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Abstract 

Almost all the current therapies against liver cancer are based on the “one size fits all” principle and offer 
only limited survival benefit. Fortunately, synthetic lethality (SL) may provide an alternate route towards 
individualized therapy in liver cancer. The concept that simultaneous losses of two genes are lethal to a 
cell while a single loss is non-lethal can be utilized to selectively eliminate tumors with genetic aberrations. 
Methods: To infer liver cancer-specific SL interactions, we propose a computational pipeline termed SiLi 
(statistical inference-based synthetic lethality identification) that incorporates five inference procedures. 
Based on large-scale sequencing datasets, SiLi analysis was performed to identify SL interactions in liver 
cancer. 
Results: By SiLi analysis, a total of 272 SL pairs were discerned, which included 209 unique target 
candidates. Among these, polo-like kinase 1 (PLK1) was considered to have considerable therapeutic 
potential. Further computational and experimental validation of the SL pair TP53-PLK1 demonstrated that 
inhibition of PLK1 could be a novel therapeutic strategy specifically targeting those patients with 
TP53-mutant liver tumors. 
Conclusions: In this study, we report a comprehensive analysis of synthetic lethal interactions of liver 
cancer. Our findings may open new possibilities for patient-tailored therapeutic interventions in liver 
cancer. 
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Introduction 
Recent rapid advances in individualized therapy 

have revolutionized cancer prognosis, making cancers 
previously considered to be lethal, such as breast 
cancer and lung cancer, manageable and even curable 
[1]. However, it remains challenging to realize 
individualized therapy for liver cancer. Almost all the 
approved therapies against liver cancer lack 
corresponding biomarkers for predicting efficacy and 
can only yield marginal survival benefit [2, 3]. 

Considering that the global burden of liver cancer has 
been increasing year over year, novel therapeutics are 
urgently required to counter this global health threat. 

By sequencing large-scale clinical samples, the 
roles of many mutated genes in the occurrence and 
development of liver cancer have been elucidated [2]. 
In many cancer types, genetically targeted therapies 
have been successfully applied to target mutated gene 
products. However, unlike EGFR [4] or ALK [5] 
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mutations in lung cancer, most liver cancer mutations 
are undruggable with conventional approaches. For 
example, TP53 mutation, the most common genetic 
change accounting for ~30% of all liver cancer cases, is 
currently difficult to target therapeutically for the 
immaturity of p53-targeted agonists [6]. Fortunately, 
an appealing concept called synthetic lethality (SL) 
provides a promising approach to target mutated 
genes previously considered to be undruggable [7]. 
The original concept of SL reflects relationships 
between two genes in which their simultaneous 
disruption causes cell death whereas functional loss of 
only one of the genes does not affect cell viability [7]. 
By harnessing this concept, selective elimination of 
cells with mutations in tumor suppressor genes 
(TSGs), such as TP53, can be realized using 
conventional chemical inhibitors. A classic example of 
the application of this concept is PARP inhibitors used 
for the treatment of tumors with BRCA mutations, 
which currently represent the only SL-based 
therapeutics approved by the United States Food and 
Drug Administration (FDA) [8]. Many expanded SL 
concepts have also been developed, such as synthetic 
dosage lethality [7, 9], metabolic SL [10], collateral SL 
[11], and conditional SL [7], offering additional 
possibilities for the development of SL-based 
therapies. 

To date, many experimental and computational 
approaches have been adopted to screen potential SL 
interactions. Experimental SL screening approaches 
can be broadly classified into two categories: model 
organism-based and human cell-based screening. 
Model organism-based screens mainly depend on 
synthetic genetic array analysis [12] and diploid 
synthetic lethality analysis with microarrays [13], 
while human cell-based screens usually utilize RNA 
interference (RNAi) and clustered regularly 
interspaced short palindromic repeats (CRISPR) 
technologies [14, 15]. As alternatives to experimental 
methods, emerging computational approaches, such 
as DAISY [16], MiSL [17], ISLE [18], and DiscoverSL 
[19], can offer convenient and low-cost SL prediction. 
However, most established approaches utilize 
pan-cancer data for SL inference and do not focus on a 
specific cancer type. Accordingly, detailed SL 
interactions in liver cancer remain under-explored. To 
fill this gap, we propose a new approach tailored to 
liver cancer, termed statistical inference-based 
synthetic lethality identification (SiLi). Based on this 
approach, we determined the landscape of SL 
interactions in liver cancer, which might provide new 
opportunities for highly specific therapeutic 
strategies. 

Methods 
Clinical Data 

Seven clinical cohorts of liver cancer, including 
TCGA-LIHC [20], LINC-JP [21], LIRI-JP [22], LICA-FR 
[23], KOREAN [24], LICA-CN, and CHCC-HBV [25], 
were included in this study, which comprised 1,825 
patients from multiple geographically different 
origins. Of these, TCGA-LIHC, LIRI-JP, LICA-FR, and 
CHCC-HBV cohorts had both RNA sequencing 
(RNAseq) and whole genome/exome sequencing 
(WGS/WES) data available, while LINC-JP, 
KOREAN, and LICA-CN cohorts only contained 
WGS/WES data. Among the four cohorts with 
available transcriptome data, TCGA-LIHC, LIRI-JP, 
and LICA-FR cohorts provided raw counts of gene 
expression, while CHCC-HBV cohort provided 
fragments per kilobase per million reads (FPKM) 
normalized data. For consistency, both raw counts 
and FPKM were transformed into transcripts per 
kilobase million (TPM) values that were more 
comparable between samples. As for the mutation 
data, in this study, we focused on the single 
nucleotide variants (SNVs) and small 
insertions/deletions (indels). Copy number variants 
(CNVs) profiles were not considered due to the data 
limitations. Non-functional mutations, including 
silent mutations (synonymous mutations) and 
mutations in intronic or intergenic regions, were first 
excluded, and only cases with functional mutations 
were considered as gene mutation events. Samples 
without functional mutations or fewer than 10 
mutations in gene panels were considered as outliers 
and discarded from downstream analyses. Genes 
with mutation frequencies less than 2.5% were also 
excluded. Loss-of-function (LOF) or inactivating 
mutations were defined as any truncating mutation 
(frameshift and nonsense mutations), the resulting 
proteins of which were usually nonfunctional. 
Duplicated mutations in each sample were merged to 
keep only one record. For survival analysis, three 
cohorts (TCGA-LIHC, LIRI-JP, and CHCC-HBV) 
provided follow-up information. The survival data of 
TCGA-LIHC cohort were achieved from the TCGA 
Pan-Cancer Clinical Data Resource (TCGA-CDR) [26], 
while the survival data of LIRI-JP and CHCC-HBV 
cohorts were obtained from supplementary files of 
reference [22, 25]. 

Cancer Cell Line Data 
Expression profiles of human cancer cell lines 

were obtained from the Broad Institute Cancer Cell 
Line Encyclopedia (CCLE) project (based on RNAseq) 
[27] and the Wellcome Sanger Institute Genomics of 
Drug Sensitivity in Cancer (GDSC) project (based on 
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microarray) [28]. Drug response data were achieved 
from the Cancer Therapeutics Response Portal 
(CTRPv.2.0, released October 2015) [29], GDSC1&2 
(released October 2019) [28], and PRISM Repurposing 
dataset (19Q4, released December 2019) [30], 
respectively. CTRP had the sensitivity data of 481 
compounds across 835 cell lines, GDSC contained the 
sensitivity data of 396 compounds across 773 cell 
lines, while PRISM included the sensitivity data of 
1448 compounds across 482 cell lines. All the three 
datasets provided area under the dose-response curve 
(AUC) values as a measure of drug sensitivity, where 
lower AUC values indicate increased sensitivity to 
treatments. Notably, cell lines in CTRP and PRISM 
were obtained from the CCLE project, and molecular 
data in CCLE were thus used for CTRP and PRISM 
analyses. For gene dependency data, genome-wide 
gene dependency scores, including CERES scores 
from CRISPR knockout screens and DEMETER scores 
for RNAi screens, were downloaded from the Cancer 
Dependency Map (DepMap) portal [31, 32]. Lower 
CERES or DEMETER scores indicate that 
corresponding genes are more likely to be essential in 
cell growth and survival. 

Driver Genes Detection 
DriverNet algorithm was utilized to discern 

potential driver genes of liver cancer [33]. By 
exploiting influence graph, this algorithm integrates 
genome and transcriptome data to evaluate the driver 
mutation probability. The input files of DriverNet 
include an influence graph, a mutation matrix, and a 
corresponding gene expression matrix. In this study, 
the influence graph was constructed using an updated 
protein functional interaction network (Version 2019, 
Reactome) [34]. The output of DriverNet is the 
significance of imported genes. Genes with adjusted P 
< 0.05 were deemed significant. To determine whether 
our prediction was reliable, we compiled a 
comprehensive list of liver cancer-associated driver 
genes from 14 previously published studies and 
compared our prediction with previous results. Since 
we only focused on tumor suppressor genes (TSGs) 
among these driver genes, 20/20 rule was adopted to 
further filter out oncogenes [35]. Briefly, we defined 
those genes containing >20% LOF mutations as 
potential tumor suppressors, which were used to 
construct subsequent TSG-target network. 

Network-Based Stratification 
Based on the mutation profiles of driver genes, 

network-based stratification (NBS) was conducted to 
identify classifications of liver cancer [36]. This 
algorithm is currently implemented in Python 
package called pyNBS (based on Python 2.7.2), which 

runs much faster than its original MATLAB-based 
version [37]. The input data of NBS analysis include a 
high-quality cancer reference network (CRN) 
provided by the new NBS study [37] and a mutation 
matrix of driver genes. The resulting data contain the 
clustering information and corresponding consensus 
matrix. The number of clusters k was varied from 2 to 
5. To evaluate the robustness of classifications, we 
further calculated the cophenetic correlation 
coefficient based on the resultant consensus matrix 
using the NMF R package. The k value that resulted in 
the maximum cophenetic correlation coefficient was 
considered as the optimal number of clusters. 
Through conducting nearest template prediction 
(NTP) analyses (Gene Pattern modules), we compared 
our results with previously published results, 
including classifications by Boyault et al. (G1-G6) [38], 
Chiang et al. (Five subclasses) [39], Hoshida et al. 
(S1-S3) [40], Désert et al. (Four subclasses) [41], and 
Yang et al. (C1-C3) [42]. 
Collection of Drug Targets 

Currently, not all human proteins are druggable 
and only less than 20% of them can be targeted using 
traditional small molecule agents [43]. Therefore, to 
identify genes with potential therapeutic implications, 
we only focused on druggable targets (DTs) and used 
them to construct TSG-DT network. Target 
information was derived from two sources, namely 
the Drug Repurposing Hub [44] and DrugBank [45]. 
The Drug Repurposing Hub contains 6125 
compounds with corresponding 2249 target genes, 
while DrugBank compiles 5514 compounds and 2724 
target genes. The target information in DrugBank was 
extracted from the fulldatabase file (XML format) 
using XML and dbparser packages. After removing 
duplication, a total of 3194 druggable genes were 
identified. Notably, for establishing the TSG- 
associated SL network, target genes whose 
mechanism of action (MOA) was denoted as an 
agonist were excluded. 
Mutual Exclusivity Analysis 

The analysis was performed on the basis of 1825 
patients with available genomic data using discover R 
package. Gene pairs with adjusted P < 0.15 or nominal 
P < 0.05 were considered significant. Mutual 
exclusivity-based SL network was visualized using 
Cytoscape software (version 3.7.1) [46]. The 
annotation of TSG and target genes were also 
presented in the network graph. 
Functional Similarity Analysis 

Functional similarity (FS) scores between gene 
pairs were calculated based on the semantic 
similarities in molecular function (MF) and cellular 



Theranostics 2021, Vol. 11, Issue 18 
 

 
http://www.thno.org 

9041 

component (CC) aspect of the gene ontology (GO) 
terms, which can take both function and location of 
genes into account [47]. The FS score for a gene pair is 
given as: 

𝐹𝑆 𝑠𝑐𝑜𝑟𝑒 = √𝑆𝑖𝑚𝑀𝐹 ∗ 𝑆𝑖𝑚𝐶𝐶 
Semantic similarities in MF (SimMF) and CC 

(SimCC) were measured based on the GO topological 
structure through using GOSemSim package [48]. 
Gene pairs with FS scores >0.5 were considered to 
have high functional interactions. 

Rank Aggregation Analysis 
Rank aggregation analysis was conducted to 

obtain a robust ranking of resultant SL pairs based on 
the ranking results from multiple sources. An order 
statistics-based method proposed by Stuart et al. was 
utilized to perform this analysis [49]. The output 
scores of this method were probabilities. We then 
defined the rank aggregation score (RAS) as follows: 

𝑅𝐴𝑆 = − log10(𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒) 
The resulting RAS was then used to determine a 

final ranking of candidate SL pairs. A higher RAS 
indicated a more concordant high ranking. 

Predicting Drug Sensitivity in Clinical Samples 
Either CCLE or GDSC projects only measured 

the drug response data in less than 20 liver cancer cell 
lines, the limited number of which might diminish 
statistical power and interfere with meaningful 
conclusions of downstream analyses. Previous studies 
have demonstrated that drug response in clinical 
samples can be estimated using data from in vitro cell 
line experiments [50, 51]. Therefore, we intended to 
perform drug response prediction based on the actual 
drug sensitivity and molecular data, which could to 
some extent tackle the problem of limited cell line 
number. Herein, the ridge regression model, which 
was considered an efficient and effective method in 
the previous report, was utilized to conduct 
transcriptome data-based drug response prediction 
[52]. Based on the expression and drug response data 
of solid cell lines from CCLE and GDSC projects 
(excluding hematopoietic and lymphoid tissue- 
derived cell lines), this predictive model was trained 
with a satisfied predictive accuracy evaluated by 
default 10-fold cross-validation and applied to the 
clinical samples to achieve the estimated drug 
response values. The drugs were mapped to their 
targets for constructing the TSG-DT-drug network. 
Enrichment Analysis 

To functionally describe the gene set of interest, 
we conducted the hypergeometric test using the 
clusterProfiler package based on the hallmark 

definitions (h.all.v7.0.symbols) downloaded from the 
Molecular Signatures Database (MSigDB) [53]. The 
resulting P values from the hypergeometric tests were 
adjusted for multiple comparison testing and adjusted 
P < 0.05 were considered significant. The adjusted P 
values were then transformed to -log10(P) and 
visualized as bar plots. 
Human Cell Lines and Compounds 

The human HCC cell lines, HEP3B217, HUH7, 
HEPG2, SNU398, SNU878, HUH6, SKHEP1 and 
PLCPRF5, were provided by Erasmus University 
(Rotterdam, Netherlands). MHCC97H were provided 
by the Liver Cancer Institute of Zhongshan Hospital 
(Shanghai, China). These cells were maintained in 
Dulbecco’s modified Eagle’s medium (DMEM) 
(Gibco, Carlsbad, CA) supplemented with 10% fetal 
bovine serum (FBS) (Gibco) and 1% penicillin/ 
streptomycin (BasalMedia), incubated at 37 °C in 
humidified atmosphere with 5% CO2. Mycoplasma 
contamination was excluded via a PCR-based 
method. The information of TP53 mutation status of 
cell lines used in this study was achieved from our 
previous publication [54]. The identities of all the cell 
lines were confirmed by short tandem repeat (STR) 
profiling. Volasertib (S2235) and GSK461364 (S2193) 
were purchased from Selleck Chemicals and 
dissolved in dimethyl sulfoxide (DMSO) using a 
storage concentration of 10 mM. 

Cell Proliferation Assays 
For long-term cell proliferation assay, cells were 

seeded into six-well plates (2-3×104 cells per well) and 
agents or vehicle control was added after 24 hours. 
Cells were treated with agents as indicated for 10-14 
days during which the culture media were replaced 
every three days. Afterwards, cells were stained with 
1% crystal violet for 30 minutes and rinsed with tap 
water. Pictures were taken using ImageScannerTM III 
(GE Healthcare) at 300 dpi resolution. In order to 
obtain the quantitative results of long-term cell 
proliferation assays, crystal violet was solubilized 
using 33% glacial acetic acid for 20 min and the 
absorbance was measured at 590 nm. For short-term 
assays, cells were seeded into 96-well plates (2-3×103 
cells per well) and were treated with agents for 72 
hours. Then, cell viability was measured using 
CellTiter-Blue (CTB) assay (Promega) according to the 
manufacturer’s recommendations. Experiments were 
performed in triplicate. 
Cell Apoptosis Assays 

To visualize Caspase 3/7 activity, IncuCyte 
Caspase-3/7 green apoptosis assay reagent was 
added to the culture medium and images of phase 
and fluorescence were captured in IncuCyte ZOOM 
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system (Essen Bioscience). Cell apoptosis was 
analyzed based on green fluorescent staining of 
apoptotic cells. 
Statistical Analysis 

Unless stated otherwise, all the computational 
analyses and graphical visualization were performed 
in R statistical software (v.3.6.0, R Core Team, R 
Foundation for Statistical Computing, Vienna, 
Austria). Comparison of a continuous variable in two 
groups was performed using either parametric test 
(Student’s t-test) if the variable was normally 
distributed or nonparametric test (Wilcoxon rank-sum 
test). Similarly, correlation between two continuous 
variables was measured by either Pearson’s r 
correlation or Spearman’s rank-order correlation. 
Contingency table variables were analyzed by Fisher’s 
exact tests. The hazard ratio (HR) was estimated using 
a Cox regression model by R package survival. 
Survival curve was carried out using Kaplan-Meier 
methods and the log-rank (Mantel-Cox) test was used 
to determine the statistical significance of differences. 
The Benjamini-Hochberg method was applied for 
multiple testing correction. A two-tailed P < 0.05 was 
considered statistically significant unless indicated 
otherwise. 

Results 
The SiLi Pipeline 

SiLi is a computational pipeline for statistically 
inferring candidate SL interactions using high- 
throughput clinical data sets, drawing on experiences 
from several previous approaches such as DAISY [16], 
MiSL [17], ISLE [18], and DiscoverSL [19]. This 
computational pipeline includes five inference steps: 
(1) functional similarity analysis, (2) differential gene 
expression analysis, (3) pairwise gene coexpression 
analysis, (4) pairwise survival analysis, and (5) rank 
aggregation analysis. The detailed procedures are 
described as follows: 
• The strategy for functional similarity analysis is 

based on the notion that genes with SL 
interactions tend to engage in closely related 
biological processes and accordingly their 
location in the GO topological structure should 
be close (Figure 1A) [16]. We defined FS score as 
the geometric mean of semantic similarities 
between MF and CC. Gene pairs with FS scores ≤ 
0.5 were considered to have low functional 
similarity and were filtered out from the list of 
candidate SL pairs. 

• The strategy for differential gene expression 
analysis is motivated by the assumption that if a 
certain gene loses its function due to mutation, 

tumors may increase the expression of its SL 
partners as a compensatory mechanism (Figure 
1A). This hypothesis was adopted in multiple 
earlier studies to search for potential SL 
interactions [17, 55]. We conducted differential 
expression analysis using Wilcoxon rank-sum 
test between samples with and without 
functional TSG mutations, and only genes with 
significantly higher expression in mutated 
samples were deemed potential SL partners of 
corresponding TSGs. 

• The strategy for pairwise gene coexpression 
analysis is based on the analogous notion of 
functional similarity, that is, SL pairs tend to 
have a similar function and hence are more likely 
to be coexpressed (Figure 1A) [16]. Gene pairs 
with significant correlation (Spearman’s 
correlation coefficient > 0.15 and adjusted P < 
0.05) were considered to be potential SL pairs. 

• The strategy for pairwise survival analysis 
assumes that co-inactivation of paired genes 
would reduce tumor fitness and consequently 
patients with co-inactive SL pairs are more likely 
to exhibit significantly better outcomes than 
patients without co-inactivation (Figure 1A) [18, 
56]. Due to data limitations, we mainly used 
expression data to define inactive/active gene 
status, and a gene was considered to be inactive 
in a sample if its gene expression was below the 
median across all samples. Gene pairs that could 
lead to significantly better prognosis for patients 
with co-inactivation than patients without 
co-inactivation were retained for subsequent 
analysis (P < 0.05). 

• Only gene pairs that passed all four procedures 
described above were taken as candidate SL 
pairs and utilized for constructing the TSG-DT 
network. Rank aggregation analysis using 
Stuart’s method was then conducted to rank the 
resultant SL candidates [49]. 
A schematic diagram of the procedures of SiLi 

and the overall study design is presented in Figure 
1B. 

A Brief Illustration and Validation of SiLi 
In our recent work, we found that CDC7 

inhibitors could selectively suppress the growth and 
proliferation of TP53-mutant liver cancer cell lines, 
suggesting that an SL interaction may exist between 
TP53 and CDC7 in liver cancer (Figure 2A) [54]. By 
exploiting this finding, we intend to briefly exemplify 
the practical application of SiLi as well as examine 
whether the theoretical assumptions used for the 
development of SiLi hold in this real SL interaction. 
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Functional similarity analysis gave an FS score of 
0.654 for the TP53-CDC7 pair, higher than the 
threshold (0.5) we set (Figure 2B). Differential 
analysis of CDC7 expression between TP53-mutant 
and TP53 wild-type samples suggested a significant 
difference between the two groups, with higher CDC7 
expression in the TP53-mutant samples than the 
TP53-wild-type samples (P < 0.001) (Figure 2C). 
Coexpression analysis indicated that TP53 and CDC7 
were significantly positively correlated (P < 0.0001), 

and the Spearman’s correlation coefficient value 
(0.187) was also higher than our threshold (0.15) 
(Figure 2D). In the pairwise survival analysis, we 
observed that patients with co-inactivation of TP53 
and CDC7 had significantly better survival outcomes 
than patients without co-inactivation (P = 0.015) 
(Figure 2E). Generally, these analysis results not only 
display the procedures of SiLi intuitively but also 
demonstrate the rationality of the SiLi pipeline design 
to some extent. 

 

 
Figure 1. Study overview. (A) Schematic representation of the concept of synthetic lethality. (B) Flow chart of the SiLi pipeline developed for inferring synthetic lethal 
interaction in liver cancer. 
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Figure 2. Computational validation of the synthetic lethal interaction between TP53 and CDC7. (A) Schematic diagram of the experimental finding of TP53-CDC7 
interaction. (B) The distribution of functional similarity scores among different gene pairs and the illustration of the functional similarity score of TP53-CDC7 gene pair. (C) 
Differential gene expression of CDC7 between TP53-mutant and TP53-wild-type samples. Statistical significance of expression difference was determined using Wilcoxon 
rank-sum test. (D) Correlation of the gene expression between TP53 and CDC7. Spearman correlation coefficient is indicated on the top left of the plots. (E) Survival difference 
between the groups with and without co-inactivation of TP53 and CDC7.  

 

Determination of Driver Genes in Liver 
Cancer 

Not all gene aberrations are related to 
tumorigenesis and tumor progression; some 
aberrations occur randomly, which are termed 
‘passengers’ [35]. Only a small number of aberrations, 
called ‘drivers’, possess the ability to confer selective 
advantages to tumor cells [35]. Therefore, therapeutic 
strategies that target driver genes are more likely to 
have clinical significance. Currently, a plethora of 
algorithms based on various statistical principles have 
been developed to discern candidate driver genes 
[57]. Of these, mutation frequency-based algorithms, 
such as MuSiC and MutSigCV, are the most 
commonly used approaches, and have been adopted 
by the majority of large-scale clinical studies focused 
on liver cancer [20, 23, 24]. To identify candidate 
drivers, we applied a network-based method, 
DriverNet, to the currently most comprehensive 
metadata set of liver cancer, which includes 849 
patients with liver cancer from four clinical cohorts 
with both expression and mutation data available 
(Figure 3A) [33]. Batch effects were removed to ensure 
comparability between different cohorts (Figure S1A). 
This analysis yielded 34 genes with q < 0.05. Of these, 
25 genes (73.5%) have been reported by at least one 

previous study as driver candidates, which 
demonstrates the reliability of our prediction (Figure 
3B and Table S1). These 25 genes were considered 
robust drivers of liver cancer and used for subsequent 
analysis. 

To demonstrate the clinical implications of these 
driver genes, we next classified their mutation profiles 
using the NBS algorithm [36]. According to their 
cophenetic correlation coefficients, patients were 
assigned to three subclasses (Figure S1B and S1C). 
Each subclass had distinguishing mutation features. 
NBS1 and NBS2 exhibited a higher proportion of TSG 
mutations (the identification of TSGs is presented 
below), including TP53, AXIN1, RB1, BAP1, and 
BRD7, while NBS3 was characterized by a high 
mutation frequency of CTNNB1 and low mutation 
frequency of TSGs (Figure 3C). Based on this result, 
NBS1 and NBS2 were defined as TSG-enriched 
subclasses. NBS classification was also associated 
with previously reported transcriptome-based 
classification. Taking the subclass NBS3 as an 
example, it was linked to Désert’s perivenous (P < 
0.001) [41] and Hoshida’s S3 (P < 0.001) [40] 
subclasses. In addition, survival analysis indicated 
that there was a significant difference in survival 
outcome among the three NBS subclasses, and NBS1 
exhibited a worse prognosis than either NBS2 (P = 
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0.007) or NBS3 (P = 0.030) (Figure 3D). In summary, 
the above results provide insight into driver 
gene-based clinical categorization of patients with 
liver cancer and hold the potential to guide further 
investigations of individualized therapies. 
Selection of Tumor Suppressors and 
Druggable Genes 

Driver genes can be further classified into two 
classes: TSGs and oncogenes. Most alterations in TSGs 
cause loss of gene functions, while alterations in 
oncogenes tend to be gain-of-function mutations [35]. 
The functional differences between these two driver 
gene classes could lead to distinct strategies for 
inferring their SL partners. Herein, motivated by the 
20/20 rule, we defined those drivers containing more 
than 20% LOF mutations as potential TSGs [35]. 
According to this principle, 14 of the 25 genes were 

deemed TSGs, which were then examined manually 
to guarantee a credible result (Figure S2A). We 
further investigated the mutation distribution of TSGs 
and oncogenes. The proportion of cases with at least 
one TSG mutation (70.67%) was higher than the 
proportion of cases with at least one oncogene 
mutation (48.41%), suggesting that therapeutics 
focused on TSGs might cover more patients with liver 
cancer than therapeutics focused on oncogenes 
(Figure S2B). However, most of current molecular 
targeted therapies exert their function through 
inhibiting a hyperactivated oncogene rather than 
restoring an inactivated TSG [6]. Fortunately, SL 
offers an alternative means to indirectly target TSGs. 
Based on these considerations, we subsequently 
focused on interrogating SL partners of the 14 
identified TSGs. 

 

 
Figure 3. Identification of driver genes in liver cancer. (A) Summary of included clinical cohorts for DriverNet analysis. (B) Comparison between driver genes identified in 
this study and that reported by previous studies. (C) The mutation distribution of subclasses identified by network-based stratification. Statistical significance of difference was 
determined using Fisher’s exact tests. Only statistically significant genes were labelled in the figure. Previously reported transcriptome-based molecular classifications were 
presented on the bottom of the plot. (D) Survival difference between three NBS subclasses. The statistical significance was determined by log-rank (Mantel-Cox) test.  
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Figure 4. The results of the identification of SL interactions. (A) A bipartite network of 272 TSG-DT interactions. The node size is proportional to the node degree. 
Only top 30 TSG-DT pairs with highest RAS scores are marked on the plot. The detailed information is presented in Table S2. (B) A bipartite network of 165 TSG-DT-drug 
interactions. For nodes in the inner layers, the node size is proportional to the node degree. For nodes in the outer layer, the node size is proportional to the fold change values 
of differential response analysis. Only top 30 TSG-DT-drug pairs with highest fold change values are marked on the plot. The detailed information is presented in Table S2.  

 
Another critical problem is that not all identified 

SL partners of TSGs can be druggable if SL inference 
is performed in a genome-wide level [43]. Therefore, 
to ensure that all candidate genes can be targeted 
using conventional chemical agents, we compiled a 
list of 3194 druggable genes and limited the SL 
candidates to these genes. Accordingly, the SL 
network is a bipartite network, constructed on the 
basis of 14 TSGs and 3194 druggable genes. 
Inference of TSG-DT interactions 

Based on the concept that simultaneous 
mutation of two genes in an SL pair influences cellular 
processes and causes cell death, mutual exclusivity 
analysis can be adopted to discover potential SL 
interactions [58-60]. For conducting this analysis, we 
collected seven clinical cohorts with available 
WES/WGS data, comprising 1825 patients with liver 
cancer (Figure S3A). With the threshold for 
significance set to adjusted P < 0.15, only 18 mutually 
exclusive gene pairs were identified. If we further 
limited these gene pairs to TSG-DT interactions, only 
4 gene pairs were left (Figure S3B). To identify more 
mutually exclusive pairs, we relaxed the threshold to 
nominal P < 0.05. Under this condition, a total of 325 
mutually exclusive pairs and 67 TSG-DT pairs were 
identified (Figure S3C), which we believe is still 
limited for further screening. Although mutual 
exclusivity analysis has been adopted by multiple 
studies to infer candidate SL interactions, this analysis 
might not be a suitable option in liver cancer, given 
the relatively sparse mutation profiles of this cancer 
type [19, 59, 61]. In summary, these results support 

the rationality of excluding mutual exclusivity 
analysis from the SiLi pipeline. 

Taking the 14 TSGs and 3194 druggable genes 
identified above as the basis, the first four steps of 
SiLi, including functional similarity analysis, 
differential gene expression analysis, pairwise gene 
coexpression analysis, and pairwise survival analysis, 
were conducted to infer TSG-DT pairs with potential 
SL interactions. A total of 272 TSG-DT pairs 
(including 209 unique targets) passed the four 
screening steps and were considered SL candidates 
for liver cancer (Table S2). These SL candidates are 
visualized in a bipartite network graph in Figure 4A. 

Subsequently, in order to obtain a ranking of the 
272 TSG-DT pairs, rank aggregation analysis was 
performed to integrate the SiLi results. Briefly, the 
TSG-DT pairs were firstly ranked based on their FS 
scores (functional similarity), fold change values 
(differential expression), correlation coefficients 
(pairwise coexpression), and hazard ratios (pairwise 
survival). Then, Stuart’s method was applied to 
integrate all these rankings and calculate the RAS of 
each TSG-DT pair (Figure S4A and Table S3) [49]. We 
considered that TSG-DT pairs with high RASs were 
more likely to have SL interactions. 

The SL candidates in this study were compared 
to those inferred in other studies to evaluate our 
prediction results. Due to the deficiency of studies 
focused on investigating liver cancer-specific SL pairs, 
we compared our results with those from pan-cancer 
or other tumor-associated studies, including studies 
by Wang et al. [55], Kranthi et al. [62], Ye et al. [59], and 
Jerby-Arnon et al. [16]. The comparison results suggest 
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that the overall consistency between different 
predictions is quite poor. Only 3.68% (10 pairs) of our 
prediction overlapped with other results (Figure 
S4B). We suppose that the different inference 
procedures, as well as input data, might be the major 
contributors of the discrepancy. 

Extension of TSG-DT interactions to 
TSG-DT-drug interactions 

By leveraging pharmacogenomic data from 
CTRP [29], GDSC [28], and PRISM [30] datasets and 
integrating drug information into the TSG-DT 
network, we intended to further construct a 
TSG-DT-drug network, which might possess 
relatively direct and practical clinical implications. 
Regardless of duplication, a total of 1986 unique 
drugs were included in this study. Estimated drug 
response in clinical samples could be obtained by 
constructing ridge regression model based on actual 
drug sensitivity and expression data from cell lines. 
The reliability of this approach has been validated 
computationally and experimentally in our previous 
publication [51]. Next, according to target annotation, 
1986 drugs were mapped to 209 unique targets in the 
TSG-DT network, which retained 381 DT-associated 
drugs. To further connect TSGs with these 
DT-associated drugs, differential drug response 
analysis was conducted between samples with and 
without TSG mutations. Only drugs with significantly 
lower estimated AUC values in mutated samples 
were considered to be SL-associated drugs. This 
analysis yielded 165 TSG-drug pairs (without 
removing duplication from different datasets) and 62 
TSG-DT pairs (Table S2). These pairs are visualized in 
a TSG-DT-drug network graph in Figure 4B. 
Considering that the 1986 drugs could only cover 96 
of 209 (45.9%) targets inferred by SiLi, this step was 
taken as an extension rather than a further screening 
to avoid potential bias. 

Characterization of Target Genes in the 
TSG-DT Network 

As mentioned above, there are 209 unique target 
genes in the 272 TSG-DT pairs. To evaluate the clinical 
and biological significance of these genes, we carried 
out comprehensive analyses using clinical data from 
the metadata set and gene dependency data from 
CRISPR and RNAi screens. The biological processes 
related to the 209 targets were first characterized by 
enrichment analysis. Most of the significantly 
enriched processes, such as E2F targets, G2M 
checkpoint, and MYC targets V1, were associated 
with cell proliferation, and were generally consistent 
with the function of their SL partners (Figure 5A). 
Next, the expression differences of these genes 

between tumor and normal tissues were investigated. 
Differential genes were identified by adjusted P < 0.01 
and |log2(fold change)| > 1. As expected, all the 
differential target genes exhibited higher expression 
levels in tumor tissues than normal tissues (Figure 5B 
and Table S4). Cox proportional hazards regression 
analysis was also performed to reveal their 
association with survival outcome. The result 
suggests that all the significant genes (207 of 209) are 
associated with unfavorable prognosis (hazard ratio > 
1) (Figure 5C and Table S5). These findings 
demonstrate that the clinical phenotypes of these 209 
genes are compatible with their roles as potential 
targets for inhibitors. 

Furthermore, the dependency of the target genes 
across liver cancer cell lines was also explored. We 
first generated a random gene set of the same size 
(209) and then compared the dependency scores of the 
target set and the random set. The target set had 
significantly lower dependency scores than the 
random set using either CRISPR-based data (Figure 
5D) or RNAi-based data for comparison (Figure 5E), 
which means that liver cancer cell lines are more 
likely to depend on these 209 genes for their survival 
and growth. The dependency rankings of the 209 
genes were also calculated (Figure S5A and S5B, 
Table S6). Overall, the above analysis results 
systematically depict the characteristics of the 209 
genes and preliminarily unveil their potential as novel 
therapeutic targets for treating liver cancer. 
Identification of Novel Therapeutics for 
TP53-mutant Liver Cancer 

The rankings of the 209 target genes varied 
greatly when different analysis results were used for 
ranking. Among the targets, we noticed that polo-like 
kinase 1 (PLK1) was a relatively top-ranked target in 
multiple analyses (differential expression analysis: 
11th; survival analysis: 2nd; CRISPR-based 
dependency: 14th; RNAi-based dependency: 7th). Also, 
two PLK1-engaged gene pairs, RB1-PLK1 and 
TP53-PLK1, are highly ranked among the 272 TSG-DT 
pairs (RB1-PLK1: 4th; TP53-PLK1: 47th) (Figure S4A). 
Accordingly, the target PLK1 was selected for further 
validation of its therapeutic potential in liver cancer. 
Given that the low mutation frequency of RB1 (4.83%) 
(Figure S2B) is neither conducive to subsequent 
experimental validation (Hep3B is the only 
RB1-mutated liver cancer cell line recorded in CCLE) 
nor favorable for its potential clinical application, we 
selected the TP53-PLK1 for subsequent validation. 

TP53 and PLK1 collectively participate in the cell 
cycle process (Figure 5F) [63]. To delineate the 
relationship between TP53 and PLK1 in liver cancer, 
the dependency scores of PLK1 across TP53-mutant 
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and TP53-wild-type liver cancer cell lines were 
analyzed (Figure 5G and 5H). Cell lines with TP53 
mutations showed a trend toward lower PLK1 
dependency scores, albeit not statistically significant. 
Many small molecule inhibitors targeting PLK1 are 
currently available. The results of in silico analysis 
suggested that TP53 mutation could lead to higher 
sensitivity of tumors to treatment with multiple PLK1 
inhibitors (Figure 6A). The current clinical status and 
target specificity of these PLK1 inhibitors were 
presented in Figure 6B [44]. Among them, volasertib 
was selected for further experimental validation for its 
late-phase clinical status and high target specificity. 
Long-term cell proliferation assays were first 
performed using nine liver cancer cell lines (Figure 
6C). The quantitative results showed that, under the 
condition of different treatment concentrations, 
volasertib all exhibited a stronger antitumor activity 
on TP53-mutant cell lines than on TP53-wild-type cell 
lines (Figure 6D). We further conducted short-term 
CTB-based viability assays to validate this result 
(Figure S6). It could be observed that the cell viability 

of TP53-mutant cell lines were significantly lower 
than that of TP53-wild-type cell lines, consistent with 
the results from long-term assays (Figure 6E). Aside 
from volasertib, another PLK1 inhibitor named 
GSK461364 was also used to perform additional 
validation. Similarly, the treatments of GSK461364 
had preferential growth inhibitory activity on 
TP53-mutant cells than TP53-wild-type cells as well, 
which further demonstrated the reliability of our 
findings (Figure S7A-C and Figure S8). 

Concurrently, to explore the effects of PLK1 
inhibitors on the apoptosis pathway, we performed 
caspase 3/7 assays, in which apoptosis activation is 
proportional to the intensity of green fluorescence 
(Figure 6F). TP53-mutant cell lines exhibited stronger 
green fluorescence than TP53-wild-type cell lines, 
indicating that PLK1 inhibitors might have a stronger 
ability to induce apoptosis upon TP53 mutation 
(Figure S9 and Figure 6G). Overall, the consistent 
results from in silico prediction and in vitro 
experiments demonstrate the potential of targeting 
PLK1 for treating liver cancer. 

 

 
Figure 5. Clinical and biological characteristics of resulting 209 unique targets. (A) The results of enrichment analysis based on 209 target genes using 50 hallmark 
gene sets. (B) Differential expressed genes between tumor tissues and normal tissues. The 209 targets were marked on the plot. (C) The survival association of 209 target genes 
determined by cox proportional hazards regression analysis. (D) The difference of CRISPR-based gene dependency scores between target set and random set. (E) The difference 
of RNAi-based gene dependency scores between target set and random set. Statistical significance of expression difference was determined using Wilcoxon rank-sum test. (F) 
Schematic plot of the biological relationship between TP53 and PLK1. (G) The CRISPR-based gene dependency scores of PLK1 across 20 liver cancer cell lines. (H) The 
RNAi-based dependency scores of PLK1 across 17 liver cancer cell lines.  
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Figure 6. Investigations of the roles of PLK1 inhibition as a novel therapeutic strategy of liver cancer. (A) The results of differential drug response analyses. The 
PLK1 inhibitors with significant response differences between TP53-mutant and wild-type groups were labeled on the plot. (B) The information of clinical status and target 
specificity of included PLK1 inhibitors. (C) Long-term cell proliferation assays were conducted based on six TP53-mutant cell lines (SNU398, SNU878, MHCC97H, HEP3B217, 
HUH7, and PLCPRF5) and three TP53-wild-type cell lines (SKHEP1, HEPG2, and HUH6) treated with volasertib using gradient concentrations (6.25nM, 12.5nM, 25nM, and 
50nM). (D) Quantitative results of long-term cell proliferation assays of volasertib. The point represents the mean value and the error bar indicates the standard deviation. (E) 
Comparison of CellTiter-Blue assay-based cell viability between TP53-mutant and TP53-wild-type cell lines treated with volasertib using two different concentrations (6.25nM and 
12.5nM). (F) Representative Incucyte images of caspase-3/7 green assays of liver cancer cell lines treated with volasertib and GSK461364 (scale bars: 100 µm). Based on the 
results from cell proliferation assays, 12.5nM was chosen for volasertib treatment while 6.25nM was chosen for GSK461364 treatment. (G) Quantitative comparison of 
caspase-3/7 green assays between TP53-mutant and TP53-wild-type cell lines. Statistical significance of difference was determined using Student t-test (***P < 0.001, ****P < 
0.0001). 

 

Discussion 
Current therapeutic strategies against liver 

cancer still follow the principle of “one size fits all” 
with low overall response rates [3]. Due to the absence 
of FDA-approved agents that can specifically target 

genetic aberrations, individualized treatment of liver 
cancer has lagged far behind other cancers [3]. 
Recently, the selective FGFR4 inhibitor fisogatinib has 
presented some promising results in phase I/II 
clinical trials and brought new therapeutic 
opportunities to liver cancer [64]. However, 
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considering that the target population of fisogatinib is 
limited to patients with either genomic amplification 
or upregulated expression of FGF19, this therapy can 
only cover <30% of all liver cancer cases [64]. 
According to our finding, >70% of liver cancer 
patients harbored at least one TSG mutation. 
Nevertheless, effective therapies targeting patients 
with TSG mutations remain largely unexplored [3]. 
Aiming to fill this knowledge gap, we proposed the 
SiLi pipeline and thereby determined 272 TSG-DT 
pairs with potential SL interactions in liver cancer. 
Further, we extended these TSG-DT interactions to 
TSG-DT-drug interactions that had more direct 
clinical significance. Theoretically, the vast majority of 
patients with liver cancer can be covered by SL-based 
therapeutic strategies and our findings could provide 
novel insights into personalized liver cancer 
treatment. 

There are two main types of computational 
approaches to inferring SL interactions: statistical 
approaches and machine learning approaches [65]. 
Statistical approaches, such as the previously reported 
DAISY [16] and ISLE [18] and our SiLi, use biological 
hypothesis-based statistical tests to predict SL pairs, 
which are relatively convenient and flexible. In 
comparison, machine learning approaches require 
prior knowledge of SL interactions for training 
prediction models. Taking DiscoverSL as an example, 
this approach applies a random forest classifier to 
determine whether SL pairs of interest are meaningful 
[19]. Before the prediction, the random forest model 
needs first to be trained on validated positive/ 
negative SL pairs using statistical tests-based features 
as independent variables. New SL interactions can 
then be predicted based on the trained random forest 
model [19]. Evidently, the development of machine 
learning approaches relies on a sufficient number of 
previously validated SL pairs. In the absence of 
training data, adopting statistical approaches should 
be a preferable option. 

The specific procedures adopted by various 
statistical approaches also vary substantially. Many 
established approaches integrate analyses of 
functional genetic screening data into their pipelines 
[16, 60]. This procedure was not adopted in SiLi since 
the insufficient number of cell lines with available 
gene dependency data could limit the statistical 
power and thus affect the final prediction results. 
Another common inference procedure adopted by 
many statistical approaches is mutual exclusivity 
analysis [19, 59, 61]. This procedure, according to our 
findings, is also not applicable to liver cancer due to 
the sparsity of the mutation profiles. In general, 
among the numerous approaches developed to date, 
SiLi is the only one tailored specifically to liver cancer 

data. Notably, SiLi can also be applied to other 
cancers that have similar data characteristics as liver 
cancer. 

Among the 272 identified TSG-DT gene pairs, 
TP53-PLK1 exhibits several advantageous biological 
and clinical properties. Thus, it was selected to be 
further investigated for its therapeutic implication. 
The relationship between p53 and PLK1 has been 
described in a previous study [63]. Specifically, both 
p53 and PLK1 engage in the cell cycle process (Figure 
5F). The roles of p53 that induce cell cycle arrest rival 
the functions of PLK1 that promote cell cycle 
progression [63]. Expression of PLK1 is indirectly 
repressed by p53 through multiple processes, and 
suppression of PLK1 through p53 is a crucial 
mechanism that cells use to prevent abnormal 
overcoming of cell cycle arrest [63]. Mutation or loss 
of TP53 can lead to upregulation of PLK1 expression, 
thereby promoting a hyperproliferative phenotype 
[63]. Among patients with primary breast cancer, 
patients with TP53-mutant tumors expressing PLK1 
have been found to exhibit a poorer survival outcome 
than patients having either PLK1 expression or TP53 
mutation alone [66]. Since intact p53 may reduce the 
sensitivity of tumor cells to selective PLK1 inhibition 
by suppressing the basal level of PLK1, cells with 
TP53 mutations may have a greater susceptibility to 
PLK1 inhibition, which was reported in a prior study 
[67]. Although a very recent study presented a 
preliminary finding that TP53-mutant Huh7 cells 
were more sensitive to PLK1 inhibitors than 
TP53-wild-type HepG2 cells, systematic analyses have 
not yet been conducted to characterize PLK1 as a 
specific target and PLK1 inhibitors as selective 
therapeutics of TP53-mutant liver cancer [68]. In this 
study, utilizing public data from clinical cohorts and 
functional genetic screens, we comprehensively 
investigated the potential therapeutic role of PLK1 in 
liver cancer. The significant clinical implications and 
the high cell dependencies both suggest that PLK1 can 
be a promising therapeutic target in liver cancer. 
Comparisons of the estimated drug response of 
TP53-mutant and TP53-wild-type samples to several 
PLK1 inhibitors showed that PLK1 inhibitors tended 
to have lower estimated AUC values (higher 
sensitivity) in the TP53-mutant group than those in 
the TP53-wild-type group. Considering that the 
estimated drug response cannot represent the actual 
case, we further conducted in vitro experiments across 
nine liver cancer cell lines to validate the in silico 
results. As expected, the experimental results showed 
a good agreement with the computational results, 
collectively demonstrating that inhibition of PLK1 has 
the potential to be a novel and selective anti-liver 
cancer strategy. 
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This study has several limitations. First, the 
identification of liver cancer-specific SL interactions 
relied on only three types of data, namely expression 
data, SNVs/indels-based mutation data, and survival 
data, without the involvement of CNVs profiles due 
to the data limitation. Since CNVs are also closely 
associated with the gain/loss of function of 
corresponding genes, the exclusion of CNV data 
might affect the accuracy of the SL prediction. 
Generally, currently available resources are 
insufficient for carrying out multiple omics-based 
analyses in a large-scale metadata set of liver cancer. 
With more and more high-throughput sequencing 
data becoming available, the results of this work 
should be validated and extended in an appropriate 
large-scale metadata set in the future. Second, an 
insufficient number of liver cancer-specific SL 
interactions with experimental evidence limited our 
capacity to assess the accuracy of the SL prediction. 
Comparisons between our results and several 
previous non-specific predictions presented poor 
concordance, suggesting that further validation 
would be necessary to ensure the reliability of our 
results. Finally, we only conducted in vitro 
experiments to investigate the therapeutic potential of 
PLK1 inhibitors. Performing more comprehensive in 
vivo validations using cell line derived xenograft or 
patient derived xenograft tumor models might give 
more convincing results. These limitations 
notwithstanding, this study has several strengths, 
including the individual data pooled study design 
that contributed a large number of patients with liver 
cancer. Owing to the large sample size, we were able 
to explore the SL partners of TSGs with low mutation 
frequency. 

Overall, the present study proposed a new 
approach for SL identification and presents the most 
comprehensive landscape of TSG-associated SL 
interactions in liver cancer. Additionally, a novel 
therapeutic strategy targeting PLK1 was also 
demonstrated to have significant potential in the field 
of personalized liver cancer treatment. 
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