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Significance of duon mutations in 
cancer genomes
Vinod Kumar Yadav1,2, Kyle S. Smith1,3, Colin Flinders4, Shannon M. Mumenthaler4 & 
Subhajyoti De1,5,6

Functional mutations in coding regions not only affect the structure and function of the protein 
products, but may also modulate their expression in some cases. This class of mutations, recently 
dubbed “duon mutations” due to their dual roles, can potentially have major impacts on downstream 
pathways. However their significance in diseases such as cancer remain unclear. In a survey covering 
4606 samples from 19 cancer types, and integrating allelic expression, overall mRNA expression, 
regulatory motif perturbation, and chromatin signatures in one composite index called REDACT score, 
we identified potential duon mutations. Several such mutations are detected in known cancer genes 
in multiple cancer types. For instance a potential duon mutation in TP53 is associated with increased 
expression of the mutant allelic gene copy, thereby possibly amplifying the functional effects on the 
downstream pathways. Another potential duon mutation in SF3B1 is associated with abnormal splicing 
and changes in angiogenesis and matrix degradation related pathways. Our findings emphasize the 
need to interrogate the mutations in coding regions beyond their obvious effects on protein structures.

Symbolic complexity of DNA sequences allows encryption of more than one genetic code in the same sequence. 
While the concept is not new, emerging findings suggest that overlapping coding and regulatory codes might be 
more common in the human genome than previously anticipated. Stergachis et al.1 coined a term ‘duon’ to report 
a class of regulatory sequences within protein-coding regions, which not only code for and hence govern struc-
ture and/or function of the underlying RNA or protein sequences, but also control their regulation at the level 
of transcription or translation. By initial estimates, duons are widespread–~15% of the codons within 86.9% of 
human genes have regulatory potential consistent with duon-like function1,2.

There are several reported instances of mutations in regulatory elements within protein coding genes in 
cancer. For instance, HIF1A protein-level expression is regulated by oxygen-controlled ubiquitination that is 
disrupted by deletions and missense mutations3. There are other examples of regulatory mutations in coding 
regions. A recurrent, somatic, synonymous mutation (F17F) in BCL2L12 increases its expression by altering the 
binding site of miR-671-5p in melanoma, which in turn affects its interaction with TP53, inhibiting apoptosis4. 
This mutation is found in ~4% of melanoma cases4. Supek et al. presented a compelling finding where synony-
mous mutations alter transcript splicing, thereby affecting both protein function and regulation5. Taken together, 
these findings indicate that regulatory mutations in coding regions might be common in cancer. Interestingly, 
mutations in the duon elements can create a mutant gene copy and also modulate its expression in a single hit, 
thereby potentially amplifying (or moderating) its functional impacts on the downstream pathways (Fig. 1A). But 
the significance of the mutations, which create or perturb duon elements, denoted as ‘duon mutations’ from here 
after, in diseases such as cancer remains poorly understood.

Results
We conducted a survey covering 4606 samples from 19 cancer types, and identified recurrent, potential duon 
mutations after integrating mRNA and protein expression, allelic expression imbalance, epigenetic makeup, reg-
ulatory potential, and pathway data (Supplementary Table 1; Flow chart of analysis pipeline used in our approach 
presented as Supplementary Fig. 1). Our initial dataset included all the major, adult cancer types and had a total 
of 1,061,980 somatic, exonic point mutations and InDels (Fig. 1B and Supplementary Fig. 2).
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Criteria for selection and REDACT score. While the criteria for duon mutation are still evolving, here 
we define that a recurrent, potential duon mutation (pDM) would have at least the following attributes - (i) it is 
recurrently detected in one or more cancer cohorts, (ii) it alters protein sequence (e.g. missense mutations, which 
in turn could alter structure and/or function of the protein) (iii) it is associated with altered expression of the gene 
product in the affected samples, thereby having ‘dual’ effects, and (iv) it occurs in genomic regions with epigenetic 
makeups and sequence contexts consistent with regulatory activities. In this study we did not consider those duon 
mutations which could potentially alter expression of gene products by post-transcriptional or post translational 
modifications, as well as nonsense, frame-shift, and splice-site mutations.

We combined somatic mutations, mRNA and protein expression, allelic expression imbalance, and regulatory 
potential data to prioritize pDMs. We developed a scoring system, dubbed REDACT score, to identify recurrent 
pDMs and summarize their supporting evidence. The rationale behind the scoring system was three-fold. First, a 
pDM may not have all possible supporting data-types available. For instance, in our cohort, protein-level expres-
sion data was available for a selected set of proteins only. Second, a pDM may not have statistically significant 

Figure 1. An overview of the potential duon mutations in human cancers. (A) A Schematic representation 
showing mutations in Duon elements in protein-coding regions, which have dual roles of regulating gene 
expression, besides coding for gene products. These mutations have the potential to perturb downstream 
pathways by altering both structure and expression of a gene product. (B) A schematic diagram showing the 
analysis pipeline. (C) The summary of potential Duon mutations in cancer genes; box with asterisk representing 
missense mutation. (D) Circos plot showing the genome-wide landscapes of recurrent coding mutations, 
including those that overlap with DNase hypersensitive cluster, transcription factor ChIP-seq peaks, and altered 
expression of the genes that harbor them, for both lung adenocarcinoma and squamous cell carcinoma. Only 
DNase regions, ChIP-seq peaks overlap with recurrent mutations were shown in the plot.
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signal at each level (even though the signal may be consistent across different levels), especially when the sample 
size is small (95% mutations present in < 13 samples; Supplementary Fig. 2). Third, it is not always straightfor-
ward make inferences based on noisy signals from multiple heterogeneous data types.

Thus, we evaluated the pDMs for 6 types of evidence (i) Recurrence: only those mutations which were present 
in at least 3 samples as well as > 1% samples in a cohort were considered, (ii) mRNA-level Expression change: 
the target genes were expected to show significantly different mRNA expression in affected samples compared 
to other samples in the cohort (p-value <  0.05) (iii) overlap with DNase hypersensitive regions: mutations that 
overlapped with DNase hypersensitive regions in reference tissue or cell lines were prioritized, (iv) Allelic expres-
sion imbalance: mutant gene copy was expected to show systematic difference in allelic expression compared to 
the wild-type gene copy. Wherever possible, we combined tumor purity, exomeseq and RNAseq data to exam-
ine allelic expression imbalance of the mutant allele after adjusting for tumor purity and clonality. Majority of 
the pDMs showed systematic increase (or decrease) in expression of the mutant alleles relative to correspond-
ing wild type alleles; furthermore these changes were also consistent with the overall increase (or decrease) in 
mRNA-level expression levels, (v) overlap with Chromatin immune-precipitation (ChIP) peaks: mutations that 
overlapped with ChIP-seq or ChIP-chip peaks for transcription factors in the RegulomeDB6 were preferred, (vi) 
Transcription factor binding motif perturbation: mutations that contributed to creation or perturbation of pre-
dicted transcription factor binding motif based on their position weight matrix were considered. The 6-letter 
composite REDACT score summarized the supporting evidence at the levels described above. In addition, we 
calculated combined p-value from different lines of evidences (see Methods for detail). We focused on the muta-
tions that are recurrent (R), associated with altered mRNA expression (E), and have at least one type of evidence 
available in support of regulatory potential (D, C, or T).

To demonstrate the utility of our approach, we selected rs8110393 (G >  A) a nonsynonymous germ line SNP 
in RINL, which has been previously classified as a duon mutation1. We found that (i) it is recurrent with popu-
lation allele frequency > 1% in the 1000 Genomes Project cohort, (ii) it is a known eQTL variant, (iii) it overlaps 
with DNase hypersensitive region, ChIP peaks and TFBS motif. Therefore, extending our criteria, it could be 
classified as a germ line pDM with a full REDACT score (Supplementary Fig. 3).

Assessment of potential duon mutations in cancer. In the analysis of 4606 samples from 19 cancer 
types we found 146 somatic mutations in 135 protein coding genes that were recurrent (R) and were associated 
with mRNA-level expression changes (E); of them 121 variants in 108 genes also had evidence for regulatory 
potential (D, C, or T) as well. Of them, 20 are missense mutations, and 30 were in-frame InDels, which we denote 
as potential duon mutations. Among these mutations, several were in known cancer genes (including TP53, 
SF3B1, APC and PTEN; Fig. 1C and Supplementary Table 2). A vast majority of those had significant combined 
p-value. Several pDMs were present in multiple cancer types. We discuss selected examples in greater details 
below.

Missense pDM in TP53. We found a recurrent missense mutation in TP53 (Chr17:7578457:C >  A; p.R158L) 
in lung adenocarcinoma7 (5 samples) and lung squamous cell carcinoma8 (5 samples) with attributes consistent 
with the definition of pDM (Fig. 1D and Supplementary Table 3). This mutation in the DNA binding domain is 
known to affect TP53 structure and function (Fig. 2A)9–11 but its potential duon-like activity was not previously 
reported. The nucleotide-position had high evolutionary conservation, and also overlapped predicted regulatory 
motifs and DNase hypersensitive sites in multiple ENCODE cell lines (Fig. 2B). The mutation co-occurred with 
several other actionable driver mutations in the lung cancer samples (Fig. 2C). The position was mutated in 
multiple different cancer types, and the C >  A substitution was detected in lung cancer, head and neck cancer 
patient samples, as well as cancer cell lines analyzed in the COSMIC project (Fig. 2D). In a majority of the affected 
samples the mutations were present at high allele frequencies (Fig. 2E), indicating that those were probably early 
mutation events.

Integrating RNAseq expression data for the lung cancer samples, we found that the affected samples had sig-
nificantly high TP53 expression compared to other lung cancer samples in the cohort (p-value: 2.3E-02) (Fig. 2F). 
In addition, the mutant allele had significantly higher expression level compared to the wild-type allele in all 
the affected samples, which is evident after adjusting for tumor purity and clonality (see Methods; Binomial test 
with Fisher’s combined p-value <  0.001) (Fig. 2G). We additionally interrogated SNP array data for the same 
samples and found that the affected samples did not have detectable copy number alteration that could confound 
our observations (Supplementary Fig. 4). Furthermore, an increase in expression of the mutant TP53 copy was 
matched with a corresponding decrease in the expression of the TP53 wild type copy, perhaps due to transcrip-
tional feedback mechanism (Fig. 2G).

To assess the pathway-level consequences of the likely dual effects of the p.R158L pDM in TP53, we used 
iPAGE12, an information-theoretic pathway analysis framework, that calculates statistical significance of enriched 
pathway using a randomization-based statistical test. We determined gene expression changes in the lung can-
cer samples carrying p.R158L mutation relative to other samples in the same lung cancer cohorts7,8 and speci-
fied them as input for iPAGE. Interestingly, we found several known apoptosis and TP53-associated pathways 
were affected in the samples with the TP53 p.R158L mutation (Supplementary Fig. 5). To identify specific genes 
changed in these pathway, we integrated pathway-level data from the KEGG13 and identified the TP53 target 
genes involved in different biological pathway such as apoptosis, DNA repair and angiogenesis. We found that 
many of the TP53 target genes had systematic expression changes in the lung cancer samples carrying p.R158L 
mutation. Additionally, these changes in expression patterns were consistent at the pathway level as well. For 
example, TP53 transcriptionally activates CDKN1A (p21), which in turn suppresses CDK4 leading to G1 arrest 
and subsequently cause cell cycle arrest in normal cells, and p.R158L mutation is expected to affect the normal 
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TP53 function. Consistently, we observed that the samples with p.R158L pDM had low CDKN1A expression 
relative to other samples in the cohort.

One might ask whether the effects of the p.R158L mutation could be modulated by changes in expression of 
the mutant allele. To address this question, we focused on only the samples that have p.R158L mutations, and 
ranked them based on mutant TP53 allelic expression patterns. We observed systematic changes in the expression 
of the direct targets of TP53 (which can act as both activator and repressor), and also signature genes in the down-
stream pathways, especially cell cycle regulation and metastasis (Fig. 3A,B). Our results suggest that, the pDM 
accomplished three objectives in a single hit–it created a TP53 gene copy with abnormal function, was associated 
with increased expression of the abnormal gene-product, and also suppressed expression of the TP53 wild type 

Figure 2. A somatic mutation with signatures of potential duon mutation in TP53. (A) Location of the 
pDM (Chr17:7578457:C >  A) in the coding region of TP53 is shown. (B) Summary diagram showing base by 
base Phastcons evolutionary conservation, predicted transcription factor (E2F; HINFP1) binding motif, and 
overlap with DNase hypersensitivity sites in multiple ENCODE cell lines. (C) Actionable driver mutations in 
the samples that have the TP53 pDM in lung cancer. Blue: point mutation, red: amplification, green: deletion. 
(D) Presence of the pDM in different cancer types. (E) Allelic frequency estimates of the TP53 pDM in different 
cancer shows that it is predominantly clonal in majority of the cases. Plot represents mean allelic frequency 
per cancer type with 95% CI of mean as error bars. (F) Beanplot showing TP53 mRNA level expression of the 
samples carrying p.R158L pDM, compared to other samples that are wild type at that site for lung squamous 
cell carcinoma and adenocarcinoma. Statistical significance was estimated using Mann Whitney U test, and 
combined p-value estimated using Fisher’s method. (G) Allelic mRNA expression pattern at the site of mutation 
showed allelic imbalance: the A allele had relatively higher expression than the C allele in all the mutated 
samples. Plot represents mean allelic mRNA expression per cancer type with 95% CI of mean as error bars.
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gene copy via TP53 feedback loop–ultimately amplifying the functional consequences in the downstream path-
ways. We did not observe similar association between expression levels of TP53 and CDKN1A when samples with 
other TP53 mutations or wild type TP53 were analyzed (Supplementary Figs 6 and 7), indicating that expression 
variation of TP53 in the samples with wild type TP53 or other TP53 missense mutations did not have similar 
effects on the TP53 downstream targets such as CDKN1A.

Missense pDM in SF3B1. Another missense mutation in SF3B1 (Chr2:198266834:T >  C; p.K700E), 
detected in eight breast cancer samples, also carried the signatures of pDM. The p.K700E mutation was present 
in the HEAT-repeat domain that is involved in mRNA splicing (Fig. 4A)14–16. The nucleotide position had high 
evolutionary conservation and overlapped regulatory motifs (Fig. 4B). This mutation was also reported in other 
cancer types including haematopoietic, pancreatic and central nervous system cancers10 (Fig. 4C). The samples 
with SF3B1 p.K700E mutation had relatively higher expression of the mutant allele, which in turn contributed 

Figure 3. Pathway level changes associated with the potential duon mutation in TP53. (A) Direct targets 
of TP53 and downstream pathways are shown, with expression patterns in the lung cancer cohorts super-
imposed. Expression patterns of TP53 and its direct and indirect downstream targets were compared between 
the lung cancer samples that have TP53 R158L mutation (cases) and others (controls). If expression of a gene 
was systematically higher, lower, or comparable in the cases relative to controls, those are shown in red, green, 
or grey respectively. (B) The lung cancer samples that have TP53 p.R158L mutation were ranked based on 
the allelic expression of the mutant gene copy, and indeed the direct and indirect downstream targets show 
consistent changes in expression. For instance, CDKN1A, which is the direct target of TP53, has reduced 
expression with an increase in the expression of the mutant copy of TP53.
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to higher overall mRNA expression (Fig. 4D,E). Additionally, none of the affected samples had detectable copy 
number alteration.

To determine the dual effects of the mutation, we investigated if expression level of the mutant allele correlated 
with splicing abnormalities at the transcriptome-wide level. For each sample, we obtained isoform level mRNA 
expression data, and calculated sample-level splicing entropy using a method by Ritchie et al.17. We focused on the 
breast cancer samples that had p.K700E mutation in the cohort, ranking them based on SF3B1 mRNA expression 
level; we found positive correlation (r =  0.48) between the pDM expression and sample-level splicing entropy 
(Fig. 4F). The association was even stronger (r =  0.84) when we excluded a single apparent outlier. Again, we did 
not observe similar association between SF3B1 expression and splicing entropy when samples with wild type 
SF3B1 were investigated (Supplementary Fig. 8), indicating variation in expression of wild type copy of SF3B1 
alone is unable to recapitulate the observed effects.

To evaluate pathway level significance of the SF3B1 p.K700E pDM, we estimated isoform abundance for 
each gene, and accordingly calculated gene-level splicing entropy. We then calculated the correlation coefficient 
between splicing entropy of gene and SF3B1 expression across the eight breast cancer samples, and use those 
correlation coefficients as input for the iPAGE. This analysis showed enrichment for VEGF pathway and matrix 
metalloproteinases, indicating that high expression of the p.K700E was associated with changes in splicing pat-
terns in pathways, especially those involved in angiogenesis and matrix degradation (Supplementary Fig. 9).

Figure 4. A somatic mutation with signatures of potential duon mutation in SF3B1. (A) Location of the 
pDM (Chr2:198266834:T >  C) in the coding region of SF3B1 is shown. (B) Summary diagram showing base-
by-base Phastcons evolutionary conservation and predicted transcription factor (HSF1) binding motif. (C) 
Presence of the pDM in in different cancer types. (D) Beanplot showing SF3B1 mRNA level expression of the 
samples carrying p.K700E pDM, compared to other samples that are wild type at that site in the breast cancer 
cohort. Statistical significance was estimated using Mann Whitney U test, P-value =  0.03. (G) Frequency of 
mutant allele at DNA and RNA levels determined by exome-seq and RNA-seq respectively in breast cancer 
samples. Plot represents mean allelic frequency for mutant allele with 95% CI of mean as error bars.
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Other classes of pDM. In addition to missense pDMs, we also detected 30 in-frame indels that satisfied the 
criteria for pDMs, of which 27 were deletions and 3 were insertions. Interestingly, we found in-frame deletion 
pDM in two cancer genes WRN (c2305-2307; ACTAAAGAA >  ACTAAA, pK506-E507 deletion, REDACT score: 
RED* cT) and CBL (c1506-1508; AATTATGAT >  AATTAT, pY455-D456 deletion, REDACT score: REd* cT) in 
pancreatic adenocarcinoma (PAAD). The WRN pDM deletion was present in five PAAD samples; it was associ-
ated with expression changes and overlapped with DNase hypersensitive sites and the binding motif of PU.1. The 
CBL pDM deletion was detected in eight PAAD samples, it was associated with up-regulation of this gene, and 
overlapped SOX5 binding site. The number of in-frame insertion pDM was smaller. In particular, we detected an 
in-frame insertion in ERBB2 (chr17:37880981, LUAD; 5 samples) that mapped to a DNase hypersensitive site and 
was associated with considerable over-expression of ERBB2.

To identify pDMs with probable gain of transcription factor binding sites we scanned the exonic sequences 
with known position-weight matrix for transcription factors. We identified the cases where the exonic sequence 
carrying mutant copy had a predicted transcription factor-binding site, but the one with the wild-type allele had 
none (or binding site of a different factor). We found 4 pDMs that were predicted to generate new binding site for 
transcription factors; 3 of them were in cancer genes (Supplementary Table 4). As an example, we found a recur-
rent TP53 mutation (in breast and head neck cancer) that was predicted to result in gain of NHLH1 binding site, 
and was associated with down regulation of TP53 expression in both cancer type.

Discussion
Integrating evidence from overall mRNA expression, allelic expression, regulatory motif perturbation, and chro-
matin signatures, we identify potential duon mutations in 4606 samples from 19 different cancer types. Our 
analysis suggests that somatic mutations with potentially duon functions might be common, and could affect 
cancer genes in multiple different malignancies. Our computational analysis indicates that such mutations can 
have complex functional consequences on downstream pathways, where altered expression can act as a modifier.

We note potential technical caveats. First, intra-tumor spatial heterogeneity has the potential to introduce 
discrepancies when comparing mRNA and protein expression levels, or allelic proportions in exome and RNAseq 
data from the same tumor sample. By looking for consistent signatures across different REDACT features we have 
probably minimized the false-positive cases, but the stringent filters could compromise on sensitivity. Second, 
despite recent advances in statistical and computational approaches, integrative analysis of large-scale diverse 
data types remains non-trivial. Third, statistical significance of overlapping regulatory features may not ade-
quately reflect their biological importance, and overlap with regulatory features might be biologically relevant 
even when the associated statistical significance is weak. For instance, mutations in a gene with DNase hyper-
sensitive sites spanning most of the coding regions cannot have significant p-value for D, but it still may be 
functionally relevant while classifying functional relevance of these mutations. Thus, we conservatively interpret 
the combined p-values in conjunction with the REDACT score. Fourth, we did not consider the potential duon 
mutations, which could alter the expression of the gene products by post-transcriptional or post-translational 
modifications. Finally, detailed functional characterization of the pDMs was beyond the scope of this paper. Even 
though the pDMs had multiple lines of support, we recommend caution while inferring causality and mechanism 
of regulation from correlation, especially where experimental evidence was limited.

Nevertheless, our findings present evidence for recurrent, potential duon mutations in the genomes of differ-
ent types of cancer. Our results challenges the established paradigm of assessing significance of the mutations in 
protein-coding genes primarily on protein structures, and calls for an integrative approach to assess additional 
consequences of these mutations. Furthermore, our study suggests that potential duon mutations in cancer genes 
may have under-appreciated significance for downstream pathways. It can be possible to extend our analysis to 
cases of different cancer types, and also in other diseases where duon mutations are common. Lastly, our findings 
highlight the impact of regulatory mutations in tumorigenesis and contribute to the ongoing debate about the 
early molecular alterations during tumor development18.

Methods
Data acquisition. We obtained the catalog of somatic, exonic mutations (e.g. point mutations, small InDels) 
for 4606 samples from 19 different cancer-types, as provided by the Cancer Genome Atlas (TCGA; https://tcga-
data.nci.nih.gov/tcga/). There were a total of 1,061,980 mutations reported (see Supplementary Table 1 for the 
summary). We also obtained RNA and protein-level expression, tumor purity and exonic allele frequency data, 
as well as other clinical data-types from the TCGA. Pre-computed gene-level copy number alteration status for 
selected loci were obtained from the MSKCC cbio portal.

We integrated data from the dbSNP and excluded all TCGA somatic mutations that overlapped with the cat-
alog of common genetic variants (e.g. SNPs) in the population. Genomic regions with potential regulatory func-
tion were obtained from the RegulomeDB6, which integrates published transcription factor binding site motif and 
chromatin immunoprecipitation data, together with DNase hypersensitivity and motif-level evolutionary conser-
vation data to infer regulatory activity of a region. Additionally, to infer the effect (loss- or gain-of transcription 
factor binding site) of the somatic mutations we integrated position-weight matrix data for sequence-specific 
transcription factors using Jasper19. Base-by-base evolutionary conservation data using GERP+ +  and reference 
functional datasets from the ENCODE project were obtained from the UCSC Genome Browser. The catalog of 
cancer genes was obtained from the COSMIC10.

Potential duon mutation and REDACT score. We developed the REDACT scoring system to identify 
recurrent pDMs and summarize their supporting evidence: (i) Recurrence (at least 3 samples or > 1% samples, 
whichever is greater), (ii) mRNA-level Expression change (iii) overlap with DNase hypersensitive regions, (iv) 
Allelic expression imbalance, (v) overlap with transcription factor ChIP-seq or ChIP-chip peaks, and (vi) overlap 

https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
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with predicted Transcription factor binding motifs. In the REDACT score, each letter indicates the status of the 
corresponding supporting evidence. If the supporting data-type is present but the evidence is not consistent, we 
present it in lowercase; on the other hand, if the supporting data type is absent we present it with an asterisk. For 
instance, if a pDM score of ‘REd* Ct’ would indicate that the mutation is recurrent, associated with altered mRNA 
expression and ChIP-seq peaks, but it does not overlap with DNase hypersensitive regions and known transcrip-
tion factor binding motifs, while allelic expression data is not available. Since protein-level expression data is 
available for only a small number of gene-products, we report it on a case-by-case basis. All mutations reported in 
this study are recurrent (R), associated with altered mRNA expression (E), and have at least one type of regulatory 
evidence (D, C, or T) available in support.

Statistical significance at the level of E was estimated by comparing RNA expression in the affected samples to 
that in the other samples in the cohort using Mann Whitney U test. P value at the level of A was computed using 
binomial test on the allelic proportions in the RNAseq data, with allelic proportions in the corresponding exome 
data as prior. To calculate p-values for regulatory evidence (D, C, and T), we performed permutation analysis. We 
note that permutation could be performed using a number of different strategies (e.g. controlling for nucleotide or 
chromatin context during shuffling); but in some cases such strategies constrained the search space and increased 
the risk of over-sampling. So, to estimate statistical significance of overlap with DNase hypersensitive sites, we 
used a simple null model, and randomly shuffled the somatic mutations within respective candidate gene regions 
10,000 times, and counted the number of times (n) the mutations overlap with DNase hypersensitive regions, by 
chance alone, such that n/10000 indicates the permutation p-value. Similarly, we calculated p-values for overlap 
with TFBS motifs, and ChIP peaks. False discovery rate (FDR) was used for multiple testing corrections.

We combined the unadjusted p-values using Fisher’s method, assuming the lines of evidence are independent. 
We also used an alternative strategy using Hartung’s method20,21, which enable combining correlated p-values; the 
key conclusions remained consistent (Supplementary Table 2). Nevertheless, we recognize challenges in comput-
ing, combining, and interpreting signals from heterogeneous data types20,22, and consider pDMs based on both 
the combined p-value and the REDACT score.

Functional analysis. To ascertain functional consequences of the mutations we integrated both structural 
and pathway-level data. For instance for the analysis of TP53 pDM, we obtained list of TP53 target genes involved 
in different biological pathway such as apoptosis, DNA repair and angiogenesis23,24. Furthermore, wherever possi-
ble, we superimposed the known regulatory relationship among these genes. For example, TP53 transcriptionally 
activate CDKN1A (p21) and p21 suppresses CDK4 that regulate G1 arrest and subsequently cause cell cycle arrest 
in normal cells. In our functional analysis we considered the direction of change in expression. Additionally, 
two-control analyses were performed to show effects of both p.R158L missense mutation and associated expres-
sion changes. First, to test whether any missense mutation in TP53 systematically affect CDKN1A expression in 
a fashion similar to p.R158L, we selected several other TP53 somatic mutations that were recurrent in different 
TCGA cancer types (Lower grade glioma (LGG), Lung squamous cell carcinoma (LUSC), Lung adenocarcinoma 
(LUAD), Head and neck (HNSC), and Bladder (BLCA) cancers), but were not classified as duon mutations; we 
estimated correlation in RNAseq expression between TP53 and CDKN1A (Supplementary Fig. 6). Second, to test 
whether the extent of association between TP53 and CDKN1A expression for the TP53 p.R158L mutant samples 
is rather common among TP53 wild type samples, we performed permutation analysis. We randomly selected 10 
samples wild-type TP53, 1000 times from the LUAD and LUSC cohorts of TCGA, and each time calculated cor-
relation coefficient value between expression of CDKN1A and TP53, and then compared that with the observed 
association between TP53 and CDKN1A expression in p.R158L mutant samples (Supplementary Fig. 7).

For functional analysis of SF3B1 mutation, as SF3B1 is a core spliceosome factor our aim is to evaluate the 
extent of non-specific alternative transcript disruptions in the samples containing mutation in SF3B1. We hypoth-
esized that, in a samples where SF3B1 is mutated the splicing machinery is impaired, the distribution of isoforms 
may be more disordered than in unaffected samples and to quantify this we modified previously published 
method of calculating isoform entropy by Ritchie et. al.17 Isoform entropy is calculated using Shannon’s entropy 
index. In brief, if a random variable X has values xi (xi; ∈ ..i k1 ) with probabilities P (xi) such that P (xi) ≥  0 and  
Σ P (xi) =  1 then Shannon’s entropy index is defined by:

∑= − .H X P x P x( ) ( ) log ( ) (1)i i

Here we calculated gene by gene splicing entropy after considering relative abundance of all expressed iso-
forms a genes in that sample. We also calculated sample level splicing entropy after considering relative abun-
dance of all expressed isoforms across all genes in that sample.

For pathway analysis we used iPAGE, a mutual information-based approach to discover the enriched path-
ways in samples with a pDM of interest. For the TP53 pDM analysis, we transformed the expression data using 
the equation:

= −v s p(1 ) (2)

where for any gene p is the Student’s t-test p-value between the mutant samples and other samples in the same 
lung cancer cohorts, and s indicates the direction of change in the expression between the two groups of samples. 
Thus, v indicates the extent to which a gene is up-regulated or down-regulated in the mutant samples relative to 
other samples in the cohort with maximal and minimal values of 1 and − 1 respectively. For the pDM in SF3B1, 
we calculated entropy for each gene in eight samples of breast cancer that contains p.K700E mutation. Next, we 
calculated correlation coefficient between entropy of gene and SF3B1 expression across eight samples and used 
that value as input for iPAGE analysis. Similar to the control analysis for TP53, randomly selected 8 samples 
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wild-type SF3B1, 1000 times from the TCGA BRCA cohort, and each time calculated correlation coefficient value 
between expression of SF3B1 and splicing entropy, and compared that with the observed association between 
SF3B1 expression and splicing entropy in p.K700E mutant samples (Supplementary Fig. 8).
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