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Humans tend to form social relationships with others who re-
semble them. Whether this sorting of like with like arises from
historical patterns of migration, meso-level social structures in
modern society, or individual-level selection of similar peers
remains unsettled. Recent research has evaluated the possibility
that unobserved genotypes may play an important role in the
creation of homophilous relationships. We extend this work by
using data from 5,500 adolescents from the National Longitudinal
Study of Adolescent to Adult Health (Add Health) to examine
genetic similarities among pairs of friends. Although there is some
evidence that friends have correlated genotypes, both at the
whole-genome level as well as at trait-associated loci (via poly-
genic scores), further analysis suggests that meso-level forces,
such as school assignment, are a principal source of genetic
similarity between friends. We also observe apparent social–
genetic effects in which polygenic scores of an individual’s friends
and schoolmates predict the individual’s own educational attain-
ment. In contrast, an individual’s height is unassociated with the
height genetics of peers.

GWAS | polygenic score | social–genetic effect | educational attainment |
BMI

The degree to which genetics are implicated in the formation
and consequences of social relationships is of growing in-

terest to the new field of sociogenomics (1, 2). Analysis of
spousal genotypes suggests that spouses are more genetically
similar to one another compared with random pairs of individ-
uals in the population (3–9). The degree of this genetic “homog-
amy” is modest. In previous analyses, we estimated that genetic
homogamy was about one-third the magnitude of educational
homogamy (3), even when specifically examining education-
associated genotypes (8). However, even modest genetic homog-
amy can have implications for statistical and medical genetic
models of inheritance and social models of spousal effects (10–12).
Marriage is not the only social grouping to evidence genetic

selection. Adult friends are, on average, more genetically similar
than random pairs from the population (13). Genetic similarity
among friendship networks is important for at least two reasons.
First, social networks can influence mating markets, so genetic
similarity among friends may be one source of genetic similarity
among spouses. Second, there may exist social–genetic effects—
the effects of alter’s genotype on ego’s phenotype (1, 14, 15)—
which would further suggest that social sorting on genotype may
have consequences for the distribution of phenotypes in a pop-
ulation beyond its effect on subsequent generations through
assortative mating.
Adolescence is a critical developmental period in which pat-

terns of health behaviors and overall mental health established

during this phase continue through the life course (16) and may
affect socioeconomic attainment (17, 18). Moreover, it is also a
time of heightened salience for peer networks and influence (19–
22). For these reasons, in the present study, we characterize
genetic homophily within adolescent social networks in the
United States. Specifically, we analyze data from the National
Longitudinal Study of Adolescent to Adult Health (Add Health)
(23). Add Health surveyed 90,118 US adolescents aged 12–18 in
1994–1995 using a school-based sampling frame. As part of the
survey, students were asked to list the names of their friends.
Responses were collated within schools to identify social ties
between individuals and their friends (24). Of the adolescents
surveyed, 20,745 were enrolled in a longitudinal study that in-
cluded in-home interviews with the adolescents and their parents
and that followed the adolescents prospectively across four
waves of interviews spanning 14 y. At the most recent interview
in 2008, ∼12,000 Add Health participants provided DNA for
genotyping and genome-wide single-nucleotide polymorphism
(SNP) data were assayed. We linked these genetic data with
social network information from the original school-based
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surveys along with information about personal characteristics
and social environments accumulated across Add Health follow-up
waves. Analyses focus on a group of genetically homogeneous
respondents identified as being of ancestral European origin
(N ∼ 5,500). Complete details on the data are in SI Appendix.
Our analysis proceeds in three steps. In step 1, we test whether

friends are more genetically similar to one another than to
randomly selected peers. In step 2, we ask about the role of
school assignment in observed genetic similarity among friends.
In step 3, we evaluate a potential implication of genetic similarity
among friends: social–genetic effects, or the association between
the genotypes of one’s social peers and one’s own phenotype (net
of own genotype).

Results
Are Friends More Genetically Similar to One Another than They Are to
Randomly Selected Peers? We tested whether friends were more
genetically similar to one another compared with random pairs
of individuals. Using the KING algorithm (25), we computed
genetic kinships between all pairs of Add Health participants.
We then compared kinships among friends to kinships among
random pairs of individuals to estimate the degree of genetic
similarity among friends (3). To address potential confounding
of analysis by ancestry, we focused on unrelated respondents of
European ancestry. We also conducted analysis of genetic re-
latedness of the full Add Health sample using the REAP algo-
rithm (26), which is designed to estimate genetic similarity in the
presence of population stratification. REAP results are reported
in SI Appendix.
Estimates of genetic similarity among friends were positive

(Table 1). Among non-Hispanic whites in Add Health, KING
estimates of genetic homophily were about two-thirds the mag-
nitude of our previous KING estimates of genetic similarity
among spouses in the US Health and Retirement Study (friend
similarity = 0.031, CI = 0.022–0.036, compared with spousal
similarity = 0.045 from ref. 3). REAP estimates of genetic sim-
ilarity were somewhat smaller.
Our second analysis tested whether friends were more similar

to one another on specific phenotype-related genetic dimen-
sions. We considered the genetics of three phenotypes: height,
body mass index (BMI) (a measure of adiposity), and educa-
tional attainment. We used polygenic scores to summarize
phenotype-related genetics. Polygenic scores are genome-wide
summaries of genetic influence. They are computed by weighting
alleles at loci across the genome according to their association
with a phenotype of interest and then summing weighted allele
counts across loci. We computed polygenic scores based on weights
from published genome-wide association studies (GWASs) (27–29)
using established methods (30). Because the original GWASs were
performed on non-Hispanic whites, we restricted polygenic score
analysis to this population as population stratification may dilute
genetic associations (31). To correct for any residual population
stratification, we adjusted polygenic score analyses for the first
10 principal components (32) computed based on the genetically
homogeneous set of European-ancestry respondents. Further de-
tails are reported in SI Appendix.
We first confirmed that polygenic scores were associated with

their respective phenotypes (all polygenic score–phenotype cor-
relations exceeded 0.25; Table 2). Educational attainment was
strongly correlated between friends (r = 0.42) and less so for
BMI and height (r = 0.12 for BMI; r = 0.09 for height). Next, for
each polygenic score, we computed associations of the respon-
dent’s polygenic score with the average polygenic score among
their friends. Polygenic scores for BMI (r = 0.08; P < 0.001) and
educational attainment (r = 0.09; P < 0.001) were positively
correlated among friends. Polygenic scores for height were not
correlated among friends (r = −0.01; P = 0.63). Compared with
correlations of polygenic scores among spouses (8), spousal

correlations for polygenic scores for height were much larger than
that observed for friends, spousal correlations of BMI polygenic
scores were smaller, and friend and spousal correlations on
polygenic scores for educational attainment were comparable.
Research suggests that there may be important differences

among men and women with respect to the role of genes in
complex social behaviors (33). To test for such differences, we
repeated our analysis within same-sex social networks; that is, we
tested correlations between women’s polygenic scores and scores
of their female friends and between men’s polygenic scores and
scores of their male friends. Results were similar to the mixed-
sex analysis (Table 2). For education polygenic scores, women’s
female social networks demonstrated modestly stronger social–
genetic correlations compared with men’s male social networks.
The opposite was observed for BMI polygenic scores.

Why Are Friends More Genetically Similar to One Another than They
Are to Randomly Selected Peers? We considered two hypotheses.
One hypothesis is that friends are more genetically similar to one
another because they form their friendships partly on the basis of
shared characteristics (e.g., being short or tall, heavy or slim,
from well-educated or poorly educated families, etc.). This
process is called “social homophily” (34–37). When character-
istics that influence formation of social ties are heritable, which
many are (38), social homophily can generate genetic similarity
between friends. A second hypothesis is that friends are more
genetically similar because people tend to form friendships
within environments that are socially stratified (e.g., living in the
same community, attending the same school). We refer to this
process, which has been observed as a cause of demographic
similarity among spouses (39), as social structuring (40). When
genetics influence the social environments people live in—for
example, through influence on socioeconomic attainment (41)—
social structuring can generate genetic similarity between friends
even without explicit selection on phenotypic similarity. Social
homophily and social structuring are not mutually exclusive and
may indeed be complementary processes.
Our analysis of polygenic score correlations among friends

suggested some evidence of social homophily; individuals were
modestly similar to friends in terms of their educational trajec-
tories (measured as their educational attainment at wave IV,
about 14 y after social network data were originally collected),
and their educational attainment polygenic scores were corre-
lated (Table 2).
We next tested for evidence of social structuring of genetic

similarity. We estimated genetic similarity at the level of a
structural social environment—the schools within which social
networks of friends were defined. For this analysis, we compared
genetic similarity among schoolmates to genetic similarity among
random pairs of individuals in the Add Health sample. School-
mates were genetically more similar to one another compared
with random pairs of individuals (for European schoolmates,
KING similarity = 0.019, CI = 0.018–0.020; Table 1).
Given this evidence of social structuring, we repeated analysis

of genetic similarity between friends, this time comparing friends

Table 1. Similarity estimates based on overall estimates of
genetic similarity (KING) for friends and schoolmate pairs

Social linkage Friends Schoolmates

Relatedness measure KING KING
N individuals 2,888 5,611
N socially linked dyads 4,574 262,027
N possible dyads 4,168,562 15,738,221
Genetic similarity 0.031 0.019
95% CI 0.022–0.036 0.018–0.020
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to random pairs of individuals drawn from the same school.
Genetic similarity between friends was attenuated by about one-
half when the analysis compared friends to random pairs of
schoolmates (KING-estimated within-school friend similarity =
0.018, CI = 0.009–0.026; Fig. 1A). In parallel, correlations among
educational attainment polygenic scores between friends were
attenuated when we adjusted analysis for the school mean
polygenic score (Fig. 1B; underlying coefficients are reported in
SI Appendix); less attenuation was observed for estimates related
to height and BMI polygenic scores.

Is the Social Genome Associated with an Individual’s Phenotype?One
reason genetic similarity among friends and schoolmates may
matter for health and social science research is the potential
phenomenon of social–genetic effects. Social–genetic effects,
also called “indirect” genetic effects, refer to the influence of one
organism’s genotype on a different organism’s phenotype (14,
15). Social–genetic effects, which may take several forms (1), are
accounted for in evolutionary theory (42, 43) and have been
observed among animals (15, 44–47) and received some study in
human siblings (14, 48, 49).
We tested social–genetic effects among unrelated individuals

with direct social ties (friends) and structural social ties (school-
mates). We examined two types of social–genetic effects: (i) social–
genetic main effects—associations between friend or school
genetics and a focal individual’s phenotype net of that focal in-
dividual’s own genetics; and (ii) social epistasis—moderation of
the association between a focal individual’s own genetics and
phenotype by the genetics of their social environment. This analysis
comes with the caveat that social ties between friends are not
randomly assigned, and thus estimates of social–genetic effects
cannot be strictly interpreted as causal.
We tested social–genetic main effects among friends by ana-

lyzing associations between average friend polygenic scores and a
focal Add Health participant’s educational attainment, BMI, and
height measured at the wave IV Add Health follow-up, 14 y after
social network information was collected. Friend polygenic
scores for educational attainment were associated with Add
Health participants’ educational attainment at the wave IV as-
sessment (b = 0.18, P < 0.001). This apparent social–genetic
effect was not explained by social–genetic correlations among
friends; when the focal individual’s own education polygenic
score was included as a covariate, the social–genetic effect was
only slightly reduced and remained statistically significant (b =
0.15, P < 0.001). No friend-level social–genetic main effects were
observed for BMI or height (SI Appendix). Given that weight
may be more sensitive to context than height (e.g., a friend’s
appetite or interest in exercise may potentially influence a focal
individual’s weight but presumably not their height), we also

considered an alternative adiposity measure (SI Appendix). Re-
sults were similar.
We next tested social–genetic main effects at the school level

after accounting for the individual’s own polygenic score. Find-
ings were similar to findings for friends. Attending a school with
higher average education polygenic score predicted completing
more years of schooling by the time of wave IV follow-up 14 y
later (after adjustment for the person’s own polygenic score, b =
0.22, P < 0.001). We also observed a weak school-level social–
genetic effect for BMI (SI Appendix). Analyses of social–genetic
effects are summarized in Fig. 2 (underlying coefficients are
reported in SI Appendix).
To test whether school-level social–genetic main effects might

account for social–genetic main effects among friends, we reesti-
mated friend-level social–genetic main effects using a within-school

Table 2. Correlations between various genotypes and phenotypes for individuals (as well as school ICCs) as
specified in each row for the traits specified in each column

Correlation/ICC

All (n = 5,626) Females (n = 2,979) Males (n = 2,647)

Education BMI Height Education BMI Height Education BMI Height

r(phenotype, PGS) 0.263 0.266 0.317 0.262 0.26 0.301 0.264 0.276 0.336
Phenotype School ICC 0.166 0.025 0.022 0.155 0.034 0.032 0.147 0.009 0.028
r(Phenotype, Friend Phenotype) 0.415 0.118 0.09 0.413 0.152 0.055 0.371 0.119 0.15
r(Phenotype, School Phenotype) 0.347 0.107 0.096 0.328 0.107 0.122 0.318 0.031 0.086
PGS School ICC 0.037 0.005 0.016 0.03 0.003 0.022 0.04 0.005 0.012
r(PGS, Friend PGS) 0.088 0.084 −0.009 0.123 0.077 0.026 0.097 0.108 −0.003
r(PGS, School PGS) 0.14 0.042 0.078 0.11 0.026 0.077 0.133 0.029 0.033

Correlations also shown for female and male respondents in which the focal individuals and the individuals used to construct
measures of the social genome were restricted to the same sex. Note that not all respondents had a genotyped friend; correlations
based on friend PGS are computed using a reduced sample. ICC, intraclass correlation coefficient.
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Fig. 1. Social–genetic correlations. (A) Genetic similarity between friends
before and after accounting for genetic similarity of schoolmates. (B) Asso-
ciations between participants’ polygenic scores and the polygenic scores of
their friends before (M1) and after (M2) adjusting for the mean polygenic
score for participants’ school. CIs are robust to school clustering.
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design. This analysis focuses comparisons between individuals
within a school through inclusion of a school fixed effect. For ed-
ucational attainment, friend-level social–genetic main effects
remained statistically significant even when comparing an individ-
ual to their schoolmates (within-school social–genetic main effect
b = 0.1, P < 0.001). We conducted sensitivity analyses to evaluate
whether findings were affected by genetic relatedness among
groups of schoolmates and friends (7), by particular schools that
included large numbers of respondents, by the strength of social
ties between friends (mutual nominations; first- and second-degree
friendship networks), or by the ethnic composition of the schools.
Results were similar to those reported (SI Appendix).
Finally, we tested for social epistasis by analyzing moderation

of the association between Add Health participant’s own poly-
genic scores and their phenotypes by friend- and schoolmate-
average polygenic scores. We found some evidence of social
epistatic effects predicting educational attainment. The associa-
tion between a respondent’s polygenic score and their own ed-
ucational attainment was of somewhat larger magnitude when
their friends and schoolmates had higher average educational
attainment polygenic scores (SI Appendix).

Discussion
We analyzed genome-wide and social network data from a large
nationally representative sample of American adolescents in
Add Health. There were three main findings. First, we found
evidence for positive genetic similarity among friends; friendship
pairs tended to be more genetically similar to one another
compared with random pairs of individuals. Second, friends tend
to be genetically similar because of two potentially comple-
mentary processes, social homophily and social structuring. So-
cial homophily-related genetic similarity may arise because
individuals form social bonds on the basis of characteristics they
share, many of which have genetic origins. In Add Health,
friends tended to share educational trajectories and also to have
similar education-associated genotypes, suggesting social-homophily–

related genetic similarity. Social-structuring–related genetic sim-
ilarity may arise because individuals tend to form social bonds
with people whom they share the same social environments and
spend their time together and these social environments may be
partly influenced by their genetics. Genetic similarity at the
structural level, that is, among schoolmates, accounted for about
one-half of the genetic similarity among the Add Health friends.
Third, genetic similarity of friends and schoolmates may bias
interpretations of genetic main effects. We found evidence that
genetics tended to be somewhat more similar among socially
connected individuals and that the genetics of individuals in a
person’s social environment influence that person’s phenotype.
Together, these findings imply that naive estimates of genetic
associations that ignore the social genome may be modestly
biased by unmeasured social–genetic effects. In our analysis of
education-associated genetics, the direction of this bias was
positive. For other phenotypes and in other social settings, bias
may be negative.

Implications for Genetics. Our findings regarding genetic similarity
among friends echo and extend earlier work suggesting that adult
friends exhibit overall genetic similarity (13); adolescents exhibit
similarity on specific candidate genes (50, 51); and genetic simi-
larities between adolescent friends may be partially responsible for
observed similarities of friends’ grade point averages (52). Al-
though power to detect genome-wide genetic similarity in our
analysis may be low (7), we observed consistent evidence in
analysis of polygenic scores. Potential confounding by population
stratification is also an issue (7, 53). However, our results were
consistent when we analyzed genetic similarity using the REAP
software, which is designed to account for population stratification
(26), and when we analyzed increasingly homogeneous subsamples.
A unique observation from our analysis is that genetic simi-

larity among persons with direct social ties (friends) partly re-
flects genetic similarity among persons with structural social ties
(schoolmates). This school-level similarity was also observed at
the level of trait-associated genetics. About 4% of variation in
the educational attainment polygenic score was between schools.
Future research into social genetics in humans should be
designed to account for this structural dimension, or other po-
tential ways in which individuals may be clustered (54). Of
course, we only measured certain aspects of social structuring.
Studies that probe whether the magnitude of social structuring—
perhaps as proxied by differences in institutional features [e.g.,
public versus private schools; school-level segregation (51)] or
even geographic segregation (55)—drives the degree of genetic
assortment would also be informative.
A second unique observation from our analysis is that the

genetics of a person’s social network may affect that person’s risk
of obesity and their educational attainment. As noted above,
such social–genetic effects can bias analysis of genetic associa-
tions if the social genome is not accounted for (15). It is note-
worthy that our social–genetic effect results were specific to
phenotypes plausibly influenced by the social environment, ed-
ucation and obesity (see also refs. 56 and 57). For height, which
is not likely to be influenced by social network processes (56), at
least in contemporary US society, we observed no evidence of
social–genetic effects. Future research may begin to bridge the
social–genetic effects literature with that of peer and school ef-
fects by examining whether observable characteristics of one’s
social environment (e.g., the psychological makeup of one’s
friends, their substance abuse behavior, personality traits, etc.)
act as mechanisms through which social–genetic effects occur.

Implications for Social Science. Putative social–genetic effects also
have implications for social science research. Because our analysis
is able to control for the same genetics in the adolescents that are
measured in their friends and schoolmates, the social–genetic
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Fig. 2. Social–genetic effects. Effect of friend and school mean PGS net of
one’s own PGS for educational attainment, BMI, and height (all measured at
wave IV) on associated outcome. Outcomes are standardized as are social
genotypes. The dashed red line is the baseline effect of own PGS on the
outcome in a null model with no other predictors. Estimates are based on a
sample of unrelated respondents. CIs are robust to school clustering.
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effects we detect are evidence of environmental transmission of
peer- and school-level influences on adolescents’ outcomes. A
critical next step is to determine whether social–genetic effects
detected in analysis of friends and schoolmates reflect causal effects
arising from friends and schoolmates, or whether the genetics of
friends and schoolmates function as proxies for other features of
adolescents’ environments. For example, in the case of education,
friend- and school-level genetics may be associated with other
features of communities that are associated with higher levels of
educational attainment (58). To be more definitive, future re-
search may require exogenous mechanisms underlying social
contact (59, 60). Specifically, others have argued that larger so-
cial environments such as schools are excellent environments for
gene–environment research because school selection is largely
independent of genotype (61), but our results suggest that this
may not be accurate.
To the extent social–genetic effects are causal, they provide

unique opportunities to investigate social network processes.
Many previous attempts to identify causal social network effects
(62) have been met with skepticism (56). In observational studies
of friends, one of the fundamental problem is that the friendship
bond is endogenous to the characteristics of the individuals in
the friendship, making it challenging to disentangle the effects of
friends from effects of characteristics contributing to friendship
formation (63). A second, equally daunting challenge is the “re-
flection problem” (64), wherein it is difficult to distinguish the
direction of effects in social interaction. Because a person’s ge-
netics cannot be caused by social processes occurring within that
person’s lifetime, they can help distinguish homophily (like
assorting with like) from contagion in social network research. To
the extent that genotype and environments are independent and
randomly assigned, such social–genetic analysis can also solve the
reflection problem—a strong assumption, however (65).
This study contributes to what is currently known about the

role of genotypes with respect to the social ecology that exists
among humans. We have provided specific evidence about ge-
netic similarity within social networks and the potential for social–
genetic effects. The joint existence of social network genetic
similarity and social–genetic effects could produce important
feedback loops. If the genetics of one’s social environment matter
and relevant genetics are stratified across environments, then be-
ing in certain social environments might confound straightforward
analysis of genetic effects (15). More work is needed to document
these features of social genetics in humans before such modulations
can be unambiguously documented, but their possible existence
challenges simple notions of genetic “effects.”

Methods and Materials
Data. Add Health is a nationally representative cohort drawn from a prob-
ability sample of 80 US high schools and 52 US middle schools (in 80 US
communities), representative of US schools in 1994–1995 with respect to
region, urban setting, school size, school type, and race or ethnic back-
ground (22, 23). About 15,000 respondents (or 96%) consented to geno-
typing during the wave IV interview in 2008–2009 for purposes of approved
Add Health wave IV research. Of those who consented to genotyping,
∼12,000 (or 80%) agreed to have their DNA archived for future testing (see
SI Appendix for a comparison of genotyped and nongenotyped respon-
dents). DNA extraction and genotyping on this archived sample yielded a
sample of 9,975 Add Health members with GWAS data consisting of 631,990
SNPs. SI Appendix contains additional details on the genotyping process. This
study was conducted with institutional review board approval from the University
of North Carolina at Chapel Hill and Stanford University. Add Health data
collection and participants’ written informed consent for participation in all
aspects of Add Health were carried out in accordance with the University of
North Carolina School of Public Health Institutional Review Board guidelines.

In the in-school survey (which was administered to every student in the
participating schools, not only the Add Health study members who are
prospectively followed into adulthood), as well as in the in-home surveys at
waves I and II, students were asked to nominate up to five of their male
friends and five female friends. We accept a nomination in either direction

(i.e., “undirected” friendships) as evidence of a friendship between two in-
dividuals. Of those with genetic data, only 5,199 people were in a friendship
pair with another genotyped respondent. We focus largely on friendship
nominations within race/ethnicity. Of the 7,217 friendship pairs between
genotyped respondents, ∼90% were within self-reported race/ethnicity. We
emphasize two additional caveats. First, related respondents (as identified
by measures of genetic similarity) were not included in the analyses. Second,
one school—a so called “saturated school” in the Add Health data (23)—
contributed a disproportionate number of friend pairs to the sample of non-
Hispanic white respondents. Results reported are robust to the removal of
this school (SI Appendix).

Measures. To measure genetic similarity, we use a kinship measures [KING
(25)] that has been the focus of earlier research (3, 5). We also consider an
alternative measure [REAP (26)] that is less sensitive to population stratifi-
cation. We construct principal components using all genotyped respondents.
We construct polygenic scores for anthropometric traits (BMI, height) and
educational attainment. To construct these scores, we utilize publicly avail-
able GWAS results (27–29) derived from large consortia studies (that did not
include Add Health) of populations of European descent. Polygenic scores do
not typically generalize across racial groups (66), so we focus these analyses
on a group of genetically homogeneous European-ancestry respondents.

We use information fromwave IV (when respondents were 24–32 y old) on
years of education completed, BMI, and height (see additional details on all
measures in SI Appendix). For analysis, we first residualized all three out-
comes on sex and birth year.

Methods.
Overall genetic similarity. We first consider a measure of genetic similarity among
friends used previously to study genetic similarity among spouses (3, 5). We
compute the area between the 45° line and the P-P plot (given two CDFs F and G,
the P-P plot is the set of points [F(x),G(x)] for all x) comparing the density of ge-
netic similarity between friends with the density of genetic similarity for all dyads.
Targeted genetic similarity. We first consider a baseline model for some poly-
genic score Gi of the following form:

Gi = a+b · μFðGiÞ+ ei , [1]

where μF(Gi) is the mean of Gi for all an individual’s friends. The coefficient b
captures the degree to which being friends is associated with levels of
overall genetic similarity. Motivated by previous studies of Add Health social
networks (67, 68), we next consider the role of genetic clustering into
schools in the observed degree of friend genetic similarity via the following:

Gi = a+b · μF ðyiÞ+ c · μSðGiÞ+ ei , [2]

where μS(Gi) is the mean of Gi for all other individual’s at the school of in-
dividual i. We interpret attenuation in estimates of b going from [1] to [2] as
evidence for the importance of social structure, specifically school assign-
ment, in observed genetic similarity among friends. We adjust all SEs for
clustering of students into schools (69).

Turning to our analysis of social–genetic effects, we first consider models
of the (potentially confounded) effect of the social genome on an individ-
ual’s phenotype (Pi) net of the individual’s own polygenic score (PGSi). The
social genome will be characterized via μF(Gi) and μS(Gi) as above. We first
consider the following:

Pi = a+b · PGSi + c · μFðGiÞ+ e. [3]

We construe this as a test of “narrow” social–genetic effects of friends. In
contrast, we also consider measures of “broad” social–genetic effects:

Pi = a+b ·PGSi + c · μSðGiÞ+e. [4]

Again, all SEs are adjusted for clustering into schools.
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