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Abstract: Deep-learning workflows of microscopic image analysis are sufficient for handling the
contextual variations because they employ biological samples and have numerous tasks. The use
of well-defined annotated images is important for the workflow. Cancer stem cells (CSCs) are
identified by specific cell markers. These CSCs were extensively characterized by the stem cell
(SC)-like gene expression and proliferation mechanisms for the development of tumors. In contrast,
the morphological characterization remains elusive. This study aims to investigate the segmentation
of CSCs in phase contrast imaging using conditional generative adversarial networks (CGAN).
Artificial intelligence (AI) was trained using fluorescence images of the Nanog-Green fluorescence
protein, the expression of which was maintained in CSCs, and the phase contrast images. The AI
model segmented the CSC region in the phase contrast image of the CSC cultures and tumor
model. By selecting images for training, several values for measuring segmentation quality increased.
Moreover, nucleus fluorescence overlaid-phase contrast was effective for increasing the values.
We show the possibility of mapping CSC morphology to the condition of undifferentiation using
deep-learning CGAN workflows.

Keywords: Cancer stem cell; conditional generative adversarial network; phase contrast; green
fluorescence protein; tumor

1. Introduction

Tumors are believed to be maintained by a minor population of cancer cells. These are termed
cancer stem cells (CSCs) to describe the extraordinary characteristics of these cells provoking new
tumors as determined by an allograft mouse tumor system [1]. The CSCs have the ability to grow
themselves while maintaining an undifferentiated property and to generate progenitor cells with the
potential to produce a major population of cancer cells. The first evidence of CSCs was reported in a
study of blood tumor-initiating cells showing the hematopoietic stem cell (SC) surface marker, cluster
of differentiation (CD), CD34+/CD38. Then, CSCs were isolated from solid tumors as the only cells
capable of initiating new tumors. The cell-surface markers characteristic to CSCs were identified to
separate them from other cells. For example, CD24−/low/CD44+, CD20+ in spheroid cells, and CD133+

Biomolecules 2020, 10, 931; doi:10.3390/biom10060931 www.mdpi.com/journal/biomolecules

http://www.mdpi.com/journal/biomolecules
http://www.mdpi.com
http://www.mdpi.com/2218-273X/10/6/931?type=check_update&version=1
http://dx.doi.org/10.3390/biom10060931
http://www.mdpi.com/journal/biomolecules


Biomolecules 2020, 10, 931 2 of 13

were identified for human breast tumors, melanoma, and brain tumor tissues, respectively. Importantly,
the CSC populations were extremely low in each tumor tissue. It is postulated that CSCs have an
important role in chemoresistance and radiation resistance [2]. The development of new therapy
according to the CSC concept is interesting, although the origin of the cells and their path to becoming
CSCs remains unclear.

Cultured CSCs are useful as powerful tools of cancer research. It is appropriate to employ primary
cultures of CSCs, which are selected using a fluorescent activated cell sorter with cell surface markers,
regardless of whether these proteins are directly involved in the SC biology [2]. Another approach of
CSC culture is the use of induced pluripotent stem (iPS)-derived CSCs [3]. Mouse iPS (miPS) cells
have been shown to acquire characteristics of CSCs by treatment with the conditioned medium of
cancer cell lines as a niche for SCs. Unlike normal miPS cells, they formed malignant tumor tissue after
transplantation into nude mice. However, the stem-like cells taken from the tissue formed spheres on
the attached culture and spheroids in the suspension culture which morphologically resembled miPS
cells. These iPS-derived CSCs retained SC marker gene expressions such as Nanog and Rex1 at even
higher levels. Nanog and other genes have the capability of transforming normal cells into pluripotent
cells [4]. The similarity between the reprogramming mechanisms of iPS cells by transcription factors
and the mechanisms of cell transformation to CSC has been of interest [5].

It is widely accepted that SCs form morphologically typical colonies in the undifferentiated
state [4,6]. Upon differentiation stimuli, SCs transform their shape, leading to several functionally
distinct cell types. The CSC-like cells selected from human nasopharyngeal carcinoma cell lines
exhibited distinct cell morphology from non-CSC-like cells [7]. Spherical colonies were formed by
iPS-derived CSCs expressing Nanog but not by cells without the Nanog expression [3,8]. The tumor
tissues developed from iPS-derived CSCs contained cells expressing both cancer cell marker protein
and green fluorescent protein (GFP) reporting the Nanog expression. However, most cells expressed
only one of these proteins, suggesting the production of differentiated cancer cells from iPS-derived
CSCs to generate tumor tissues. Given these morphological characteristics of SCs, we hypothesized
that CSCs in cultures might have typical cell morphology compared to cells that lost the SC marker
gene expression.

Examination of cell morphology by phase contrast microscopy is a basic method for cell biologists
to define cell shape and appearance based on basic categories such as fibroblastic, epithelial-like, and
lymphoblast-like cells. Trainees with substantial cell culture expertise might detect signs of healthy cell
status by inspecting the cells. It is not surprising that SC biologists may notice signs of deterioration
of SCs and/or CSCs losing their pluripotent characteristics by checking the cells regularly. In recent
years, image recognition technologies have made remarkable advances using artificial intelligence (AI).
The methods have been applied for the identification of endothelial cells, as well as the classification
of protein localization and cells [9–11]. An image-to-image translation system, called a conditional
generative adversarial network (CGAN), is an advanced AI system wherein a photograph can be
translated by a single algorithm without specific settings [12]. The examples of image translation are
significant in terms of accuracy and creativity. The CGAN code learned a mapping between an input
and output image. It is interesting to determine if the code can learn a mapping from a phase contrast
image of an iPS-derived CSC to a GFP fluorescence image of the corresponding CSC. In other words,
it is curious whether the code can recognize and distinguish the morphology of iPS-derived CSCs
expressing GFP. We previously applied a deep-learning algorithm for the recognition of iPS-derived
CSCs [13]. The AI accepted 10 221 pair images of cultured iPS-derived CSCs phase contrast and GFP
fluorescent images to learn the cell morphology in relation to the Nanog expression. Although the
mathematical formula of cell image recognition was unclear, the AI system displayed the capability of
finding Nanog-expressing cells in phase contrast cell images after deep learning. Here, we examined
the accuracy of output images by AI, which learned cell images taken under various conditions.
We detected iPS-derived CSCs in phase contrast tumor tissue images by the deep learning of tissue
image pairs.
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2. Materials and Methods

2.1. Cell Culture

Lewis lung cancer (LLC) cells of mice, generously gifted by Dr. M. Seno (Department of Medical
Bioengineering, Okayama University), were maintained in DMEM high glucose supplemented with
10% fetal bovine serum (FBS), 1× non-essential amino acids (NEA), and 1% penicillin/streptomycin
(P/S) in a 5% CO2 incubator. These culture reagents were purchased from FUJIFILM Wako Pure
Chemical Corporation, Osaka, Japan. A conditioned medium (cm) from LLC cells was collected from
confluently grown cells in the same medium, except with 5% FBS for one day, and then filtered using a
0.45 µm filter. For a culture of miPS-LLCcm cells, a CSC model, multi-well plates, and dishes were
pre-coated with 0.1% porcine-skin gelatin (MilliporeSigma, St. Louis, MO, USA) in a CO2 incubator
for 12 h. The cells were maintained at 37 ◦C in a 5% CO2 incubator in a medium containing an LLC
conditioned medium mixed with DMEM high glucose with 15% FBS, 1×NEA, 1% P/S, 1× L-glutamine
(FUJIFILM Wako Pure Chemical Corporation), and 100-µM 2-mercaptoethanol in a ratio of 1:1 in
accordance with a previous report [3]. Mitomycin C-treated mouse embryonic fibroblast (MEF) feeder
cells (REPROCELL, Yokohama, Japan) were cultured in DMEM high glucose with 10% FBS, 1× NEA,
and 1% P/S for three days before seeding the miPS-LLCcm cells on feeder cells.

2.2. Animals and Tumor Tissue Preparation

Cell cultures of miPS-T47Dcm cells, a CSC model, and animal experiments were studied
as previously described [3,8,14]. Briefly, four-week-old female Balb/c-nu/nu mice (Charles River,
Yokohama, Japan) were subcutaneously injected with 7.5 × 105 cells that were converted into CSCs
with a conditioned medium treatment and suspended in 200 µL of phosphate-buffered saline (PBS).
Tumors were harvested to a size of approximately 1000 mm3. Tumors fixed with 10% formalin
were finally equivalated into 20% sucrose in PBS at pH 7.4, and embedded in an optimum cutting
temperature compound (Sakura Finetek, Tokyo, Japan) at −80 ◦C. Five-micrometer-thick sections were
cut and collected on glass slides.

The protocol for the animal experiments was reviewed and approved by the Animal Care and
Use Committee of Okayama University under ID OKU2019591. All experiments were conducted in
accordance with the Policy on the Care and Use of Laboratory Animals, Okayama University.

2.3. Microscopy

Living cells grown in multi-well plates were examined using a fluorescence microscope BZ-X800
(KEYENCE, Osaka, Japan) equipped with CFI Plan Fluor DL 10× (Nikon, Tokyo, Japan) and Plan
Fluorite 20× LD PH objective lenses (KEYENCE).

Tumor sections on glass slides were incubated with 0.5-µg/mL Hoechst 33342 (Thermo Fisher
Scientific, Waltham, MA, USA) in PBS for 15 min for nucleus staining. After washing the slides in
PBS, the sections were mounted in PBS. The GFP fluorescence (525 nm) was visualized at a 470-nm
excitation with an exposure time of 1 s. Hoechst 33342 fluorescence (460 nm) was visualized at a
360-nm excitation. Images were acquired as a set of phase contrast and GFP fluorescence images or as
a set of phase contrast, GFP fluorescence, and Hoechst 33342 fluorescence images. All images were
acquired at a resolution of 1920 × 1440 pixels and saved as tiff files. The CSC image diagnosis of the
tumors was performed by a clinical technologist.

One sequentially acquired avian heart (purchased from a butcher) section was stained with a
hematoxylin-eosin (HE) stain (MUTO Pure Chemicals, Tokyo, Japan) according to the manufacturer’s
instructions. The other was stained with an Elastica van Gieson (EVG) stain (MUTO Pure Chemicals)
for elastic tissues.
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2.4. Image Processing and AI

For machine learning, the hardware was equipped with a Core i5-3470S CPU (Intel, Santa Clara, CA,
USA), 32-GB PC3L-12800 memory (Kingston, Fountain Valley, CA, USA), and GeForce GTX1070Ti GPU
(ELSA, Tokyo, Japan). For high-performance GPU-accelerated software environments, the NVIDIA
CUDA Toolkit 8.0 (NVIDIA Corp., Santa Clara, CA, USA) was built on Ubuntu 16.04.1 LTS (Canonical
Ltd., London, UK) with kernel version 4.4.0. The GPU-accelerated NVIDIA CUDA Deep Neural
Network library (cuDNN) v6.0 (NVIDIA) was used for the deep-learning framework TensorFlow
version 1.4.1 [15], which was built in Python 3 (https://www.python.org/). Each paired image file of
phase contrast and fluorescence was divided into 35 files with a resolution of 256 × 256 pixels by a
Python script utilizing the NumPy and PIL packages for Python. Each phase contrast image was
joined with the corresponding fluorescence image to create a new image where the two images were
arranged side by side. For CGAN software pix2pix port [12], a TensorFlow implementation was
used according to practical instructions (https://github.com/affinelayer/pix2pix-tensorflow). The recall,
precision, specificity, F-measure, and correlation coefficient values were used to evaluate the similarity
between the output and the target. Precision is the fraction of the true positive cases that are actually
positive among the predicted positive cases. The recall is the fraction of the true positive cases that are
actually positive among the true positive and the false negative cases. The specificity is the fraction
of true negative cases that are actually negative among the true negative and the false positive cases.
Precision, recall, and specificity are defined by Equations (1)–(3), respectively.

Precision =
TP

TP + FP
, (1)

Recall =
TP

TP + FN
, (2)

Specificity =
TN

TN + FP
, (3)

where TP is the number of true positives, TN the number of true negatives, FP the number of false
positives, and FN the number of false negatives. F-measure is a harmonic mean that combines both
recall and precision. F-measure is defined by Equation (4),

F-measure =
2RP

R + P
, (4)

where R is recall and P is precision.
After binarizing the output and target images, the correlation coefficient between the two images

was calculated. The correlation coefficient is defined by Equation (5):

Correlation coefficient =
∑

m
∑

n(Fmn − µF)(Gmn − µG)√
(
∑

m
∑

n(Fmn − µF)
2)(
∑

m
∑

n(Gmn − µG)
2)

, (5)

where F and G are the image area and µF and µG are the average values of F and G, respectively.

2.5. Statistical Analysis

Ryan’s method was used for the evaluation of the differences between groups. The Student’s
t-test was used for the evaluation of the differences between two groups. Pearson’s chi-square test was
used for the evaluation of independence of two categorical valuables.

https://www.python.org/
https://github.com/affinelayer/pix2pix-tensorflow
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3. Results

3.1. Deep Learning of CSC Image Cultured on Multi-Well Plate

We used miPS-LLCcm cells as a model of CSCs [3]. The Nanog-GFP reporter gene-harboring
miPS-LLCcm cells allows us to easily acquire information on the pluripotency of cells by examining
the GFP fluorescence [16]. The characteristics of miPS-LLCcm cells as CSC were previously proved
by the evidence of the Nanog expression, diverse SC markers expression and the mouse in vivo
experiments [3]. The SC markers were disappeared in correlation with the loss of the Nanog expression.
The AI was expected to learn the morphology of miPS-LLCcm cells shown on phase contrast cell images
in relation to the corresponding GFP fluorescence. We examined both the training and procurement
of the AI that predicts GFP fluorescence positive miPS-LLCcm cells in phase contrast cell images
without GFP fluorescence image information. Three types of image datasets were used for AI to
evaluate the difference in magnitude of the objection lenses and the presence of MEF feeder cells
(Figure 1a). The miPS-LLCcm cells on MEF had morphological characteristic features of dense, stacked,
round, and aggregated cells, which differed from cells on the porcine-skin gelatin-coated surface.
We observed that the GFP fluorescence of each cell did not show an equivalent intensity, although they
were all GFP fluorescence positive. In fact, each cell within the same colony showed diverse intensity.
The GFP fluorescence was almost absent in some cells. The fluorescence property was consistent
with previous reports [3,16]. We utilized the software pix2pix to perform deep learning of cell images
using CGAN [12]. Pix2pix accepts image pairs of phase contrast and fluorescence images (Figure 1b).
The discriminator learns whether the image pair belongs to a real pair or a fake pair which includes
images synthesized by the generator. The generator learns to trick the discriminator. Two hundred
epochs were applied for all training.

Ten thousand cells per well were cultured in 96-well plates. A set of phase contrast and GFP
fluorescence cell images was acquired at the center of each well using a 10× objection lens. The 96 sets
of images were processed to obtain 3260 sets of 256 × 256 pixel images for AI training, and a hundred
sets of those for the evaluation of the AI that was trained. We observed that the discriminator loss 1
value increased immediately after 7500 steps and reached a value of almost 1.3, suggesting that the
discriminator failed to differentiate between real and fake GFP fluorescence (Figure 2a). The generator
loss L1 value was lower at the end of training than the initial value. These changes in loss value were
also observed in other trainings described as follows on the cultured CSCs. Next, we compared the
AI-generated fluorescence image output with a paired image against the input as the target (Figure 2b).
The output and target fluorescence images were not identical. The AI-generated fluorescence image in
some cells was not present in the target. In other examples, AI did not draw fluorescence images in
some cells where GFP fluorescence was observed. It is notable that AI never depicted fluorescence
images in spaces where no cells were present.

Because the images used for the training included blanks with no cells, we eliminated these
images for the next training. The training was performed with 2851 sets of images. However, we did
not observe a marked improvement (Figure 2c). Next, to examine whether training was affected
by the background gradient observed in the phase contrast image acquired using the 10× objection
lens (Figure 1a), we eliminated all images other than the four pieces in the center of each image for
training. The 300 sets of images were trained (Figure 2d). The similarities between outputs and targets
(Figure 2d) improved slightly compared to the 100 outputs obtained by training with no selection of
images (Figure 2b). We did not observe any depiction of fluorescence images from dishes coated with
porcine-gelatin by AI models (data not shown).
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Figure 1. Experimental design of deep learning of miPS-LLCcm cell morphology. (a) Cells image sets
for deep learning. For Sets 1 and 2, miPS-LLCcm cells were cultured in 96-well plates for 1–2 days.
Cell images were taken using a 10× or 20× objection lens for each set. For Set 3, miPS-LLCcm cells
were cultured for one day on MEF cells previously immobilized in 24-well plates. Bars = 200 µm.
(b) Training a conditional generative adversarial network (CGAN) to map grayscale bright-field cell
images into color dark-field fluorescence images. Learning was performed with several hundreds to
thousands of images per epoch; the final epoch number was set to 200.
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Figure 2. miPS-LLCcm cell image mapping from phase contrast to green fluorescent protein (GFP)
fluorescence. (a) Effect of training steps on loss functions. (b–f) Output examples by AI models. Test
phase contrast images were subjected to AI models for depicting fluorescence images. Input and target
are the image of a pair for the evaluation of the depicted image. Images used for training AI for AI
models: Set 1 images (a,b) without selection, (c) with selection of eliminating blanks, and (d) with
selection of center; (e) Set 2 images with selection of eliminating blanks; and (f) Set 3 images with center
selection. Bars = 100 µm.
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Next, we examined training with 1526 sets of images acquired using the 20× objection lens
(Figure 2e). The background of the phase contrast images was uniformly grayed compared to that with
the 10× objection lens (Figure 1a). We observed detailed intracellular structures in cells from the phase
contrast images; however, a robust improvement in output was not observed. Next, we examined
miPS-LLCcm cells on MEF feeder cells in 24-well plates. The 3027 sets of images were trained (Figure 2f).
Almost all aggregated colonies of miPS-LLCcm cells showed GFP fluorescence, although the intensity
within the colony was not uniform. As shown by the outputs, AI did not miss drawing in the region of
those colonies when never depicted in the region of MEF feeder cells. We did not observe any depiction
of fluorescence images from dishes culturing MEF feeder cells by AI models (data not shown).

To evaluate the similarity between the output and target, we calculated the values of recall for
true positive (Figure 3a), precision for false positive (Figure 3b), specificity for true negative (Figure 3c),
F-measure for the weighted average of recall and precision (Figure 3d), and the two-dimensional
(2D) correlation coefficient for image quality (Figure 3e). Interestingly, the training set with the 10×
objection lens and center had significantly increased recall and precision values compared to the
10× objection lens. The maximum recall and precision values were from 0.80 to 1.0, although the
mean values were from 0.16 to 0.55. By selecting images for training, the recall values significantly
increased, whereas the precision values remained constant. The training set using MEF feeder cells
showed the highest values of the training sets (Figure 3a,b). These observations were confirmed by
the F-measure values (Figure 3d). In addition, we observed a similar training set effect on the 2-D
correlation coefficient values (Figure 3e). In contrast, the mean specificity values were almost 1.0 for all
training sets (Figure 3c), indicating that AI did not depict images where cells without GFP fluorescence
were cultured and no cells were present.
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indicate maximum values. Mean ± S.D., n = 100 (exception: n = 40 for AI model obtained using
training set 10× center). Identical letters labeled up the bars represent no significant difference, p < 0.05,
and vice versa.
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3.2. Deep Learning of CSC Images in Tumor Tissue

To examine whether tissue with sequential sections was suitable for the training image set, we
prepared HE- and EVG-stained tissues as a model. The training was performed to map from HE- to
EVG-stain images using the 92 sets of pairs. All output images were different from their respective
targets (data not shown). For example, some tissues were depicted in a region where no tissue was
present. The position of the depicted wavy elastin was generally not true compared to the target image.
Next, we prepared processed images in which additional coloring was drawn on the HE-stained
images based on the corresponding EVG images. Using the processed image and the HE-stained
image as a set for training, i.e., 140 sets for training, we obtained better outputs than those mentioned
(data not shown). However, it was difficult to draw information precisely the same as the original EVG
image information, such as the region and the color intensity. Thus, we conclude that it is difficult to
prepare sets of tissue images for training using basic histological methods.

Then, we examined two sets of phase contrast and fluorescence images of tumor tissues derived
from miPS-T47Dcm cells, although phase contrast is not commonly used in pathophysiological study
(Figure 4a,b). Characteristics of miPS-T47Dcm cells as CSCs were previously proved by Nanog and
diverse SC markers expression, and the mouse in vivo experiments [14]. It was reported that the
disappearance of SC markers was correlated with the loss of the Nanog expression. The positive area
for GFP fluorescence indicates the presence of Nanog-GFP reporter gene-harboring miPS-T47Dcm
cells which retained the CSC pluripotent characteristics. Consistent with the previous report [14],
we observed randomly colonized GFP positive cells in glandular structures while all tumor cells were
evenly distributed in the tumor. Although two loss function values suggest that the training using 2734
sets of phase contrast and GFP fluorescence images was not perfect (Figure 4c), it is surprising that there
were examples of output drawing without color while the target had no GFP fluorescence (Figure 4d).
Although the content in the 2734 sets differed, we did not observe a marked improvement in the training
sets using the Hoechst 33342 overlaid-phase contrast instead of a simple phase contrast to create pairs
with GFP (Figure 4e,f). As negative controls, we did not observe any depiction of fluorescence images
from slide glass coated for tissue section (data not shown). By contrast, the classification of each set of
684 outputs indicates differences between the outputs (Table 1). Each output was diagnosed regardless
of depiction. Then, the outputs were grouped into two types—those exhibiting GFP fluorescence and
those not. We observed an increase in the ratio of depicting outputs to GFP fluorescence positive
targets. The data was subjected to the Pearson’s chi-square test to see whether GFP depicting outputs
were independent from the targets. We observed p < 0.01, indicating significant dependence of
GFP-depicting outputs to GFP fluorescence positive targets.

Table 1. Classification of cancer stem cells (CSCs) output images in tumor tissue

Set of Images for Training

Phase contrast and GFP Hoechst 33342 overlaid-phase
contrast and GFP

GFP Image Drawing in Output

Yes No Yes No
GFP

fluorescence
Positive 95 341 129 296

Negative 157 91 163 96
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Figure 4. Deep learning of miPS-T47Dcm cell morphology in tumor tissue. (a) Primary subcutaneous
tumors; arrowhead indicates tumor tissue. (b) Tumor tissue section visualized with phase contrast,
Hoechst 33342, and GFP fluorescence using objection lens 20×. P: phase contrast; H: Hoechst 33342;
G: GFP. Bars = 100 µm. An area in overlay (P, H, G) is shown in detail. (c,e) Effect of training steps
on loss functions. (d,f) Output examples by AI models. Test phase contrast images were subjected
to AI models for depicting fluorescence images. Input and target are the pair image for the depicted
image evaluation. The AI models trained with the set of (c,d) phase contrast and GFP images, and (e,f)
Hoechst 33342 overlaid-phase contrast and GFP images. Bars = 100 µm.

Moreover, we evaluated the similarity between the output and the target using various values
(Figure 5a–e). Interestingly, the training set with the Hoechst 33342 overlaid-phase contrast had a
significantly higher recall value compared to sets without Hoechst 33342 (Figure 5a). Each maximum
value was 1.0, although the mean values varied from 0.05 to 0.10. The training sets did not affect
the precision values (Figure 5b). Accordingly, the F-measure value was significantly increased in the
training set with the Hoechst 33342 overlaid-phase contrast (Figure 5d). A similar effect was observed
in the 2-D correlation coefficient values (Figure 5e). In contrast, the mean specificity values were almost
1.0 for both training sets (Figure 5c). Although a significant difference was observed, it would be
largely meaningless in view of tumor diagnosis.
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Figure 5. Comparison between depicted CSC image in tissue by AI models and original GFP
fluorescence. Images of Hoechst 33342 overlaid-phase contrast (+) or not overlaid-phase contrast
(-) were used for training AI for AI models. The AI output images and each true target image were
compared using the values of (a) recall, (b) precision, (c) specificity, (d) F-measure, and (e) image
correlation coefficient. Closed circles indicate maximum values. Mean ± S.D., n = 684. *** p < 0.01.

4. Discussion

We applied CGAN to cell biology and performed CSC morphology learning for a novel method
diagnosing the presence of Nanog-expressing cells in cultures and tumors. The development of AI
demonstrated the capability of this approach. Not surprisingly, the accuracy of AI depended on the
sets of images for learning, and had the potential to find CSCs in phase contrast images. For intensity
optimization, exposure parameters while acquiring images needs to be seriously considered for the best
AI model. Our results indicate that the AI developed in this study was not highly efficient in detecting
Nanog-expressing cells compared to GFP fluorescence analysis; however, it could be improved for
AI-aided diagnosis systems of CSCs.

New cytometrical methods have emerged from deep-learning technology to determine cell and
tissue characteristics from images to understand the cell biology, physiology, and pathophysiology
of samples [17]. Image segmentation is one of these important areas to be developed. Cell shape,
nucleus, mitosis, and hemorrhage were automatically detected using convolutional neural networks
(CNNs) [18]. U-Net, which requires a relatively small number of training data, efficiently acquired
the segmentation of neuronal structure in tissues and cells in cultures [19]. For the segmentation of
spheroids—a morphological shape often observed in SC suspension cultures [4]—the CGAN model
was better than the U-Net model [20]. Fluorescent cell images were better segmented using CNN with
an adversarial loss model than the CNN-only model [21]. Although these deep-learning workflows
are efficient and sufficient for dealing with various types of images originating from conditions such as
staining and brightness, the methods still require sets of images previously classified appropriately by
experts in the field for datasets used in deep learning. It is obvious that these workflows are useful
for known cytological structures. However, they may have difficulty indicating novel structures in
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cell and tissue images that have not been clearly defined by experts. In contrast, we used phase
contrast images of CSCs, the morphological characteristics of which are clearly defined although CSC
biologists might thereof have an empirical sense. In fact, the images contained CSCs and non-CSCs
which seemed indistinguishable. The use of GFP fluorescence reporting Nanog expression was the
only reliable way to distinguish between these cells. Thus, we used GFP fluorescence to define CSCs
for training. Accordingly, the CGAN model was applied for the first time.

Interestingly, our results show the capability of AI to define structures not described clearly by
experts. Cells that formed tube-like structures by the differentiation of miPS-LLCcm cells accompanied
the loss in GFP fluorescence [22]. The GFP fluorescence was absent in fibroblast-like cells derived from
miPS-LLCcm cells with morphological characteristics of a round shape, and high nuclear-to-cytoplasmic
ratios [3]. Mouse embryonic SCs spread and became irregular when the Nanog-expression was
diminished [23]. Compared to morphological changes in the literature, it was not easy to distinguish
each Nanog-expressing miPS-LLCcm cell from cells that lost the expression in colonies. By contrast,
the correlation values between the depicted and true images suggest that AI might detect morphological
differences under phase contrast microscopy. Although the values of precision, recall, and F-measure
were not efficient in our AI model compared to AI models generated by deep learning of known
structures [18], the deep-learning workflows using CGAN could be improved by examining cell culture
conditions and selecting images for training. Further studies would be required on the effect of the use
of center images for the training set with 20× objection lens. The presence of MEF feeder cells showed
the highest values of image evaluation. It is interesting to determine whether the increase in the values
can be obtained using a training set with a selection of eliminating blanks and the center.

The CSCs in tumors have been identified by means of surface markers [8,24,25]. Identification of
CSC markers accelerates the CSC concept [1,26]. The presence of CSCs in the hierarchical development
of tumor tissue has been shown in many studies. By contrast, there have been limited descriptions
of the CSC morphology in tumors. We observed that the AI model depicted CSCs in terms of GFP
fluorescence using phase contrast images. The image qualities were not sufficient compared to that of
the target; however, the improvement using the Hoechst 33342 overlaid-phase contrast suggests the
morphological difference between CSCs and non-CSCs using microscopy. It could be interesting to
investigate the mechanisms of the AI model in mapping phase contrast images to GFP fluorescence.

5. Conclusions

We investigated deep learning for the mapping of undefined CSC morphology. We used CGAN
to generate AI models to segment CSCs in cultures and tumors. Segmentation of the CSC region was
affected by the training set. The deep-learning framework using CGAN could be useful in identifying
undescribed morphological characteristics in CSCs.
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