumors and

their aberrant expression in cancers could be affected by single nucleotide

variation (SNV), copy number variation (CNV), DNA methylation and microRNA

(miRNA) separately or simultaneously. On the other hand, the m7Gscore was

modeled based on single sample gene set enrichment analysis (ssGSEA) for

evaluating the relationships between m7G regulators and cancer clinical

features, hallmark pathways, tumor immune microenvironment,

immunotherapy response as well as pharmacotherapy sensitivity, and we

illustrated that the m7Gscore exhibited tight correlations with prognosis,

several immune features, immunotherapy response and drug sensitivity in

most cancers. In conclusion, our pan-cancer analysis revealed that m7G

regulators may exert critical roles in the tumor progression and immune

microenvironment, and have the potential as biomarkers for predicting

prognosis, immunotherapy response as well as candidate drug compounds

for cancer patients.
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1 Introduction

Immunotherapies such as immune checkpoint blockade

(ICB) have exerted revolutionary influence on cancer

treatment, particularly in the end-stage patients in the last

decade (Zhu et al., 2021). Immunotherapies have shown

strong antitumor activity in multiple solid tumors, such as

non-small cell lung cancer, prostate cancer and melanoma, by

means of re-awakening and enhancing the anti-tumor immunity

(Guha et al., 2022). Nevertheless, the effectiveness of

immunotherapy varies greatly among different populations,

tumors, and individuals, and only a fraction of patients

benefit from the treatment (Wang et al., 2021). Studies have

demonstrated that tumor immune microenvironment (TIME)

plays essential roles in the pathogenesis of cancer, and its

heterogeneity determines the immunotherapeutic effect to a

certain extent (Bai and Cui, 2022). Therefore, significant

efforts have been made to identify reliable predictive

biomarkers of response and resistance to immunotherapy.

RNA epigenetic modifications, such as N6-methyladenine

(m6A) and 5-methylcytosine (m5C), was closely related to

tumor genesis and progression, and the corresponding

regulators performed well in predicting tumor prognosis and

immunotherapy response (Guo et al., 2021; Pan et al., 2021; Zhu

et al., 2021; Huang et al., 2022). N7-methylguanosine (m7G) is

another pattern of RNA modification, which methylate the N7-

atom of guanine (G) by methyltransferase, such as METTL1

(Cheng et al., 2022). The m7G modification often occurred in

the 5′cap and internal positions of messenger RNA or internally

within ribosomal RNA and transfer RNA (Shoombuatong et al.,

2022). Besides, m7G modification has recently been found in

primary microRNA (pri-miRNA) and long noncoding RNA

(lncRNA) (Pandolfini et al., 2019; Wang et al., 2022). M7G

modification mainly exerts their biological functions by

regulating RNA processing and metabolism, involving

transcription elongation, translation, splicing,

polyadenylation, nuclear export, tRNA stability, rRNA

maturation and miRNA biosynthesis (Luo et al., 2022). To

date, several m7G regulators (mainly m7G methyltransferases)

have been revealed to be aberrantly expressed in cancers and

regulate tumor-related biological functions through mediating

m7G modification of tRNA or miRNA, suggesting m7G

modification may exert fundamental effects in tumor genesis

and progression like other RNA methylation modifications

such as m6A and m5C. For example, METTL1, a m7G

methyltransferase, its aberrant upregulation in tumors has

been found to be linked to end-stage tumors and worse

prognosis, and METTL1 can drive oncogenic transformation

and accelerate tumor progression by promoting m7G tRNA

modification (Chen et al., 2021; Ma et al., 2021; Orellana et al.,

2021). Notably, recent studies have uncovered that risk models

based on m7G-associated miRNA and lncRNAs have potential

value in predicting tumor prognosis and immunotherapy

outcomes (Hong et al., 2022; Zhang et al., 2022). However,

the potential of m7G regulators to serve as predictive

biomarkers of prognosis and immunotherapy response

across cancers remains unclear.

In the present study, we performed a pan-cancer analysis of

26 m7G regulators across 17 cancer types using The Cancer

Genome Atlas (TCGA) datasets. Initially, a comprehensive

analysis of expression features, genetic variations and

epigenetic regulation of m7G regulators was carried out; next,

the m7Gscore was modeled based on the single sample gene set

enrichment analysis (ssGSEA) and the relations between m7G

regulators and cancer clinical features, tumor immune

microenvironment, immunotherapy response as well as

pharmacotherapy sensitivity were then dissected. In brief, our

integrative analysis may provide a new perspective into

molecular mechanisms of m7G modification and lay a

theoretical support for m7G regulators as biomarkers for

prognosis, and response to immunotherapy and chemotherapy

in human cancers.

2 Material and methods

2.1 Source and datasets

The mRNA expression raw counts data and corresponding

clinical data were downloaded from TCGA (https://portal.

gdc.cancer.gov/) and different normal tissues from healthy

subjects were obtained from GTEx dataset (https://

commonfund.nih.gov/GTEx), including 7,862 samples and

31 tissues. The TPM normalized gene expression data, copy

number variation data estimated using the GISTIC2 threshold

method, DNA methylation data (Methylation450K), somatic

mutation data and miRNA expression data of pan-cancer

tumor and normal patients were achieved from UCSC Xena

browser (https://portal.gdc.cancer.gov/). The

immunophenoscore was calculated based on The Cancer

Immunome Atlas (TCIA, https://www.tcia.at/home) which

can also be queried for the cellular composition of immune

infiltrates, cancer-germline antigens and the expression of

specific immune-related gene sets. The dysfunction and

exclusion score of patients was calculated based on Tumor

Immune Dysfunction and Exclusion (TIDE, http://tide.dfci.

harvard.edu/) to predict anti-PD1 and anti-CTLA4 response.

The Genomics of Drug Sensitivity in Cancer (GDSC, https://
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www.cancerrxgene.org/) database was used to explore the

drug sensitivity based on 1,000 human cancer cell lines and

related 100s of compounds.

In this study, a total of 17 cancer types were included to

conduct pan-cancer analysis, involving breast invasive carcinoma

(BRCA, n = 1,204), kidney renal clear cell carcinoma (KIRC,

n = 602), lung adenocarcinoma (LUAD, n = 572), thyroid

carcinoma (THCA, n = 563), head and Neck squamous cell

carcinoma (HNSC, n = 562), lung squamous cell carcinoma

(LUSC, n = 548), prostate adenocarcinoma (PRAD, n = 547),

stomach adenocarcinoma (STAD, n = 450), bladder urothelial

carcinoma (BLCA, n = 426), liver hepatocellular carcinoma

(LIHC, n = 419), colon adenocarcinoma (COAD, n = 327),

kidney renal papillary cell carcinoma (KIRP, n = 320),

esophageal carcinoma (ESCA, n = 194), uterine corpus

endometrial carcinoma (UCEC, n = 193), rectum

adenocarcinoma (READ, n = 101), kidney chromophobe

(KICH, n = 91), cholangiocarcinoma (CHOL, n = 45).

2.2 Gene expression pattern in normal
tissues

The baseline expression level of m7G regulators in 31 normal

tissues were examined based on the GTEx data. 31 normal tissues

included heart, blood, brain, kidney, liver, pancreas, muscle,

stomach, colon, pituitary, blood vessel, small intestine, adrenal

gland, salivary gland, adipose tissue, lung, prostate, esophagus,

breast, ovary, nerve, fallopian tube, bladder, spleen, thyroid,

uterus, vagina, cervix uteri, testis, skin, and bone marrow.

Raw counts were normalized by the method of transcripts per

million (TPM).

2.3 Differential analysis of gene expression
in cancers

Among all the cancers, the number of tumor subjects ranged

from 36 to 1,091, while the number of normal subjects ranged

from 0 to 113 and we only included 17 cancers which had over

ten subjects both in tumor and normal. Then, we performed

differential analysis using R package “DESeq2” and obtained the

fold change (FC) and adjusted p-value (FDR) of each gene in all

the 17 cancers. Differential expressed genes with FDR < 0.05 were

screened for the following analysis.

2.4 Survival analysis of m7G regulators
across cancers

After filtering out uncensored data, we performed

survival analysis of m7G regulators for the subjects which

had both expression data and clinical data in 17 cancers.

Tumor subjects were categorized into the high-expression

and low-expression group according to the optimal cut-off

value of the gene TPM value which was calculated by

“surv_cutpoint” function using R package “survminer”.

The Kaplan-Meier survival analysis was conducted based

on logrank test using R package “survival” for each m7G

regulator. Genes with p-value < 0.05 were screened for the

following analysis.

2.5 Single nucleotide variation and
mutation analysis of m7G regulators
across cancers

Single nucleotide variation (SNV) and mutation data

(n = 9,104) in pan-cancer was obtained from UCSC Xena

browser. After filtering out non-coding region mutations,

such as 3′UTR, 5′ UTR, Silent, 3′Flank, and 5′Flank, the
mutation frequency of each m7G regulator in 17 cancers

were computed. The oncoplot was drawn for showing the

mutation pattern of m7G regulators by using R package

“maftools”.

2.6 Copy number variation analysis ofm7G
regulators across cancers

The pan-cancer gene-level copy number variation (CNV)

data (n = 10,845) estimated by GISTIC2method was downloaded

from UCSC Xena browser. The value of CNVs was divided into

amplification and deletion according to the threshold of 0.05, and

the percentage of different CNV types was subsequently

calculated. Homozygous amplification and deletion data were

used to assess the relationship between the CNV and the

expression level of m7G regulators in 17 cancers using

Spearman’s correlation analysis.

2.7 DNA methylation analysis of m7G
regulators across cancers

The Methylation 450K data (n = 9,639) in pan-cancers

was downloaded from TCGA database. The value of DNA

methylation was calculated by the median of all beta-values

obtained from mapped CpG islands in promoter regions,

such as TSS150 and TSS200. Differential analysis was exerted

to explore the methylation level of m7G regulators in cancer

and normal subjects using R package “edgeR” across

17 cancers. Hypomethylated gene and hypermethylated

gene was screened by the threshold of p-value < 0.05.

What’s more, the Spearman’s correlation between the

methylation and expression level of m7G regulators was

also evaluated.
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2.8 MicroRNA regulatory network of m7G
regulators across cancers

The potential interactions between miRNA and m7G

regulator mRNA was evaluated by star base (https://starbase.

sysu.edu.cn/). The pan-cancer miRNA expression data

(n =10,818) was obtained from UCSC Xena browser. The

Spearman’s correlation between the expression of m7G

regulators and predicted miRNAs was performed and filtered

by the threshold of p-value < 0.01 and R < −0.25. Subsequently,

the miRNA-mRNA regulatory network of m7G regulators was

visualized by Cytoscape software.

2.9Multivariate regression analysis of m7G
regulator gene expression

The contributions of CNV alteration, DNA methylation and

miRNAs dysregulation to the aberrant expression of m7G

regulators were assessed by multivariate regression analysis.

The expression of m7G regulators was modeled based on the

medianmiRNA expression, medianmethylation levels, and CNV

values of each m7G regulator.

2.10 Establishing and evaluating of the
m7Gscore

To establish an index to represent the role of m7G regulators,

we conducted single-sample gene-set enrichment analysis

(ssGSEA) based on the expression of m7G-related gene set.

The enrichment scores (ES) of the m7G-related gene set in

each subject across cancers were calculated using R package

“GSVA”. The m7Gscore between normal and tumor subjects in

17 cancers was estimated and the differential analysis was

performed using t-test. The p-value was adjusted by FDR.

2.11 Clinical relevance of the m7Gscore

We stratified the tumor subjects into the high-risk and low-risk

groups according to the median of m7Gscore in each tumor.

Kaplan-Meier survival analysis was performed to explore the

survival difference in overall survival (OS) and disease-specific

survival (DSS) between the high-risk and low-risk groups in each

cancer. For cancers with p-value< 0.05, the survival independence of

the m7Gscore as well as clinicopathologic factors (gender, age, race,

grade, T, N, M, and tumor stage) was evaluated by performing

univariate and multivariate Cox regression analysis. To further

evaluate the prognostic value of m7Gscore in cancers with

p-value < 0.05, we stratified the clinicopathologic features

according to grade, stage, T, N, and M and analyzed the

difference of DSS between the two risk groups.

2.12 Pathway analysis of the m7Gscore

To clarify the pathways related to m7G regulators, we

stratified the tumor subjects in each cancer into the m7G-high

group (top 30%) and the m7G-low group (bottom 30%)

according to m7Gscore. Then we performed gene set

enrichment analysis (GSEA) between the m7G-high and

m7G-low groups and analyzed the enrichment of hallmark

gene sets.

2.13 Immune microenvironment and
immunotherapy response analysis of the
m7Gscore

To explore the role of m7Gscore in tumor immune

microenvironment (TIME), we analyzed Spearman’s

correlation between m7Gscore and immune parameters, such

as immune cell types, immune checkpoint molecules and

immunophenoscores (IPSs). For immune cell types, we

conducted ssGSEA to quantify the infiltration degree of

28 immune cell types in each subject across cancers using R

package “GSVA”, and analyzed the immune cell composition

among cancers based on TCIA database. For the immune

checkpoint molecules, including PDCD1, CD274, PDCD1LG2,

CTLA4, CD276, TNFRSF9, TNFRSF4, TGFB1, CXCR4, LAG3,

ADORA2A, ICOSLG, IL1A, IL6, CCL2, IL10, TNFSF4,

HAVCR2, CD4, ICOS, TIGIT, and SIGLEC15, their

expression differences between the m7Gscore high-risk and

low-risk groups were evaluated. For IPS, we downloaded the

IPS data fromThe Cancer Immunome Atlas (TCIA) and assessed

their correlation with m7Gscore among cancers. To further

investigate the role of m7Gscore in predicting tumor

immunotherapy response, the dysfunction and exclusion score

of patients was calculated by Tumor Immune Dysfunction and

Exclusion (TIDE) database, and Spearman’s correlation analysis

between m7Gscore and T cell dysfunction score and exclusion

score was conducted.

2.14 The potential pharmacotherapy
sensitivity prediction of the m7Gscore

The Genomics of Drug Sensitivity in Cancer (GDSC)

database was used to explore the drug sensitivity, and the

half-maximal inhibitory concentration (IC50) of each

compound for patients was calculated by R package

“pRRophetic”. To identify novel candidate drug

compounds, we performed correlation analysis of

m7Gscore and IC50 of each compound for patients across

17 cancers. The potential pharmacotherapy sensitive drugs

were filtered by the threshold of p-value < 0.05 and

R < −0.2/R > 0.2.
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3 Results

3.1 Aberrant expression and clinical
relevance of m7G regulators across
cancers

The overall workflow of this pan-cancer analysis of m7G

regulators was demonstrated in Figure 1. Initially, we identified

26 m7G regulators and categorized into 3 groups, including

2 writers, 9 erasers, and 15 readers, and their distribution on

human chromosomes was displayed by a circular plot

(Figure 2A). To explore the collaboration among m7G

regulators, we constructed the protein-protein interaction

network and found that writer, reader and eraser proteins had

high interaction with each other, especially among readers and

erasers (Figure 2B). The expression status of m7G regulators

among normal tissues was also explored using GTEx data, and

the results showed that EIF4A1 and EIF3D had highest

FIGURE 1
The overall pan-cancer analysis workflow of the m7G regulators. (A) Aberrant expression and clinical relevance of m7G regulators across
cancers. (B) The genetic variations and epigenetic regulation of m7G regulators across cancers. (C) m7Gscore modeling and its clinical relevance
among cancers. (D) Relationship between m7Gscore and associated pathways, immunophenotypes, tumor immune microenvironment, immune
therapy and chemotherapy sensitivity among cancers.
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FIGURE 2
Aberrant expression and clinical relevance of m7G regulators across cancers. (A) The circular plot demonstrating the distribution of m7G
regulators in human chromosomes. (B) The protein-protein interaction network among m7G regulators. (C) The expression pattern of m7G
regulators among normal tissues in GTEx database. (D) The co-occurrence among m7G regulators. The scatter plot indicated the correlation
between EIF4E andCYFIP1. (E) The differential expression ofm7G regulators between tumor and normal tissues across 17 TCGA cancers. (F) The
clinical relevance of m7G regulators among cancers.
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expression among different tissues, while EIF4E1B had the lowest

expression (Figure 2C). Moreover, a correlation analysis was then

performed to investigate the co-occurrence among m7G

regulators, and the results showed that most m7G regulators

had positively correlated expression patterns, especially among

readers and erasers (Figure 2D). For instance, the eraser

NUDT3 had high correlation with readers, such as EIF4G3,

GEMIN5 and LARP1 and the reader EIF4E had high

correlation with readers, such as EIF4G3, GEMIN5, LARP1,

and NCBP1.

Next, for the sake of investigating the aberrant expression

pattern of m7G regulators across cancers, the expression

differences of m7G regulators between tumor and

corresponding normal tissues across 17 TCGA cancer types

was analyzed. We found that most m7G regulators were

significantly upregulated in pan-cancers, especially in LUAD,

LUSC, BRCA and UCEC (Figure 2E). What’s more, the

expression of some writer genes (METTL1 and WDR4) and

reader genes (AGO2 and NCBP2) was significantly upregulated

in most cancers, while the expression of some eraser genes

(NUDT12 and NUDT16) and some reader genes (EIF4E3)

were downregulated in most cancers (Figure 2E).

Obvious aberrant expression of m7G regulators prompted us

to investigate their clinical relevance across cancers (Figure 2F).

Several cancers showed consistent clinical significance of m7G

regulators. Most m7G regulators were survival risky in BRCA,

KICH, LIHC, LUAD and THCA, while most regulators were

survival protective in KIRC and READ. Furthermore, the m7G

regulators had heterogenous cancer type-specific clinical

relevance. For example, EIF4A1 was survival risky in several

tumors including HNSC, KICH, KIRC, LIHC and LUAD, but

showed survival protective in READ. Of note, most m7G

regulators functioned survival risky were upregulated in LIHC

and most m7G regulators functioned survival protective were

downregulated in KIRC. Taken together, those results

demonstrated that the collaborative m7G regulators were

dysregulated across cancer and may play essential roles in

tumorigenesis and progression.

3.2 The genetic variations of m7G
regulators across cancers

To further dissect the potential molecular mechanism of the

aberrant expression of m7G regulators, we examined the SNV

data of the 17 selected cancers to calculate the mutation

frequency and patterns across cancers, and the results

indicated that the mutation frequency varied 0%–10% in most

cancers, except for UCEC (Supplementary Figure S1A). The top

5 mutated m7G regulators in UCEC were EIF4G3, LARP1,

AGO2, CYFIP1, and NCBP1 with the mutation percentages of

27%, 23%, 20%, 20%, and 15% respectively (Figure 3A). The

mutation pattern of all the m7G regulators showed the missense

mutations dominated type (Figure 3B). The top 10 mutated

regulators across cancers were EIF4G3, CYFIP1, GEMIN5,

LARP1, AGO2, NCBP1, NUDT12, EIF3D, DCP2, and

EIF4A1 with the mutation frequency of 22%, 17%, 15%, 15%,

14%, 12%, 7%, 7%, 6%, and 6% respectively.

Since CNV alteration can affect gene expression and plays

fundamental roles in cancers (Shao et al., 2019), we also

analyzed the CNV data of m7G regulators and found that

the CNV alteration frequency was higher than 5% in most

cancers (Figure 3C). What’s more, different m7G regulators

had diverse CNV alteration patterns. METTL1, NUDT16,

NUDT17, AGO2, and NCBP2 were characterized as

heterozygous amplification, while WDR4, NUTD2,

NUTD12, NUTD15, CYF1IP1, EIF4E, EIF4E3, EIF3D,

EIF4A1, EIF4G3, and NCBP3 showed heterozygous

deletion. The distribution of main CNV alteration patterns

across cancers was also revealed by pie plots (Supplementary

Figure S1B–D). Correlation analysis demonstrated that the

expression of m7G regulators was positively correlated with

their CNV alterations, especially LSM1 in most cancers,

whereas the correlation of most m7G regulators in THCA

showed weakly (Figure 3D). Thus, the above results indicated

that the CNV alteration pattern in most cancers may

contribute to the aberrant m7G gene expression.

Apart from CNV alteration, DNA methylation, as a critical

epigenetic code, also can contribute to tumorigenesis and

progression by governing gene expression (Nishiyama and

Nakanishi, 2021). Herein, we observed that the methylation

pattern of m7G regulators in different cancers is

heterogeneous (Figure 3E). Most genes were hypomethylated

in BLCA, HNSC, KIRP, LIHC, PRAD, THCA, and UCEC, while

most genes were hypermethylated in KIRC and LUSC. What’s

more, correlation analysis demonstrated that the expression

levels of half of the m7G regulatory factors, such as DCPS,

NUDT12, EIF3D, and LARP1, were negatively correlated with

methylation levels in most tumors, while the expression of DCP2,

EIF4E, EIF4E3, and GEMIN5 showed a positive correlation.

(Figure 3F). These results indicate that DNA methylation may

contribute to the abnormal expression of somem7G regulators in

tumors.

3.3 The regulatory network between m7G
regulators and microRNAs in cancers

Besides DNA methylation, miRNA, another important

epigenetic regulation mechanism, can modulate gene

expression at post-transcriptional level. To illustrate potential

m7G regulators-related miRNAs, a m7G regulators-miRNA

network was constructed and 56 potential miRNAs targeting

21 m7G regulators screened based on ENCORI database, which

can identify miRNA-mRNA interactions under pan-cancer

analysis and check whether their expression is negatively
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FIGURE 3
The genetic variations ofm7G regulators across cancers. (A) Themutation frequency ofm7G regulators across cancers. (B) The oncoplot shows
the mutation pattern of m7G regulators. (C) The histogram shows the CNV alteration for each m7G regulators across cancers. (D) The Spearman’s
correlation between the CNV alterations and the expression ofm7G genes. (E)Differential analysis of themethylation level ofm7G regulators. (F) The
Spearman’s correlation between the methylation level and expression of m7G genes.
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correlated (Li et al., 2014). Here, we screened the potential

miRNA-m7G regulators interactions existed over six cancer

types, and then obtained their regulatory network. The

network demonstrated that most m7G regulators could be

regulated by miRNAs and some regulators could be targeted

by multiple miRNAs, such as NUDT12, EIF4E3, EIF4A1,WDR4,

AGO2, and EIF4E2 (Figure 4A). What’s more, differential

analysis of potential miRNAs based on miRNA-RNA

interactions across cancers were performed, and results

indicated that most miRNAs had diverse regulation patterns

in various cancers. For example, hsa-miR-224 which targeting

DCP2 was up-expressed in 10 cancers, while down-expressed

only in 1 cancer. Furthermore, hsa-miR-99a which targeting

AGO2 was only down-expressed in 8 cancers, while hsa-miR-

93 which targeting CYFIP1 was only upregulated in 12 cancers

(Figure 4B).

To further identify different contributions of CNV alteration,

DNA methylation and miRNAs dysregulation to the aberrant

expression of m7G regulators, we applied multivariate regression

analysis and the results indicated that the expression of m7G

FIGURE 4
The microRNA network of m7G regulators. (A) The miRNA-mRNA network of m7G regulators. (B) The differential expressed m7G regulators-
related miRNAs.
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FIGURE 5
Differential analysis and clinical relevance of the m7Gscore across cancers. (A) Differential analysis of m7Gscore between tumor and normal
patients across cancers. (B) Univariate Cox regression analysis of m7Gscore related to OS across cancers. (C) Univariate Cox regression analysis of
m7Gscore related to DSS across cancers. (D) Kaplan-Meier survival analysis of OS in the two risk groups stratified by m7Gscore in LIHC. (E) Kaplan-
Meier survival analysis of DSS in the two risk groups stratified bym7Gscore in LUAD. (F)Distribution of m7Gscore and survival status in LIHC. (G)
Distribution ofm7Gscore and survival status in LUAD. (H) Pie chart of themain clinicopathologic features in the two risk groups in LIHC. (I) Pie chart of
the main clinicopathologic features in the two risk groups in LUAD.
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regulators was affected in different manners (Supplementary

Figure S1E). In general, CNV alteration could positively

regulate gene expression of m7G regulators, while DNA

methylation and miRNAs dysregulation displayed negative

effects. Moreover, the expression of m7G regulators could be

regulated by one or multiple genetic variations. For example,

WDR4 gene expression was affected only by CNV alteration in

8 tumors, including BLCA, BRCA, CHOL, COAD, KICH, KIRC,

READ, and UCEC. MiRNAs dysregulation only regulated

AOG2 in KIRC, and THCA. However, all three genetic

variations significantly contributed to the expression of

NUTD12 in 8 tumors, including BLCA, BRCA, ESCA, KIRC,

KIRP, LUAD, PRAD, and UCEC.

3.4 Differential analysis and clinical
relevance of the m7Gscore across cancers

To further explore the importance of m7G regulators in pan-

cancers, we modeled the m7G score by ssGSEA through

calculating the normalized enrichment score (NES) of m7G

regulator gene sets. Then, differential analysis of m7Gscore

between tumor and normal patients across cancers was

performed, and results showed that m7Gscore had remarkable

differences in most cancers, except for ESCA, CHOL, and HNSC

(Figure 5A). Of note, the m7Gscore was only significantly down-

expressed in cancers of KIRC, THCA, and KIRP, while up-

expressed in the rest cancers.

In the following, we allocated tumor patients into high-

risk and low-risk groups based on the median m7Gscore in

each cancer and then analyzed the role of m7Gscore in cancer

survival. Univariate Cox regression analysis showed that

m7Gscore was related to OS in LIHC (HR = 1.423, 95%

CI = 1.002–2.020, p = 0.048), LUAD (HR = 1.601, 95%

CI = 1.191–2.152, p = 0.002) and KIRC (HR = 0.693, 95%

CI = 0.513–0.937, p = 0.017) (Figure 5B), and m7Gscore was

also related to DSS in LIHC (HR = 1.644, 95% CI =

1.048–2.580, p = 0.031), LUAD (HR = 1.677, 95% CI =

1.147–2.451, p = 0.008) and STAD (HR = 0.630, 95% CI =

0.418–0.951, p = 0.028) (Figure 5C). The survival analysis

indicated that high-risk patients had poor survival in both

LIHC (DSS: p = 0.029, Figure 5D) and LUAD (DSS: p = 0.007,

Figure 5E) than low-risk patients. As the figure shown, the

mortality was elevated with the increasing of m7Gscore in

LIHC and LUAD (Figures 5F,G). What’s more, higher

m7Gscore was associated with worser histological grade

(p < 0.001) in LIHC patients (Figure 5H), while higher

m7Gscore was related to worser T (p = 0.002), N (p =

0.014) and stage (p = 0.003) in LUAD patients (Figure 5I).

Overall, those results indicated that m7Gscore was closely

associated with the malignancy in most cancers and could be a

potential novel indicator in predicting prognosis in LUAD

and LIHC.

3.5 The m7Gscore is an independent
prognostic factor in LIHC and LUAD

To identify potential independent prognostic factors in LIHC

and LUAD, we exerted univariate and multivariate Cox regression

analysis including factors like m7Gscore and main clinicopathologic

features, such as gender, age, race, grade, T, N, M, and stage. The

results showed that m7Gscore (HR: 1.981, 95%CI = 1.021–3.846, p =

0.043) was significantly related to DSS and could be a potential

independent prognostic factor in LIHC (Figures 6A,B).Moreover, for

LUAD patients, both m7Gscore (HR: 1.752, 95% CI = 1.078–2.849,

p = 0.024), T (HR: 2.063, 95% CI = 1.045–3.846, p = 0.043) and N

were potential independent negative prognostic factors of DSS

(Figure 6C,D). We subsequently stratified main clinicopathologic

features and investigated the prognostic difference of DSS in LIHC

and LUAD patients, and the results indicated that the m7Gscore

performed well in subgroup of grade 3–4, stage Ⅰ-Ⅱ, stageⅢ-Ⅳ, T3-4,

N0 andM0 in LIHC patients, whilem7Gscore also performedwell in

subgroup of stageⅢ-Ⅳ, T3-4, N0 andM0 in LUADpatients (Figures

6E,F). Taken together, the high-risk patients had poorer prognostic

outcomes than low-risk patients.

3.6 Relationships between m7Gscore and
hallmark pathways among cancers

To further explore the relationship between m7Gscore and

hallmark pathways among cancers, we performed gene set

enrichment analysis (GSEA) based on the two tumor groups,

featured as top 30% and bottom 30% of the m7Gscore in each

cancer. The hallmark pathways could be categorized into four

types, involving cell growth, metabolism, cancer signaling and

immune signaling, and we observed that different types of

pathways had distinct expression patterns (Figure 7A). For

cell growth, pathways related to cell proliferation were

enriched in the high-m7Gscore group, while pathways related

to cell death were enriched in the low-m7Gscore group. For

example, the G2M checkpoint pathway was positively correlated

with m7Gscore in 14 cancers, while the apoptosis pathway was

negatively correlated with m7Gscore in 15 cancers. For

metabolism, oxidative phosphorylation, glycolysis and fatty

acid metabolism pathway were activated in the high-

m7Gscore group in most cancers. For cancer signaling,

MTORC1 and PI3K-AKT-MTOR pathway were significantly

enriched in the high-m7Gscore group, while KRAS and

hypoxia pathways were enriched in the low-m7Gscore

group. For immune signaling, we observed that most immune

pathways were inactivated in high-m7Gscore group. For

example, IL2-STAT5 signaling, IL6-STAT3 signaling and

TNFα signaling were negatively correlated with m7Gscore

among cancers. Furthermore, the correlation between the

expression of m7G regulators with the NES score of each

hallmark pathway in pan-cancers were also analyzed. As
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FIGURE 6
The m7Gscore is an independent prognostic factor in LIHC and LUAD. (A) Univariate Cox regression analysis of m7Gscore and main
clinicopathologic features associated with DSS in LIHC. (B) Multivariate analysis of m7Gscore and main clinicopathologic features associated with
DSS in LIHC. (C) Univariate Cox regression analysis of m7Gscore and main clinicopathologic features associated with DSS in LUAD. (D) Multivariate
analysis of m7Gscore and main clinicopathologic features associated with DSS in LUAD. (E) Kaplan-Meier survival analysis of DSS stratified by
main clinicopathologic features in LIHC. (F) Kaplan-Meier survival analysis of DSS stratified by main clinicopathologic features in LUAD.
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shown in Supplementary Figure S2A, METTL1, WDR4,

NUDT15, AGO2, EIF4E2, EIF4A1, and NCBP2 had the same

expression pattern with m7Gscore in cell growth signaling

pathways, while NUDT2, NUDT3, NUDT12, NUDT16,

NUDT17, EIF4E1B, LSM1, and NCBP2 had the same

expression pattern with m7Gscore in immune signaling

pathways.

3.7 Association between m7Gscore and
tumor immune microenvironment,
immunotherapy response among cancers

As there was a negative correlation of m7Gscore and immune

signaling pathways, we further explored the roles of m7Gscore in

tumor immune microenvironment (TIME) among cancers. For

the immune cell types among cancers, we revealed that m7Gscore

had inverse correlation with most immune cells, except for

activated CD4 T cell, memory B cell and Th2 cell (Figure 7B).

And differential analysis indicated that the m7Gscore of activated

CD4 T cell, memory B cell and Th2 cell were higher in the high-

risk patients (Supplementary Figure S3A). For example,

m7Gscore was positively correlated with memory B cell and

activated CD4 cell in LIHC, while m7Gscore also positively

correlated with memory B cell, activated CD4 T cell and

Th2 cell in LUAD (Supplementary Figure S2B,C). Moreover,

we also investigated the relationship between the expression of

m7G regulators with each immune cell in LIHC and LUAD, and

the results showed that Th2 cell, memory B cell and activated

CD4 T cell were positively associated with most m7G regulators

FIGURE 7
Association between m7Gscore and hallmark pathways, tumor immune microenvironment, immunotherapy response among cancers. (A)
GSEA for hallmark pathways between top 30% and bottom 30% of m7Gscore in each cancer. (B) The correlation between m7Gscore and immune
cells among cancers based on ssGSEA. (C) The differential analysis of immune checkpoint molecules between m7Gscore high-risk and low-risk
groups in pan-cancers. (D) The correlation between m7Gscore and immunophenotypes calculated by TCIA database across cancers. (E) The
correlation between m7Gscore and T cell dysfunction/exclusion score by TIDE database across cancers.
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and EIF4E3 was positively related with most immune cells in

both LIHC and LUAD (Supplementary Figure S2D,E). To further

validate those results, we also analyzed the immune cell

composition among cancers using TCIA database and we also

observed that only CD4 T cell was positively correlated with

m7Gscore in most cancers (Supplementary Figure S3B). For the

immune checkpoint molecules, we performed differential

analysis and found that most immune checkpoint molecules

were significantly different expressed between the m7Gscore

high-risk and low-risk groups, except for TNFSF4

(Figure 7C). Among those different expressed molecules, most

molecules were down-regulated in the high-risk group, while

only CD276 and IL-1A were up-regulated. What’s more,

correlation analysis between the m7Gscore and immune

checkpoint molecules in each cancer was also conducted and

we found most immune checkpoint molecules were negatively

correlated with the m7gscore across cancers, except for CD274 in

KIRP, KIRC and KICH, CD276 in PRAD and ESCA, ICOSLG in

KIRP and KIRC, IL-1A in HNSC, SIGLEC15 in KICH and

TNFSF4 in PRAD (Supplementary Figure S3C).

Previous research found that immunophenoscore (IPS) can be

used to evaluate tumor immunogenicity and predict the response to

immune checkpoint inhibitor, which was classified into four

categories, including MHC molecules (MHC),

immunomodulators (CP), effector cells (EC) and suppressor cells

(SC) (Charoentong et al., 2017). Herein, our results indicated that

the m7Gscore was negative correlated with IPS in half of cancer

types, like UCEC, THCA, STAD, PRAD, LUSC, LUAD, KIRC, and

BRCA. Moreover, the m7Gscore was positively correlated with SC,

but negatively correlated with MHC and EC in most cancers

(Figure 7D). Tumor Immune Dysfunction and Exclusion (TIDE)

database can be used to predict tumor immunotherapy response

based on gene expression matrix (Fu et al., 2020). To further

investigate the role of the m7Gscore in predicting tumor

immunotherapy response, we conducted correlation analysis and

found that the m7Gscore was negatively correlated with the T cell

dysfunction score in most cancers, while there was no consistent

correlation between the m7Gscore and T cell exclusion score

(Figure 7E). What’s more, patients in the immunotherapy

responder group had lower m7Gscore in most cancers than the

non-responder group, except for LIHC (Supplementary Figure

S3D). Patients in the m7Gscore high-risk group had lower

immunotherapy responder rate than the low-risk group, except

for CHOL and LIHC (Supplementary Figure S3E).

3.8 The pharmacotherapy sensitivity
prediction based on the m7Gscore

To evaluate the association between m7G regulators and

drug sensitivity and identify novel candidate drug

compounds, the correlation between the m7Gscore and

half-maximal inhibitory concentration (IC50) of each

compound for patients across cancers was examined based

on GDSC database and the results demonstrated that the

IC50 of 62 drugs was remarkable associated with the

m7Gscore, involving 43 drugs with positively correlation

and 19 drugs with negatively correlation (Supplementary

Figure S4). What’s more, the contribution of each m7G

regulator to drug sensitivity was investigated and we found

that the m7G regulators can be categorized into two groups

according to different correlation patterns. On the one hand,

most m7G regulators had uniform correlation with IC50 of

drugs, such as, the IC50 of PD-0332991 (alias Palbociclib,

CDK4/6 inhibitor) and AZD0530 (alias Saracatinib, Src

Inhibitor) were uniformly positive correlated with most

m7G regulators. On the other hand, some m7G regulators

had heterogenous correlation with IC50 of drugs. For

example, NUDT12 and NUDT16, which were positively

correlated with A.443,654 (Akt inhibitor) and BI-2536

(PLK inhibitor), while other m7G regulators including

NUTD19 and NCBP2 had negative correlation. In

conclusion, the m7Gscore might be a potential biomarker

which could predict candidate drug compounds across

cancers.

4 Discussion

Growing evidence indicating that RNA epigenetic modification

plays fundamental roles in tumorigenesis and progression, and its

regulatory genes exhibit great potential as predictor for prognosis and

immunotherapy response. For example, m6A, a well-studied RNA

modification type, its regulators have been uncovered to be tightly

related to prognosis, tumor immune microenvironment, tumor cell

stemness, and anticancer drug sensitivity through pan-cancer

analysis (Li et al., 2021). M5C, another common RNA

modification in eukaryotes, its regulators have also been

demonstrated by a pan-cancer analysis to be closely correlated

with cancer progression and patient survival (He et al., 2021), and

can affect the tumor immune microenvironment in several tumor

types (Huang et al., 2021; Pan et al., 2021; Fang et al., 2022). Besides,

N1-methyladenosine (m1A), as a critical posttranscriptional RNA

modification, its regulators have also recently been revealed to possess

potential value as biomarkers for predicting prognosis and evaluating

the tumor immunemicroenvironment (Gao et al., 2021; Zheng et al.,

2021; Zhao et al., 2022).

N7-methylguanosine (m7G) is another pattern of RNA

modification in post-transcriptional regulation, and it

generally occurs in the 5′ cap or internal regions of multiple

kinds of RNA, including tRNA, rRNA, mRNA, lncRNA as well as

pre-miRNA (Zhang et al., 2019). Like m6A, m5C, andm1A, m7G
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modification has also been found to be involved in tumor

progression (Luo et al., 2022). Interestingly, m7G related

lncRNAs have recently been disclosed to be aberrant

expressed in several tumors and tightly related to the

prognosis and tumor immune microenvironment of patient

(Chen S. et al., 2022; Dong et al., 2022; Wu et al., 2022),

suggesting that m7G regulators have the potential to predict

tumor prognosis and immunotherapy effects. For example, we

recently constructed a m7G-related lncRNAs risk model to

predict prognosis, immunotherapy response, and drug

sensitivity in LIHC (Wei et al., 2022). However, the

relationship between m7G regulatory genes and tumor

prognosis as well as the immune microenvironment is not yet

clear and needs to be further explored. Thus, in this study, a pan-

cancer analysis of 26 m7G regulators across 17 cancer types was

carried out to survey their expression characteristics and clinical

significance in tumors through bioinformatics approach.

First, in our study, we found that the expression trends of m7G

regulators and their correlations with survival of patient were

different in different tumors, suggesting that m7G modification

plays different roles in different tumors. Most obviously, m7G

modification might play opposing roles in liver and kidney

cancer, as almost all m7G regulators were up-regulated in liver

cancer (CHOL and LIHC) andwere risk factors for survival, whereas

in kidney cancer (KICH, KIRC), nearly all m7G regulators exhibited

the low expression and were protective factors for survival,

suggesting that m7G modification plays an oncogenic role in

liver cancer and play a tumor suppressive role in kidney cancer.

Up to now, several m7G regulators have been confirmed to promote

liver cancer progression by regulating m7G modification of tRNA,

such as METTL1and WDR4 (Chen et al., 2021). Unfortunately, the

biological function of the m7G regulators in kidney cancer has not

been reported by experimental validation (Dong et al., 2022).

Second, the genetic variations (SNVs and CNVs) and epigenetic

regulation (DNA methylation and miRNAs) of m7G regulators

were examined to understand the mechanism of their abnormal

expression in cancer. For SNV, we found the genetic mutation

patterns of m7G regulators were dominated by missense mutations,

and any missense mutations in the m7G regulators which are

associated with tumor progression have not yet been identified,

unfortunately. For CNV, we revealed that there was a close

correlation between CNV and differential gene expression of

m7G regulators in almost all tumors, suggesting that CNVs

could contribute to the abnormal expression of m7G regulators

in tumors. For DNA methylation, we disclosed that the DNA

methylation patterns of m7G regulators were heterogeneous in

different cancers and largely corresponded to their gene

expression trends in several cancers. For example, in LIHC, all

detectable genes were hypomethylated, while they showed a highly

expression status. In KIRC, almost all detectable genes were

hypermethylated, whereas they showed a low expression status.

For miRNAs, we constructed the network of miRNA-m7G

modulators, and found that most m7G regulators could be

regulated by miRNAs and some regulators could be targeted by

multiple miRNAs, indicating that miRNA as critical epigenetic

regulators could participate in the aberrant expression of m7G

regulators in tumors. Recent study founded that miR-4293 can

promote the proliferation of lung carcinoma by targeting DCP2,

which is a mRNA-decapping enzyme (Zhang et al., 2021).

Third, to investigate the roles of m7G regulators, the

m7Gscore was established by performing ssGSEA. We found

that m7Gscore was significantly down-regulated only in KIRC,

THCA and KIRP, while up-regulated in most cancer types

including LUSC, LUAD, LIHC etc., indicating that the m7G

score was overall consistent with the gene expression trend of

m7G regulators in cancers. By conducting survival analysis, the

m7Gscore was revealed to be an independent prognostic factor in

LUAD and LIHC. A recent study unveiled that a prognostic

model containing 7 m7G regulators performed well in predicting

survival outcomes in LIHC(Li et al., 2022).

Fourth, the relationship between the m7Gscore and hallmark

pathways among cancers was assessed, and we found that the

pathways significantly related to the m7Gscore mainly involve

cell growth, metabolism, cancer signaling and immune signaling.

For cell growth pathway, the results suggested m7G regulators may

mainly exert roles in promoting cell proliferation by modulating cell

cycle and apoptosis. METTL1, a m7G “writer”, has been proved to

promote the proliferation of LIHC cells by accelerating cell cycle G2/

M transition and suppressing apoptosis (Chen et al., 2021). For

metabolism, the results hint that m7G regulators may positively

modulate oxidative phosphorylation, glycolysis and fatty acid

metabolism pathways. For cancer pathway, PT3K/AKT/

mTORC1 signaling was found to be the most significantly

associated with the m7Gscore. Recently, METTL1 was validated

to promote the proliferation and autophagy of HNSC cells by up-

regulating the PT3K/AKT/mTOR signaling pathway (Chen J. et al.,

2022). For immune signaling, we revealed that almost all immune-

related pathways were negatively correlated with the m7Gscore,

suggesting that m7G regulators may associated with tumor

immunosuppressive microenvironment.

Fifth, to further explore the roles ofm7G regulators in the TIME,

we detailed evaluated the immune parameters, including immune

cell types, immune checkpoint molecules, immunophenoscores

(IPSs). Herein, results indicated that the m7Gscore was

negatively correlated with most immune cells as well as

checkpoint molecules in cancers. A recent study showed that the

proportion of infiltrating Mrc1+ macrophages, Macro-3 cells and

Langerhans cells in HNSC tissues was significantly increased after

METTL1 knockdown, while CD4+ T exhaustion and regulatory

T cells were remarkably decreased (Chen J. et al., 2022). In addition,

the m7Gscore was also unveiled to be correlated with poor

immunotherapy response in most cancers. Thus, m7G regulators

may be the potential biomarkers for predicting tumor immune

microenvironment and immunotherapy response.
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Finally, the association between the m7G regulators and drug

sensitivity was explored based on the GDSC database and totally

62 drugs were disclosed to be significantly associated with the

m7G scores, indicating that m7G regulators have the potential as

biomarkers for predicting candidate drug compounds for cancer

patients.

5 Conclusion

Our pan-cancer analysis demonstrated that m7G

regulators may play a significant role in the tumor

progression and immune microenvironment, and show the

potential as biomarkers for predicting prognosis,

immunotherapy response as well as candidate drug

compounds for cancer patients. Meanwhile, this study will

provide novel clues for further basic and clinical

translational research of m7G regulators in cancers.
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