
ARTICLE

Received 26 Apr 2016 | Accepted 15 Jul 2016 | Published 25 Aug 2016

A possible four-phase coexistence
in a single-component system
Kenji Akahane1, John Russo1,2 & Hajime Tanaka1

For different phases to coexist in equilibrium at constant temperature T and pressure P, the

condition of equal chemical potential m must be satisfied. This condition dictates that, for a

single-component system, the maximum number of phases that can coexist is three.

Historically this is known as the Gibbs phase rule, and is one of the oldest and venerable rules

of thermodynamics. Here we make use of the fact that, by varying model parameters,

the Gibbs phase rule can be generalized so that four phases can coexist even in

single-component systems. To systematically search for the quadruple point, we use a

monoatomic system interacting with a Stillinger–Weber potential with variable tetrahedrality.

Our study indicates that the quadruple point provides flexibility in controlling multiple

equilibrium phases and may be realized in systems with tunable interactions, which are

nowadays feasible in several soft matter systems such as patchy colloids.
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W
hen different phases are in thermodynamic equili-
brium with each other at constant temperature T and
pressure P, the chemical potentials of the phases must

be equal. The number of equality relationships determines the
number of degrees of freedom F. This leads to the famous Gibbs
phase rule1: F¼C�Nþ 2, where C is the number of chemically
independent constituents of the system, and N is the number of
phases. The rule should be valid, provided that the equilibrium
between phases is not influenced by external fields and there is no
spatial constraint on the phases. The latter condition is known to
be violated for coherent solids2. This rule tells us that for a pure
substance, it is only possible that three phases can exist together
in equilibrium (N¼ 3). For a one-component system, there are no
degrees of freedom (F¼ 0) when there are three phases (A, B and
C), and the three-phase mixture can only exist at a single
temperature and pressure, which is known as a triple point. The
two equations mA(T, P)¼ mB(T, P)¼mC(T, P) are sufficient to
uniquely determine the two thermodynamic variables, T and P.
Four-phase coexistence should then be absent, as three chemical
potential equations admit no solutions when there are only two
independent variables T and P. Mathematically, however, this
does not necessarily rule out the possibility that the set of
equations may be solved in a special case. Here we seek such a
possibility in a systematic manner by tuning the interaction
potential, or the Hamiltonian of the system. Extending the
dimensionality of the system will allow us to investigate what are
the conditions for the existence of a quadruple point.

The presence of a point where different phases coexist provides
an interesting possibility of switching materials properties,
including electric, magnetic, optical and mechanical properties,
by a weak thermodynamic perturbation such as stressing or
heating/cooling. The technological importance of a triple point
has recently been shown for a popular candidate material for
ultrafast optical and electrical switching applications, vanadium
oxide (VO2) (ref. 3): it has been revealed that the well-known
metal-insulator transition in this material actually takes place
exactly at the triple point. Large piezoelectricity near a
morphotropic phase boundary is another important example of
the importance of multi-phase coexistence4–6. In these systems,
structural transformations in lattice order are coupled with other
orders such as dipole, spin, charge and orbital, which can be used
for applications such as electromechanical or magnetoelectronic
devices. Although the role of multi-phase coexistence in the ease
of the transition is not so clear, the minimization of the volume
change associated with a phase transition may be realized by
combined nucleation of two phases with different signs of the
volume change on the transition, which has been reported for a
transition near a ferroelectric–anitiferroelectric–paraelectric triple
point5. So, the presence of a multiple point may provide a novel
kinetic pathway of phase transition, for which the barrier for
phase transformation is much lower than an ordinary phase
transition between two phases. Thus, the fundamental
understanding of multiple-phase coexistence is not only of
scientific interest but also of technological importance.

To study the basics of multi-phase coexistence, we need a
model system that shows rich polymorphism. In this context, it is
well known that water exhibits a rich variety of crystal
polymorphs (at least, 16 types of crystals7). Motivated by this,
here we study systems interacting with tetrahedral interactions
(for example, covalent bonding and hydrogen bonding).
Tetrahedral interactions are the most important category of
directional interactions found in nature, both in terms of
abundance, and in terms of unique physical properties. They
are ubiquitous in terrestrial and biological environments,
and fundamental for technological applications. The disordered
(liquid) phases of tetrahedral materials show unique

thermodynamic properties, the most important being water’s
anomalies8,9, like the density maximum, the isothermal
compressibility and specific heat anomaly and so on. Ordered
phases of tetrahedral materials are of fundamental importance in
industrial application, as they include open crystalline structures,
like the diamond cubic (dc) crystal, or the quartz crystal, with
unique mechanical, optical and electronic properties. For
example, in Si and Ge, the diamond cubic (dc) crystal is a
semiconductor, whereas the liquid and body-centred cubic (BCC)
crystal are metals. Furthermore, dc crystals of mesoscopic
particles (like colloids) are also a promising candidate for
photonic crystals10. It is thus not surprising that tetrahedral
interactions are one of the focus of nanotechnology, with the aim
of producing new generation of materials with properties that can
be finely controlled by design10–12.

To understand the bulk behaviour of materials with tetrahedral
interactions, several coarse-grained models have been introduced.
Among them, probably the most important and successful model
is the Stillinger–Weber (SW) potential13, in which tetrahedrality
is enforced with the use of three-body force terms. Originally
devised as a potential for silicon, the model has found widespread
applicability for several materials, especially group XIV elements,
like germanium and carbon. The key parameter controlling the
tetrahedrality of the model is the ratio between the strength of
three-body interactions over two-body interactions, often referred
to as l. As tetrahedrality becomes less strong with increasing
atomic number, the basic idea is that group XIV elements, apart
from energy and length-scale differences, can be modelled by
simply varying l (ref. 14). Even more importantly, the modified
SW potential has found general application as a coarse-grained
model for molecular and supramolecular systems. The most
important example is water, whose structural properties have
been accurately reproduced with a parametrization of the SW
potential (called mW water) with a precision that is competitive
(if not superior) to the best classical molecular models available
to date15–17.

Despite the importance and widespread applicability of the SW
model, our knowledge of its phase diagram is still lacking.
Determining the phase diagram is challenging because of the
three-dimensional parameter space (temperature, pressure and
l), and the fact that all calculations are multiplied by a large
number of crystalline structures with local tetrahedral symmetry
that have to be tested for thermodynamic stability. Previous
attempts have considered stable crystalline structures taken from
the elements that the SW potential is ought to describe, as for
example silicon. The first study of the model as a function of l
was introduced in ref. 14, where three crystalline structures were
identified at zero pressure P: BCC, b-tin, and dc, respectively for
low (lt18), intermediate (18tlt19) and high values (l\19)
of l. Interestingly, the intermediate region showed increased
glass-forming ability14. The b-tin phase was believed to be
the high-pressure phase for SW silicon (l¼ 21) (ref. 18).
So, according to the current view, starting from a perfectly
tetrahedral diamond (dc) phase, the SW system would transform
into b-tin by reducing the amount of global tetrahedrality, either
by applying pressure or decreasing the value of l. But this view
was recently proven wrong when a new crystal of SW silicon was
found, sc16, which replaces b-tin as the stable phase19 at high
pressures. sc16 is a new crystal with a simple cubic unit cell and
16 atoms in the unit cell. This calls for a new understanding of the
phase behaviour of the SW model, with new behaviour that
should emerge in between the low P–l region (where b-tin is
stable) and the high P–l region (where sc16 is stable).

In this Article, we show that indeed the SW model exhibits a
behaviour, which takes the form of a ‘quadruple point’ (QP),
where the fluid and three different crystalline structures (dc, b-tin
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and sc16) have the same chemical potential. We also show that
the newly found quadruple point is stable against liquid–gas
phase separation, by computing the liquid–gas coexistence line
and critical point. At the quadruple point,
l takes the value lQPB20.08 and the model describes a
one-component system with four-phase coexistence.

Results
Modified Stillinger–Weber model. To compute the phase dia-
gram, we run Monte Carlo simulations in the isothermal–isobaric
NPT ensemble20. The SW potential can be written as the sum of a
pairwise term U2 and three-body interaction term U3:

U ¼
X

i

X
j4i

U2 rij
� �
þ l

X
i

X
j 6¼ i

X
k4j

U3 rij; rjk
� �

: ð1Þ

Here U2 models a steep repulsion at short distances and a short-
range attraction, while U3 is a directional repulsive interaction
that promotes tetrahedral angles between triplets of particles (for
the analytic expressions of these terms, see Methods). l is a
dimensionless parameter controlling the relative strength between
pairwise and three-body term. Free energy calculations of all
relevant crystalline structures are conducted with the Einstein
crystal method20, and both Gibbs–Duhem integration21 and
Hamiltonian integration22 are employed to compute coexistence
planes and triple lines. Critical points are estimated with grand
canonical simulations and histogram reweighting techniques23.
A description of all methods can be found in Methods and from
here we use internal units as explained there.

Phase behaviour of the modified SW model. We start from a
liquid phase and four crystalline phases which are known to be
stable for the SW model. The crystalline phases are body-centred
cubic (BCC), b-tin, diamond cubic (dc) and sc16. BCC is known
as a stable crystalline phase of the SW model at lower l
(refs 14,15). b-tin crystal has a body-centred-tetragonal structure
with two atoms per cell and is known as a stable crystalline phase
for silicon at intermediate pressure24. dc is known as a stable
crystalline phase for group XIV elements. sc16 is a crystal which
has recently been found to be stable at intermediate and high
pressure19. The sc16 crystal has a simple cubic unit cell with 16
atoms per cell. The space group of the sc16 crystal is Pa�3.

First, we show the three-dimensional phase diagram of the SW
model, for lA[12.2:23.15], TA[0:1.12] and PA[0:1], in Fig. 1a. To

aid the visualization, we also plot in Fig. 1b a projection of the
coexistence surfaces on the (P, l) plane. Each surface represents a
coexistence surface between the liquid and the corresponding
crystal. Thick lines are triple lines, where two crystalline phases
and the liquid phase coexist. The order of the different crystals is
as follows: BCC at low l; b-tin at intermediate l; dc and sc16, for
low and high pressures, respectively, at high l. The dot in Fig. 1
highlights a quadruple point at the intersection of three triple
lines. At the quadruple point dc, b-tin, sc16 and the liquid
phase all coexist at the same TQP and PQP. The coordinates are
approximately: lQP¼ 20.08, TQP¼ 0.042 and PQP¼ 0.120.
Incidentally, we note that lQP is very close to the value of l for
the SW model of Germanium (l¼ 20). We have checked our
results with direct-coexistence simulations25, in which each
crystalline phase is placed in contact with the fluid phase and
shown to be at coexistence.

Our results confirm that the sc16 is indeed the stable crystalline
phase at high (l, P) and show that it shares a triple line with the
previously known b-tin phase down to the quadruple point,
where the b-tin transforms directly into dc. We have further
confirmed the stability and relevance of the sc16 crystalline phase
by direct nucleation events, and showed that the fluid phase
directly crystallizes in the sc16 phase at l¼ 21, P¼ 0.5, and
T¼ 0.0395. These results are shown in (Supplementary Figs 1
and 2) and discussed in (Supplementary Note 1).

Unlike T and P, l is not a thermodynamic variable but a
parameter of the Hamiltonian (equation (1)). By choosing
l¼ lQP we thus have a system with a stable quadruple point in
its phase diagram. To show this we compute the phase diagrams
for l¼ lQP in the P–T and r–T planes, plotted respectively in
Fig. 2a,b. The dc phase is stable at lower P and the b-tin phase at
intermediate P. The stable region of the sc16 is instead split into
two regions, at lower and higher P. Later, we discuss how the
quadruple point emerges when l-lQP.

In Fig. 2b, we show the densities of the different crystalline
states. Diagonal lines represent coexistence regions between two
different phases, while horizontal lines are plotted at the
temperatures of the triple points and the quadruple point. dc is
the phase with lowest density, lower than the fluid’s density, as
already could be inferred by the slope of the P, T coexistence line
in Fig. 2a. The sc16 crystal can coexist with the fluid phase at
two different densities: at the quadruple point with a density
lower than the liquid’s density, and at higher P with a density
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Figure 1 | Phase diagrams of a system interacting with the SW potential. (a) The l–P–T phase diagram. The green, pink, turquoise and orange surfaces

are liquid-BCC, liquid-b-tin, liquid-dc and liquid-sc16 coexistence surfaces. The purple, red, yellow and blue lines are liquid-BCC–b-tin, liquid-b-tin–dc,

liquid-dc–sc16 and liquid-b-tin–sc16 coexisting lines. The brown point is a four-phase coexistence point for liquid, b-tin, dc and sc16. (b) The projection of

the coexisting regions into l–P plane. The green, pink, turquoise and orange regions are the projection of BCC-liquid, b-tin-liquid, dc-liquid, sc16-liquid

surfaces into l–P plane, respectively. The brown dot is the quadruple point.
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higher than the liquid’s density. To summarize our study of the
liquid–solid phase diagram, we report all thermodynamic values
at triple and quadruple points in Table 1.

Figure 2 shows also the presence of a new phase (denoted as X)
that we found while computing the coexisting line between
b-tin and sc16 at the lQP. The phase spontaneously forms from
b-tin, with which it shares similar densities. As this is a low T
phase that does not coexist with the liquid, and that lies well
below the quadruple point, we have not focused on identifying it.
In Supplementary Fig. 3 and Supplementary Note 2, we report
our preliminary studies on this new phase, and leave to a future
work the task of determining which crystal it represents.

Location of the gas–liquid phase transition. The phase diagrams
obtained so far only include solid and liquid phases, so there is
the possibility that the quadruple point is metastable with respect
to liquid–gas phase separation. To exclude this possibility, we
have computed the liquid–gas critical point and coexistence lines
for l¼ lQP. To obtain the critical point, we conducted grand
canonical simulations to get the distribution function of the
mixing order parameter M (M¼ rþ su; r is density and u is
internal energy per particle and s is mixing parameter), and use
histogram reweighting to find the state point where this
distribution matches the one from the Ising universality class23,26.
The results for the critical point is PCP¼ 0.004, TCP¼ 0.321. The
gas–liquid phase diagram (the critical point and the coexistence
line) is shown in Fig. 3, where it is clear that the liquid–gas critical
point is located at pressures two orders of magnitude lower
than PQP. Therefore, the quadruple point is indeed a stable
thermodynamic point of the model.

Emergence of the quadruple point. It is of particular interest to
observe how the quadruple point emerges as a function of the
parameter l in two dimensions, where the Hamiltonian is
given by equation (1), and P and T are the only intensive ther-
modynamic variables. To do this, we consider the Gibbs surface,
which expresses all the thermodynamic information on the

system as an energy surface u¼ u(s, r) in the entropy s and
density r plane. In this representation each thermodynamic phase
is represented as a surface, whose tangents are the temperature,
T¼ (qu/qs)r, and pressure, P¼r2(qu/qr)s/N. Triple points
are represented as triangles whose vertices lie on the pure
phases surfaces. Slightly below lQP, we have two triple points
(fluid/dc/b-tin triple point and dc/sc16/b-tin triple point).
Slightly above lQP, on the other hand, we have two different triple
points (fluid/dc/sc16 triple point and fluid/b-tin/sc16 triple
point). By increasing l continuously from below to above lQP, the
Gibbs surface shows the following change. Below lQP (Fig. 4a),
two triangle areas corresponding to the fluid/dc/b-tin and
dc/sc16/b-tin triple points sandwich the dc/b-tin coexistence
surface. With an increase in l, this surface continuously becomes
narrower, eventually becomes a line, until the two triangles merge
forming a quadrangle surface. This quadrangle is made of
coplanar points and is the Gibbs representation of a quadruple
point. Figure 4b shows the quadruple point as obtained from
thermodynamic calculations. A further increase in l, leads to the
splitting of the quadrangle to two triangles corresponding to the
fluid/dc/sc16 triple and fluid/b-tin/sc16 triple points (Fig. 4c).
The splitting of the quadrangle into two triangles now occurs
along the fluid/sc16 coexistence surface. The entire process is
schematically depicted in Fig. 4d. In two dimensions, the
quadruple point is thus formed by the merging of two pairs of
triple points located on the same plane in the Gibbs surface. The
degeneracy in the number of degrees of freedom (four phases, but
only three equations to determine the volume of each phase)
means that there is no lever rule, and the volume of each phase is
not determined by bulk properties alone. The degeneracy is
removed if we consider the system in three dimensions, where l is
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Table 1 | Quadruple and triple points.

T P qdc qb–tin qsc16 qliquid qX

0.0093 0.171 0.486 0.536 0.560
0.0211 0.199 0.553 0.535 0.558
0.0244 0.831 0.583 0.609 0.580
0.0420 0.120 0.475 0.544 0.518 0.525
0.0680 1.063 0.585 0.610 0.581

T, P and r at triple and quadruple points for the system with l¼ 20.08, as shown also in Fig. 2.
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treated like a thermodynamic parameter (equivalent to an
external field). In this case the Gibbs surface is defined in the
three dimensional space of r, s and u3 (which is the sum of all
three body contributions in equation (1)). The quadruple point
will be represented as a triangular pyramid, and the volume of
each phase at four-phase coexistence is not only determined by
the total volume and entropy, but also by the total three-body
energy, if we constrain it.

Physical properties associated with the quadruple point. We
next examine some of the unique physical properties associated
with the quadruple point. The simulation shown in Fig. 5a was
started by interfacing the cubic face of each crystal with a fluid
slab, and equilibrated in the isobaric ensemble where the pressure
perpendicular to the interfaces is kept fixed at PQP. It is important
to ensure that the size of the interfacial plane is commensurate
with an integer number of unit cells for all three crystals at their
equilibrium unit cell size. In our simulations, we use 11, 14 and 8
unit cells in each direction of the interfacial plane for b-tin, dc
and sc16, respectively. With this choice we ensure that all crystals
have the correct unit cell size within B2%. The simulations show
that the system indeed feels the underlying proximity of a
quadruple point, in a way that the free-energy differences between
all four phases become negligible, and thus the four bulk phases
coexist over practical time scales with free diffusion of all
crystal/liquid interfaces (Fig. 5a).

Next, we show that the properties of a quadruple point can be
exploited to gain a very fine control over the stability and number
of crystalline phases. Figure 5e shows the liquid/solid lines
for all crystalline phases, both stable (continuous lines) and
metastable (dashed lines) ones. The quadruple point is the point
where all these lines cross. This means that, by choosing
thermodynamic conditions arbitrarily close to the quadruple
point, we can stabilize systems with one, two or three crystalline
phases. This is demonstrated in Fig. 5b–d, where a small change
in temperature allows us to equilibrate systems with varying
number of crystalline phases. The ability to tune the stability of a
varying number of crystalline phases with just small changes in
thermodynamic parameters is one of the most interesting
properties of a quadruple point. Our simulations also point to
the importance of the liquid layer during the solid-solid
transition. By placing any couple of crystalline phases directly
in contact we always observe the development of several
interfacial liquid layers, despite the fact that the liquid is not a
stable phase in these state points (Fig. 5c–e). Solid–solid
transitions in our systems always proceed in two-steps, where
the first step is the melting of the interfacial particles of one solid,
and the second step is the nucleation of the second solid phase
from this liquid layer. This scenario is similar to what recently
observed in solid–solid phase transitions of colloidal systems27,
and is due to the high interfacial cost of forming a solid–solid
interface.
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Discussion
Quadruple points have not been found before in single-
component systems, and the reason behind their improbability
is embodied in the Gibbs phase rule. Each phase corresponds to a
different thermodynamic function (in the isothermal–isobaric
ensemble these functions are the chemical potentials of each
phase), and a quadruple point requires the equality of these
functions at a single (T, P) state point. Since the equality of four
different chemical potentials is equivalent to a system of three
equations in two variables (T and P), the system should have no
solution, and genuine quadruple points should not occur in one-
component systems. The way this limitation is circumvented in
our system is by promoting the parameter l to an independent
thermodynamic variable, so extending the dimensionality of
space to three dimensions. This allowed us to explore the full
(T, P, l) space (Fig. 1), where we were able to find the condition
on l for the existence of the quadruple point, where the four
phases have the same chemical potential.

But, besides the extension of the dimensionality of state space,
a quadruple point also requires three different stable crystalline
phases in a close region of state space, a condition which is rarely
met in one-component systems. We note that the SW model itself
did not meet this requirement until the recent discovery of sc16
(ref. 19).

Our work opens for the possibility of realizing a one-
component system with a quadruple point in a practical sense,
by finding the conditions at which the strength of the tetrahedral
interaction matches the conditions we highlighted in this work.
The most likely candidate for such a system are patchy particles,
which are colloidal systems with functionalized patches on their
surface28–32. Tuning the angular width of the directional
interactions plays a role similar to the parameter l in the SW
potential33,34, and allows for the tuning necessary to unveil
four-phase coexistence.

Here we have determined the full three-dimensional phase
diagram for the SW model. The relevant crystalline phases are dc,
b-tin, BCC, sc16 (and the yet unidentified crystalline phase X).
Apart from sc16 and X, the remaining phases have been
confirmed experimentally for group XIV elements, for which
the SW potential is a good coarse-grained model. The model also
displays a quadruple point in the sense that the four phases have
the same chemical potential there. For l¼ lQP we have fully

determined the (P, T) and (T, r) phase diagrams, and also
computed the liquid–gas critical point, showing that the
quadruple point is a stable feature of the phase diagram. Thanks
to the development of technology, a systematic control of the
Hamiltonian of a system is now realistic even in experiments: for
examples, ordinary and patchy colloids with more than two types
of interactions (see, for example, refs 35,36), proteins (see, for
example, ref. 37), and application of optical and magnetic fields in
quantum systems (see, for example, refs 38,39). In such a case,
the Gibbs phase rule, which has been considered for two
independent thermodynamic variables, should be extended by
including an additional variable linked to the interaction
potential: F¼C�NþM, where M is a number of independent
thermodynamic and Hamiltonian-related variables40. Although
we have studied a case of a pure substance (C¼ 1 and M¼ 3),
the above extension of the Gibbs phase rule is not limited to
single-component systems.

Furthermore, by computing the phase diagram as a function of
the tetrahedral parameter l our results can lead to better
modelling of atomic systems or enable the design of novel coarse-
grained potential for new generation materials with directional
interactions (for example, patchy particles)29–33. Our results can
also lead to a better understanding of tetrahedral materials which
are arguably the most important class of materials in nature and
technology. For example, our results reinforce the parallelism
between pressure and frustration effects, which is an important
principle in the understanding of water mixtures and their
glass-forming ability (see, for example, ref. 41). In the SW model,
l controls the degree of deviation from tetrahedrality, and the
phase diagram in l has many points in common with V-shaped
phase diagram of real elements in pressure42. For example, the
l–T phase diagram at ambient pressure, resembles the the P–T
phase diagram of tin (Sn), with its succession of grey-tin (dc),
white-tin (b-tin) and BCC phases.

As recently shown in VO2 (ref. 3) for the ultrafast insulator-
metal transition43, high-order points can be used to design phase-
change materials, where properties change rapidly by applying
mechanical stress, heating/cooling, or even tuning the interaction
potential (as shown here) by modifying internal degrees of
freedom such as spin and electronic states with electromagnetic
excitation (see, for example, ref. 44). Thus high-order points open
new directions in the control of materials properties. We have

0 0.05 0.1 0.15 0.2 0.25 0.3

P

0.03

0.04

0.05
dc

0.06

T sc16

�-tin

a b

c

d

e

Figure 5 | Direct coexistence near the quadruple point. (a) Simulation snapshot of four phases coexisting at the quadruple point: liquid (white), dc (cyan),

b-tin (magenta) and sc16 (orange). (b–d) Snapshots of configurations with one (dc), two (dc and sc16) and three (dc, sc16, b-tin) crystalline phases,

respectively, obtained at the following state points near the quadruple point, P¼0.1 and T¼0.0445 (b), T¼0.041 (c) and T¼0.040 (d). (e) Phase

diagram at l¼ lQP, where continuous lines are the stable thermodynamic lines of Fig. 2a, while dashed lines represent their metastable extensions. The

black dot is the quadruple point. The triangle symbols indicate the state points at which snapshots (b–d) were taken from top to bottom. Note that the

liquid layers remain between different types of crystals in c,d despite the liquid is not a stable phase there.
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shown that we can indeed produce any of four different phases by
arbitrarily small variations in T or P. Furthermore, the quadruple
point in a single component system should provide great
flexibility in controlling multiple phases. Here we study phase
transitions where the density is the relevant order parameter, but
they can be any types of order including dipole, spin, charge, and
orbital order (see, for example, refs 45,46), which are important in
functional materials.

Methods
Details of the model. The details of the Stillinger–Weber model are as follows.
The pairwise and three-body interaction terms are given by,

U2 rð Þ ¼ AE B
s
r

� �p
� s

r

� �qh i
exp

s
r� as

� �
ð2Þ

U3 rij; rik
� �

¼ E cosyijk � cosy0
� �2

exp
gs

rij � as

� 	
exp

gs
rik � as

� 	
ð3Þ

where A¼ 7.049556277, B¼ 0.6022245584, p¼ 4, q¼ 0, cosy0¼ � 1/3, g¼ 1.2,
a¼ 1.8. The parameter E sets the energy scale and s the length scale. They
correspond to the depth of the two-body interaction potential and the particle
diameter, respectively, and determined by materials for which the model is used.
We use internal units where E and s are the units of energy and length, respectively.
Therefore, l is only parameter which differentiates the models.

Simulation methods. We compute internal energies and densities at each
equilibrium state by performing Monte Carlo simulations. The size and shape of
the simulation box can fluctuate so as to allow crystalline phases to change their
structures47,48. A volume-change attempt occurs on every N translation attempts.
The number of particles in the box is 1,024, which is large enough so that finite-size
effects are negligible.

We obtained the phase diagram by extending coexisting lines from phase
diagrams at zero pressure and at l¼ 23.15 (ref. 19). We extend two-phase
coexisting lines in two directions, along pressure axis and along l axis. We perform
Gibbs–Duhem integration and Hamiltonian Gibbs–Duhem integration21,22 to
obtain coexisting lines along pressure axis and along l axis, respectively.

When we compute triple lines, we use the following relationships. For three
phases 1, 2, 3 at coexistence,

u1dp� s1dT þ @g1

@l

� 	
dl ¼ u2dp� s2dT þ @g2

@l

� 	
dl



ð4Þ

u1dp� s1dT þ @g1

@l

� 	
dl ¼ u3dp� s3dT þ @g3

@l

� 	
dl



ð5Þ

where u, s and g are the volume, entropy and Gibbs free energy per particle. By
solving this set of equations, we get

dT
dl
¼ u1 � u3ð Þ o1 �o2ð Þ� u1 � u2ð Þ o1 �o3ð Þ

u1 � u3ð Þ s1 � s2ð Þ� u1 � u2ð Þ s1 � s3ð Þ



ð6Þ

dp
dl
¼ s1 � s3ð Þ o1 �o2ð Þ� s1 � s2ð Þ o1 �o3ð Þ

s1 � s2ð Þ u1 � u3ð Þ� s1 � s3ð Þ u1 � u2ð Þ



ð7Þ

Here, we write

o ¼ @g
@l

� 	
:

When the internal energy per particle u can be written as u¼ uaþ lub,
we can use20,22

o ¼ @g
@l

� 	
¼ ub lð Þh iN;p;T;l: ð8Þ

Here hyiN,p,T,l means ensemble average with constant N, p, T, l, which can be
determined within an NPT simulation. By integrating these equations, we extend
triple points.

To obtain critical points, we compute distribution functions of densities and
energies with using histogram reweighting method23 and fit them according to the
universal Ising universality class26.

Data availability. The data that support the findings of this study are available
from the corresponding authors upon request.
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