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a b s t r a c t 

Color has great importance in agriculture due to its relationship with plant pigments and therefore, plant 

development and biochemical changes. Due to the trichromatic vision, instruments equipped with CCD or CMOS 

sensor represent color with the mixture of red, green and blue signals. These values are often transformed into 

HSL (hue, saturation, luminance) color space. Beyond average color of the visible surface area, histograms can 

represent color distribution. Interpretation of distribution can be challenging due to the information shared 

among histograms. Hue spectra fingerprinting offers color information suitable for analysis with common 

chemometric methods and easy to understand. Algorithm is presented with GNU Octave code. 

• Hue spectra is a histogram of hue angle over the captured scene but summarizes saturation instead of number 

of pixels. There are peaks of important colors, while others of low saturation disappear. Neutral backgrounds 

such as white, black or gray, are removed without the need of segmentation. 
• Color changes of fruits and vegetables are represented by displacement of color peaks. Since saturation is 

usually changing during ripening, storage and shelf life, peaks also change their shape by means of peak value 

and width. 
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Specifications table 

Subject Area: Agricultural and Biological Sciences 

More specific subject 

area: 

Biophysics, 

Machine vision, 

Digital image processing 

Method name: Hue spectra fingerprinting 

Name and reference of 

original method: 

Baranyai L., Szepes A. (2002) Analysis of fruit and vegetable surface color. Machine 

Graphics & Vision , 11(2/3): 351-361. 

Nguyen, L.P.L., Visy, A., Baranyai, L., Friedrich, L., Mahajan, P.V. (2020) Application of 

hue spectra fingerprinting during cold storage and shelf-life of packaged sweet cherry. 

Journal of Food Measurement and Characterization , 14: 2689-2702. 

Resource availability: Function was implemented in GNU Octave to extract hue spectra of images. 

Method details 

Color is an important parameter of produces of agriculture. Since pigments of fruits and vegetables

usually change during ripening, color is often used as primary indicator of quality. Plant pigments are

classified into four major groups: chlorophylls, carotenoids, flavonoids, and betalains [1] . Chlorophylls

capture light for photosynthesis and provide the energy required for plant development and growth. 

Chlorophylls make the green color of land plants and green algae. Carotenoids, flavonoids, and

betalains are accessory pigments with complementary absorbance spectrum to chlorophyll. They are 

secondary metabolites of plants with wide range of functionality and structure. Carotenoids (carotenes 

and xanthophylls) provide orange, yellow, pink or red colors of produces, such as citrus fruits, sweet

corn, banana, carrot and pepper. Flavonoids are responsible for purple, blue, yellow and red color of

produces, such as blueberry, blackberry, eggplant and plum. This group includes anthocyanins and 

frequently investigated with the antioxidant capacity of fruits. Betalains provide red, violet, orange 

and yellow color of produces, such as dragon fruit, cactus pear and beet. Betalains (betacyanins and

betaxanthins) differ from anthocyanins in the chemical structures and some properties, but share 

similarities to anthocyanins in the color spectra, biological functions, and other properties [1] . All

mentioned pigments fit into the visible wavelength range of 40 0–70 0 nm. As a result, color and

color change of fruits and vegetables can be measured by machine vision systems. Instruments

usually report average color indices for the observed small area (local color information), but image

processing can compute histograms of the whole surface and provide information on color pattern as

global color information. Evaluation of such histograms can detect defects, monitor ripening of fruits 

and vegetables [2] . 

Acquired color images represent color with the mixture of red (R), green (G) and blue (B) signals.

So called true color pictures use 24 bit/pixel color depth, scaling each color signal on byte values of 0

– 255 (where 255 = 2 8 -1). The basic RGB signals can be transformed into HSV (hue, saturation, value)

color space. First, the 2-dimensional location of the color point is calculated according to Eq. (1). 

x = R − 1 

2 
( G + B ) 

y = 

√ 

3 

2 
( G − B ) (1) 

The x and y coordinates can be used to compute HSV color parameters Eqs. (2 ), ( (3) ): 

H RGB = tan 

−1 y 

x 
(2) 

S RGB = 2 
√ 

x 2 + y 2 (3) 

These hue and saturation values Eqs. (2 ), ( (3) ) differ from standard CIE 1976 (L ∗a ∗b ∗) system

definition as they are computed from acquired intensity values instead of a ∗ and b ∗. In HSV color

space, value (V) is average of RGB signals, while in HSL color space the relative luminance (L) is

calculated with weighted summary. This latter lightness parameter is not included in the computation 
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Table 1 

Red, green and blue intensity values with hue and saturation 

for common colors. 

Name Red Green Blue Hue ° Saturation 

Black 0 0 0 0 0 

Gray 50% 127 127 127 0 0 

White 255 255 255 0 0 

Red 255 0 0 0 255 

Green 0 255 0 120 255 

Blue 0 0 255 240 255 

Yellow 255 255 0 60 255 

Magenta 255 0 255 300 255 

Cyan 0 255 255 180 255 

Fig. 1. Example picture of fruit color characterization on white background (A), its intensity histogram (B), saturation image 

(C) and saturation histogram (D). 

o  

r  

d  

-

 

s  

c  

a  

s  

o  

T  

c  

c

 

h  

(  

p  
f hue spectra. Although picture lightness is ignored, too dark images can negatively affect the

esolution of hue spectra. Due to the division in Eq. 2 , function atan2 is used in code to prevent

ivision by zero. Hue angle values have to be corrected since atan2 results are in the range from

180 ° to + 180 °. The RGB and hue, saturation values of common colors are presented in Table 1 . 

To ensure reproducibility and comparability of readings, camera adjustment should be

tandardized, such as gamma correction and white balance. Since hue angle is calculated from

aptured red, green, and blue intensity values, the correct white balance is essential. Illumination

lso plays an important role. Additionally to the requirement of neutral color, the frequency of power

upply may affect image quality as well. In case some fluctuation is expected in illumination color,

r pictures of different instruments are compared, picture colors need adjustment to a standard.

ypically, a color calibration chart is used in the background for this purpose [ 3 , 4 ]. Besides a complete

olor calibration chart, constant background color can also play this role. Such constant background

an be used to standardize pictures of the same machine vision installation [5] . 

Fig. 1 shows an example picture of fruit color characterization with intensity and saturation

istograms of the image. There is white background and fruit are darker with red (berry) and green

stem) color. The saturation histogram shows high frequency for low saturation values close to 0. That

eak belongs to the background. Removing pixels of very low saturation results in segmentation of
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Table 2 

Implementation of hue spectra computation in GNU Octave. 

function [RV] = huespectra(mpic,tv = 0.05) 

Layers = 0; 

[Height,Width,Layers] = size(mpic); 

# Check for color picture matrix 

if Layers == 3 

# get RGB color layers 

pr = double(mpic(:,:,1)); 

pg = double(mpic(:,:,2)); 

pb = double(mpic(:,:,3)); 

# color point coordinates 

dx = pr - pg/2 – pb/2; 

dy = (pg – pb) ∗sqrt(3)/2; 

# saturation, the distance from color space origin 

spic = sqrt(dx. ̂ 2 + dy. ̂ 2)/255; 

# hue, the color angle in degree 

hpic = atan2(dy,dx) ∗180/pi; 

hpic(hpic < 0) += 360; 

# select pixels above threshold 

fc = uint16(hpic(spic > tv)); 

fc(fc == 0) += 360; 

fs = spic(spic > tv); 

# collect spectra data 

N = length(fc); 

RV = zeros(1,360); 

if N > 1 

for i = 1:N 

RV(fc(i)) += fs(i); 

endfor 

RV / = N; 

endif 

else 

printf(’Hue Spectra Error: Non-color image matrix! \ n’); 

RV = 0; 

endif 

endfunction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fruit. Saturation histogram does not have visible peaks above background peak, due to the very high

amount of those pixels. The saturation image shows both fruit and stem on the picture ( Fig. 1 C).

In case hue histogram is computed with summary of saturation values, background is automatically 

eliminated without the need of segmentation. Since white background still obtained small saturation 

values other than zero, it is recommended to adjust a threshold value during computation of hue

spectra. According to authors’ experience so far, the value 0.05 (in the range of 0–1) is a suitable

default threshold. 

Table 2 shows the implementation of hue spectra computation using GNU Octave software. The 

code separates color layers of the image, RGB signals are stored in variables pr, pg and pb . Calculation

follows the procedure of Eqs. (1 )–(3) . Saturation values are normalized into the range of 0 – 1. Hue

angle values are rounded during transformation of double values to 16 bit unsigned integer. The

summary values are divided by the total number of pixels. This normalization provides hue spectra

comparable among images of different size. 

Fig. 2 shows example pictures with their hue spectra. Pictures were taken in the botanic garden of

Hungarian University of Agriculture and Life Sciences, Budapest. The upper color picture ( Fig. 2 ) has

yellow and red-purple flower over green background. Its hue spectrum consists three peaks for those

colors. The lower color picture ( Fig. 2 ) has pink color in front of green background and the blue sky

is also visible. The lower hue spectrum has its largest peak near magenta color ( Table 1 ). 

Hue spectra can be processed using chemometric methods, such as partial least squares regression 

(PLSR). Similar mathematical methods are able to find relationship between color and other reference

parameters, like soluble solids content (SSC), firmness, etc. There is a technique in near infrared
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Fig. 2. Example flower pictures (left) and their hue spectra (right). 
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pectroscopy (NIRS), which can be recommended to compress hue spectra shape information into

ingle 2-dimensional point. Hue spectra is transformed to polar plot and the gravity point of the

isible shape is used. This method is called Polar Qualification System (PQS) [6] . The gravity point

PQSx, PQSy) is computed based on triangular decomposition of shape ( Eq. (4 )), where V l is the

alue of spectra at hue angle l, T is the total surface area of the polar figure, a is the angle between

onsecutive spectra values. 

T = 

1 
2 

∑ 

V λi V λ( i +1 ) sin α

PQS x = 

1 
6 T 

∑ 

[
V λi cos ( iα) + V λ( i +1 ) cos ( ( i + 1 ) α) 

]
V λi V λ( i +1 ) sin α

PQS y = 

1 
6 T 

∑ 

[
V λi sin ( iα) + V λ( i +1 ) sin ( ( i + 1 ) α) 

]
V λi V λ( i +1 ) sin α

(4)

Optimization of hue spectra analysis is possible with selection of the range of interesting colors.

QS might respond more sensitively to changes with optimized input. 

ethod validation 

Sweet cherry ( Prunus avium L. ‘Hudson’) color was monitored during 9 d cold storage at 10 ± 0.5 °C
nd following 2 d shelf life at 20 ± 0.5 °C [5] . Reference parameters of respiration, weight loss,

rmness and total soluble solids content (TSS) were measured. Sweet cherry samples were placed

n white background and this background was used as color reference. It was observed that hue

pectra had peaks in the range of red and green colors, as expected. During the experiment, both

ed and green peaks were found to change value and green peak moved toward red (brown) color,

s well. The average hue spectra of the cherry samples at the beginning and end of the experiment

re presented on Fig. 3 . The red and green regions were selected on the figure. PLSR models were

ade for prediction of reference parameters using hue spectra of color images. The best prediction

as achieved for total soluble solids content with R 

2 = 0.972 and RMSE% = 0.706% for calibration

nd R 

2 = 0.683 and RMSE% = 2.546% for validation [5] . RMSE% (root mean squared error) parameter

as calculated as relative error compared to measured value. The parameter TSS was followed by fruit
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Fig. 3. Average hue spectra of sweet cherry samples at the beginning (initial) and at the end of shelf life. 

Table 3 

Comparison of sweet cherry prediction models PLSR of hue spectra and MVR of RGB 

data. 

Quality 

parameter 

Firmness Total soluble solids (TSS) 

Calibration Validation Calibration Validation 

R 2 PLSR 0.979 0.672 0.972 0.683 

MVR 0.341 0.280 0.388 0.314 

RMSE% PLSR 1.572 8.626 0.688 3.387 

MVR 9.842 9.845 3.221 3.878 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

firmness, respiration and weight loss, respectively. Besides TSS, only firmness prediction obtained low 

error with RMSE% = 1.596% for calibration and RMSE% = 7.578% for validation. According to the prior

study, hue spectra was able to estimate two reference parameters and follow changes of sweet cherry

during storage and shelf life. 

Sweet cherry measurements were performed 5 times during the experiment, resulting 124 

data points. The comparison of prediction efficiency of proposed hue spectra fingerprinting with 

multivariate regression (MVR) model utilizing common RGB average and standard deviation is 

presented in Table 3 . The PLSR calibration models outperformed MVR ones, but validation achieved

comparable results in terms of RMSE%. 

In another study, Kápia type sweet pepper ( Capsicum annuum L . cv. ‘Kapitány’ ) was monitored

during 7 d cold storage followed by 7 d shelf life [7] . Fresh pieces were harvested for the experiment

in semi-mature state called “turning” or “smoky green”. Initial samples were greener than red. This 

color was maintained until the end of cold storage, when color started changing toward red. At

the end of shelf life, almost all pieces became red. Fig. 4 presents the same piece of pepper at the

beginning and the end of the experiment with hue spectra of those pictures. The spectra ( Fig. 4 ) were

cut to highlight expected color range of red – green. Hue spectra of pepper had peaks at expected

locations, representing smoky green and red colors. 

PLSR models were made to predict reference parameters of acoustic firmness (Stiffness), mass loss, 

chlorophyll content (DA-index®) and chlorophyll fluorescence parameters (F 0 , F M 

, F V , F V /F M 

, F M 

/F 0 ).

These models were created for method validation, not published in prior study [7] . Due to the sudden

change of color during the experiment, prediction models obtained low determination coefficients 

and high relative prediction error as R 

2 = 0.3283 and RMSE% = 14.97% for F V /F M 

, R 

2 = 0.3967 and

RMSE% = 21.62% for F M 

/F 0 , R 

2 = 0.4986 and RMSE% = 28.54% for Stiffness. The chlorophyll content

(DA-index®) obtained the highest R 

2 = 0.8675, which is promising but prediction error was too

high. According to the observations of studies of sweet cherry [5] and sweet pepper [7] , hue spectra
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Fig. 4. Kápia type sweet pepper samples during the experiment and their hue spectra. 
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ehavior met expectations. Peak value, location and width were found to change during storage and

helf life of horticultural produces, following their color changes. Especially for cherry, PLSR calibration

odels achieved good efficiency in prediction of TSS and firmness based on hue spectra data. 
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