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Objective: To investigate regional brain activity alteration in healthy subjects in a sleep

deprivation (SD) status relative to a rested wakefulness status using a percent amplitude

of fluctuation (PerAF) method.

Methods: A total of 20 healthy participants (12 males, 8 females; age, 22.25 ± 1.12

years) were recruited. All participants underwent attention tests and resting-state

functional MRI scans during rested wakefulness before SD and after 36 h SD,

respectively. The PerAF method was applied to identify SD-related regional brain activity

alteration. A ROC curve was conducted to evaluate the ability of the PerAF method

in distinguishing different sleep statuses. The relationships between SD-induced brain

alterations and attention deficits were determined by Pearson correlation analysis.

Results: SD resulted in a 2.23% decrease in accuracy rate and an 8.82% increase

in reaction time. SD was associated with increased PerAF differences in the bilateral

visual cortex and bilateral sensorimotor cortex, and was associated with decreased

PerAF differences in bilateral dorsolateral prefrontal cortex and bilateral cerebellum

posterior lobe. These SD-induced brain alterations exhibited a high discriminatory

power of extremely high AUC values (0.993–1) in distinguishing the two statuses.

The accuracy rate positively correlated with the bilateral cerebellum posterior lobe,

and bilateral dorsolateral prefrontal cortex, and negatively correlated with the bilateral

sensorimotor cortex.

Conclusions: Acute SD could lead to an ∼8% attention deficit, which was associated

with regional brain activity deficits. The PerAFmethodmight work as a potential sensitivity

biomarker for identifying different sleep statuses.

Keywords: sleep deprivation, percent amplitude of fluctuation, receiver operating characteristic, attention network

test, visual cortex, cognitive deficit

INTRODUCTION

Sleep has been increasingly shown to have far more impact on human health than it was
previously recognized; however, sleep has been rarely studied by neuroimaging (1). Sleep
deprivation (SD) is associated with maladaptive changes in emotion, cognition, immunity (1–
9), and even expression of certain genes (10, 11). Although SD has been frequently used
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to explore behavioral and functional consequences caused by
sleeploss (12, 13), the underlying neurobiological mechanisms of
SD remain largely unknown.

During the last decade, modern brain neuroimaging
techniques have been extensively used to encourage scholars to
investigate the potential pernicious effects on cognitive function
and regional brain areas caused by SD (4, 5, 14–18). Resting-state
functional MRI (rs-fMRI) has been considered as an applicable
and accepted method to address the regional brain activity
deficits associated with SD. Regional homogeneity, amplitude of
low-frequency fluctuations (ALFF), and fractional ALFF (fALFF)
are three important methods of rs-fMRI to address regional
brain alterations (5, 19–21), however, these methods could be
easily influenced by physiological high-frequency respiratory
and cardiac noise. A new method, namely percent amplitude
of fluctuation (PerAF), has the best reliability relative to the
regional homogeneity, ALFF, and degree centrality (22–24).
Therefore, the proposed new method of PerAF may allow us
to increase sensitivity and decrease bias when addressing the
regional brain activity alternations associated with SD. However,
SD has not currently been studied.

Sleep is associated with the gene transcription involved in
synthesis and the maintenance of cell membrane lipids and
myelin in the brain (25–27) which are particularly susceptible to
insufficient sleep (27, 28). Chronic insufficient sleep and chronic
stress were found to be associated with several structural changes
in the brain (29, 30). Therefore, we hypothesized that SD was
associated with widespread functional brain alternations, and
these changes could be identified by the proposed PerAFmethod.
To test this hypothesis, the present study utilized PerAF to
identify these regional brain alternations in healthy university
subjects following 36 h SD relative to a normal sleep status,
which may yield insight into the neurobiological mechanisms
underlying SD.

FIGURE 1 | One sample t-test differences of SD status and normal sleep status in PerAF maps. (A) One sample results for sleep deprivation group; (B) One sample

results for normal sleep group. SD, sleep deprivation; R, right; L, left; PerAF, percent amplitude of fluctuation.

MATERIALS AND METHODS

Subjects
A total of 20 healthy university subjects (12 males, 8 females; age,
22.25 ± 1.12 years; education, 12.8 ± 1.01 years) were recruited.
All participants met the following criteria as in a previous study
(1): good sleeping habits; had not used any stimulants, hypnotic
medication, and psychoactive medication for at least the last

TABLE 1 | The PerAF differences between SD status and normal sleep status.

Brain regions

of peak

coordinates

R/L BA Voxel

volume

(mm3)

t-score of

peak

voxels

MNI coordinates

X, Y, Z

Cerebellum

posterior lobe

R N/A 916 −8.2592 36, −72, −45

Cerebellum

posterior lobe

L N/A 610 −8.1107 −30, −75, −33

Posterior

cingulate, lingual

gyrus, cuneus

L, R 17, 18 1,347 8.3713 −18, −66, 12

Superior frontal

gyrus, medial

frontal gyrus

L, R 8, 9 859 −7.6507 −6, 45, 42

Precentral gyrus,

postcentral

gyrus

L, R 3, 4 1,496 7.6479 15, −36, 72

The statistical threshold was set at a corrected significance level of individual two-tailed

voxel-wise p < 0.001 using a Gaussian random field corrected threshold of cluster p <

0.001 (minimum continuous cluster voxel volumes ≥ 7,101 mm3 ).

PerAF, percent amplitude of fluctuation; SD, sleep deprivation; R, right; L, left; BA,

Brodmann’s area; MNI, Montreal neurological institute; N/A, not applicable.
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FIGURE 2 | Altered PerAF between SD status and normal sleep status. (A) A comprehensive view; (B) Axial view. Red color, increased PerAF areas; Blue color,

decreased PerAF areas. R, right; L, left; PerAF, percent amplitude of fluctuation; SD, sleep deprivation.
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FIGURE 3 | PerAF value of between-group differences in regional brain areas. PerAF, percent amplitude of fluctuation; R, right; L, left; CPL, cerebellum posterior lobe;

LG, lingual gyrus; SFG, superior frontal gyrus; PG, postcentral gyrus.

3 months; score of Pittsburgh sleep quality index lower than
five, score of Hamilton Depression Rating Scale lower than
seven, and score of Hamilton Anxiety Rating Scale lower than
seven. The exclusion criteria met the following criteria: any
history of pathological brain findings and head trauma; any
foreign implants and inborn or acquired diseases; BMI >32 and
BMI <19.8; any psychiatric or neurological disorders, substance
dependency; and any history of sleep complaints.

The 36 h SD procedure was the same as in previous studies
(1, 16), which started at 8:00 p.m. in the evening and ended
at 8:00 a.m. on the third day. Our team took turns monitoring
the subjects for quality control. All university subjects were
required to stay awake and not allowed to sleep during the
entire time of the SD procedure. All subjects were not allowed to
leave the testing room and were provided with food and water
during the SD procedure. All food and/or beverages did not
contain caffeine, taurine, or other psychoactive substances that
could influence anxiety. This study was approved by the ethical
committee of our hospital. All participants were told the purpose,
methods, and potential risks, and were asked to complete written
informed consent.

Attention Network Test (ANT)
All university subjects were required to conduct an attention
network test (ANT) at 8:00 p.m. on the first day and at
8:00 a.m. on the third day before the MRI scans (1, 5, 31, 32).
The description of the ANT was the same as in a previous
study (1). The ANT comprised of three cue conditions (no
cue, center cue, spatial cue) and two arrows (congruent and
incongruent) in the center. Participants gave their responses
by identifying the congruent or incongruent direction of
central arrows. The accuracy rate and reaction time were

TABLE 2 | ROC curve for PerAF differences in brain areas between SD status and

normal sleep status.

Brain area AUC, 95%Cl Sensitivity, % Specificity, % Cut off pointa

R cerebellum

posterior lobe

0.993 (0.976–1) 0.95 0.95 −0.5425

L cerebellum

posterior lobe

0.965 (0.918–1) 0.95 0.85 −0.594

Bilateral visual

cortex

0.978 (0.942–1) 0.95 0.9 0.247

Bilateral

dorsolateral

prefrontal cortex

1 1 1 −0.546

Bilateral

sensorimotor

cortex

0.993 (0.974–1) 1 0.95 −0.2215

aCut off point of mean PerAF signal value.

recorded by calculating the corrected recognition and response
times, respectively.

MRI
All subjects underwent MRI scans twice, one following normal
sleep and the other following 36 h SD. We used a 3.0-Tesla MR
scanner (Prisma, Siemens, Germany) to finish the resting-state
fMRI session. Firstly, a total of 176 slices of high-resolution
anatomical volumes (repetition time = 1,900ms, field of view=
256× 256mm, echo time= 2.26ms, thickness= 0.5mm, gap=

1mm, flip angle= 110, and acquisition matrix= 256× 256) with
sagittal orientation were acquired. Next, a total of 240 functional
volumes (repetition time = 2,000ms, acquisition matrix = 64 ×
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FIGURE 4 | ROC curve of PerAF differences in brain areas. (A) Increased PerAF areas; (B) Decreased PerAF areas. ROC, receiver operating characteristic; PerAF,

percent amplitude of fluctuation.

64, echo time = 30ms, gap = 0.7mm, thickness = 3.5mm, flip
angle= 90◦, FOV= 224× 224mm) were collected.

Data Analysis
Data pre-processing was performed by the RESTplus V1.2
(http://www.restfmri.net) toolbox. Firstly, the first ten functional
volumes were removed. Next, other steps including form
transformation, slice timing, head motion correction, spatial
normalization to Montreal Neurological Institute (MNI) space
and re-sampled at a resolution of 3 × 3 × 3 mm3, smooth
(full-width Gaussian kernel = 6 × 6 × 6mm) and linear
detrend and filter (0.01–0.08Hz) (21). Participants with more
than 1.5mmmaximum translation and/or more than 1.5◦ degree
of motion rotations in any directions were removed. Friston’s
24 head motion parameters were used as covariates to regress
out the effects of head motion (33–36). Linear regression was
used to remove the covariates of global mean signal, white
matter, head-motion, and cerebrospinal fluid signal. The PerAF
method is the percentage of resting-state frequency domain
of the blood oxygen level-dependent signal relative to the
mean signal intensity of one given time series. After these
steps of data pre-processing, the PerAF method was calculated,
thus generating PerAF, mPerAF, and the z-transformation
of zPerAF.

Statistical Analysis
Two pair t-tests were used to calculate the ANT differences
between SD status and normal sleep status by IBM SPSS 21.0. A
threshold of p < 0.05 was considered as significant.

Firstly, one sample t-tests were applied to calculate the
within-group differences in brain areas for sleep deprivation

status and normal sleep status, separately [false discovery rate
(FDR) correction, voxel-wise p < 0.001, and cluster-level p <

0.001]. Next, a two-pair t-test was applied to calculate between-
group differences of PerAF in brain alterations [gaussian random
field (GRF) correction, voxel-wise p< 0.001 and cluster-level p<

0.001, cluster voxel volumes ≥ 7,101 mm3]. A receiver operating
characteristic (ROC) curve was frequently applied to test if
neuroimaging methods might serve as potential neurobiological
indicators to differentiate the two different groups (5, 16, 19,
20, 37). Here, the ROC was applied to identify the ability of
the proposed PerAF method in distinguishing SD status from
normal sleep status. The relationships between SD-induced brain
alterations and attention deficits were determined by Pearson
correlation analysis. A threshold of p < 0.05 was considered
as significant.

RESULTS

Sample Characteristics
Compared with normal sleep, acute SD showed a 2.23% poorer
accuracy rate (normal sleep status, accuracy rate = 98.32 ±

1.54%; SD status, accuracy rate = 96.13 ± 2.93%; t = −2.961; p
= 0.005), and an 8.82% slower reaction time (normal sleep status,
reaction time = 540.5 ± 58.09ms; SD status, reaction time =

588.16± 70.84ms; t= 2.327; p= 0.025).

PerAF Differences
Within-group differences for the SD status (Figure 1A) and
the normal sleep status (Figure 1B) are shown in Figure 1

(p < 0.001, FDR corrected). The within-group statistical maps
showed that the covered locations of the PerAF differences
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FIGURE 5 | Pearson’s correlation. Correlations were found between accuracy rate of ANT and bilateral cerebellum posterior lobe (Right, A; Left, B), bilateral

dorsolateral prefrontal cortex (C), or bilateral sensorimotor cortex (D). PerAF, percent amplitude of fluctuation; ANT, attention network test.

in brain areas during SD status (Figure 1A) were smaller
than that of during normal sleep status (Figure 1B). The
between-group statistical maps showed that compared with
normal sleep status, SD status showed increased PerAF
differences in the bilateral visual cortex (BA 17, 18) and
bilateral sensorimotor cortex (BA 3, 4), and decreased PerAF
differences in the bilateral dorsolateral prefrontal cortex
(BA 9) and bilateral cerebellum posterior lobe (Table 1,
Figures 2A,B).

ROC Curve
Since these SD-induced brain alterations exhibited differences
between the SD status and normal sleep status they might serve
as potential neurobiological indicators to differentiate the two
different sleep statuses, we extracted the mean PerAF values of
these areas for ROC curve analysis (Figure 3). Our data indicated
that these areas revealed an extremely high discriminatory power
with a high AUC value of 0.986 ± 0.01 (0.993–1), and further
diagnostic analysis also showed a high degree of sensitivity (97±

2.74%, 95–100%) and specificity (93 ± 5.7%, 85–100%) (Table 2,
Figures 4A,B).

Pearson Correlation Analysis
During the SD status, several correlation analyses between the
ANT differences and the SD-induced brain alterations that
exhibited differences between the SD status and normal sleep
status were reported (Figures 5A–D). The accuracy rate of the
ANT positively correlated with the bilateral cerebellum posterior
lobe (Right, r = 0.47, p = 0.036, Figure 5A; Left, r = 0.579, p =

0.007, Figure 5B) and the bilateral dorsolateral prefrontal cortex
(r = 0.779, p < 0.001, Figure 5C), respectively. Furthermore, the
accuracy rate of the ANT negatively correlated with the bilateral
sensorimotor cortex (r =−0.494, p= 0.027, Figure 5D).

DISCUSSION

The present study is the first to apply the proposed PerAFmethod
to identify SD-induced brain alterations in healthy university
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subjects following a total of 36 h of SD, and their relationships
with the ANT. The present study reported three main findings:
(a) the status transformation from normal sleep to 36 h SD in
healthy subjects resulted in a 2.23% decrease in accuracy rate
and an 8.82% increase in reaction time in attention; (b) SD
was associated with increased PerAF differences in the bilateral
visual cortex and bilateral sensorimotor cortex, and decreased
PerAF differences in the bilateral dorsolateral prefrontal cortex
and bilateral cerebellum posterior lobe; (c) these SD-induced
brain areas exhibited an extremely high discriminatory power
with extremely high AUC values (0.993–1) in distinguishing the
two sleep statuses, which indicated that the PerAF method might
be a potential neuroimaging indicator to differentiate different
sleep statuses; (d) the accuracy rate positively correlated with
the bilateral cerebellum posterior lobe and bilateral dorsolateral
prefrontal cortex, and negatively correlated with the bilateral
sensorimotor cortex.

Previous neuroimaging studies have shown higher regional
spontaneous neural activity and short-range functional
connectivity in the visual cortex in chronic insomnia patients and
healthy individuals after sleep deprivation (4, 16, 18, 19, 38–41).
The hyper-responses of the visual cortex has been considered
as a core factor leading to the inability to initiate or maintain
sleep in chronic insomnia patients (19, 39, 40, 42–46). Increased
regional brain activity and functional connectivity, such as
voxel-mirrored homotopic connectivity and short/long-range
functional connectivity, and decreased gray matter volumes
in the somatosensory cortex in chronic insomnia patients
and in healthy individuals after SD status have been reported
(1, 16, 37, 41). These regional brain alterations had several
correlations with attention and spatial working memory deficits
after the SD session (1). PET studies found that SD increased the
metabolic rate of glucose in the visual and somatosensory cortex,
and the metabolic rate was higher after a longer duration of SD
than that of a shorter duration of SD (47, 48). Our data supported
these findings. In our study, SD increased PerAF differences
in the two cortexes, and these areas negatively correlated with
the accuracy rate of the ANT. In this framework, we speculated
that increased PerAF in these regions might be compensatory
responses to the cognitive deficits. These findings support the
excessive hyperarousal theory of insomnia (45).

The cerebellum posterior lobe is associated with language,
cognition, and emotion, and also with the regulation of planning,
initiating, and coordinating movement (4, 19, 49–51). Previous
studies have shown that the cerebellum was associated with
several neurologic and psychiatric diseases, including obstructive
sleep apnea (52), depression (53), primary insomnia (19, 39),
mood disorders (54), and sleep deprivation (4, 16, 41) and was
correlated with the accuracy rate of ANT (16). Our study showed

consistent findings with decreased PerAF in the cerebellum and
dorsolateral prefrontal cortex, and the two areas showed positive
correlations with the accuracy rate of ANT. In this framework,
the decreased regional brain activity in the cerebellum and
dorsolateral prefrontal cortex may suggest that the brain needs
to recruit more advanced cognitive function-related brain areas
to offset the attention deficits during SD, due to a continuing
declined activity in these two areas during insufficient sleep
status (16).

CONCLUSIONS

In summary, the proposed method of PerAF might be a potential
sensitivity neuroimaging indicator to differentiate different sleep
statuses. Acute SD could lead to an ∼8% attention deficit,
which was associated with the increased PerAF differences in
the visual cortex and sensorimotor cortex, and the decreased
PerAF differences in the dorsolateral attention cortex and
cerebellum. These findings could expand our knowledge of the
pathophysiological mechanism of insufficient sleep and related
diseases, and could provide guidance for healthcare professionals
to reduce the mistakes caused by lack of sleep. However, there are
several limitations that should be addressed. Firstly, the effect of
differences in gender was not considered (4, 19). Secondly, the
small sample sizes limited the comparisons. Thirdly, the caloric
intake and sleep at baseline were not considered.
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